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Abstract

:

With the advancement of science and technology, new complex optimization problems have emerged, and the achievement of optimal solutions has become increasingly important. Many of these problems have features and difficulties such as non-convex, nonlinear, discrete search space, and a non-differentiable objective function. Achieving the optimal solution to such problems has become a major challenge. To address this challenge and provide a solution to deal with the complexities and difficulties of optimization applications, a new stochastic-based optimization algorithm is proposed in this study. Optimization algorithms are a type of stochastic approach for addressing optimization issues that use random scanning of the search space to produce quasi-optimal answers. The Selecting Some Variables to Update-Based Algorithm (SSVUBA) is a new optimization algorithm developed in this study to handle optimization issues in various fields. The suggested algorithm’s key principles are to make better use of the information provided by different members of the population and to adjust the number of variables used to update the algorithm population during the iterations of the algorithm. The theory of the proposed SSVUBA is described, and then its mathematical model is offered for use in solving optimization issues. Fifty-three objective functions, including unimodal, multimodal, and CEC 2017 test functions, are utilized to assess the ability and usefulness of the proposed SSVUBA in addressing optimization issues. SSVUBA’s performance in optimizing real-world applications is evaluated on four engineering design issues. Furthermore, the performance of SSVUBA in optimization was compared to the performance of eight well-known algorithms to further evaluate its quality. The simulation results reveal that the proposed SSVUBA has a significant ability to handle various optimization issues and that it outperforms other competitor algorithms by giving appropriate quasi-optimal solutions that are closer to the global optima.
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1. Introduction


The act of obtaining the optimal solution from multiple solutions under a given situation is known as optimization [1]. In designed problems in different sciences, items such as cost minimization, profit maximization, shortest length, maximum endurance, best structure, etc., are often raised, which require mathematical modeling of the problem based on the structure of an optimization problem and solving it with appropriate methods.



Mathematical methods of optimization are introduced according to the type of problem modeling, such as linear or nonlinear, constrained or non-constrained, continuous or linear programming, or nonlinear programming. Despite their good performance, these methods also have obstacles and disadvantages. These methods generally find the local optimal, especially if the initial guess is close to a local optimal. In addition, each of these methods assumes assumptions about the problem, which may not be true. These assumptions include derivability, convexity, and coherence. In addition to these disadvantages, the computation time of these methods in a group of optimization problems called nondeterministic polynomial-hard increases exponentially as the dimensions of the problem increase [2].



To overcome these challenges, a special class of optimization methods called stochastic-based optimization algorithms were developed. Because these algorithms rely on probabilistic and random search decisions and principles in many search steps of the optimal solution, these algorithms are called stochastic methods [3].



To find the best answer, optimization algorithms rely on a similar technique. The search procedure in most of these algorithms begins by generating a number of random answers within the allowable range of decision variables. This set of solutions in each of the algorithms has names such as population, colony, group, and so on. Moreover, each solution is assigned names such as chromosomes, ants, particles, and so on. The existing answers are then enhanced in various ways in an iterative process, and this action proceeds until the stop condition is achieved [4].



The global optimum is the fundamental answer to an optimization issue. However, optimization algorithms as stochastic methods are not necessarily able to supply the global optimal answer. Hence, the solution obtained from an optimization algorithm for an optimization problem is called quasi-optimal [5]. The criterion of goodness of a quasi-optimal solution depends on how close it is to the global optimal. As a result, when comparing the effectiveness of several optimization algorithms in addressing a problem, the method that produces a quasi-optimal solution that is closer to the global ideal optimal is preferable. This issue, as well as the goal to attain better quasi-optimal solutions, has prompted academics to extensive efforts and research to develop a variety of optimization algorithms that can provide solutions that are closer to the global optimal for optimization issues. Stochastic-based optimization algorithms have wide applications in optimization challenges in various sciences such as sensor networks [6], image processing [7], data mining [8], feature selection [9], clustering [10], engineering [11], the internet of things [12], and so on.



Is there still a need to develop new optimization algorithms despite the optimization algorithms that have been established so far? This is a key question that emerges in the research of optimization algorithms. The notion of the No Free Lunch (NFL) theorem has the answer to this question [13]. According to the NFL theorem, an optimization method that is effective in optimizing a group of optimization issues does not ensure that it will be useful in solving other optimization problems. As a result, it is impossible to say that one method is the best optimizer for all optimization problems. The NFL theorem motivates academics to create novel optimization algorithms to tackle optimization issues more efficiently.



The authors of this paper have developed several optimization algorithms in their previous works, such as the Pelican Optimization Algorithm (POA) [14] and Teamwork Optimization Algorithm (TOA) [15]. The common denominator of all optimization algorithms (both in the works of the authors of this article and the works of other researchers) can be considered the use of a random scan of the problem search space, random operators, no need for derivation process, easy implementation, simple concepts, and practicality in optimization challenges. The optimization process in population-based optimization algorithms starts with a random initial population. Then, in an iteration-based process, according to the algorithm steps, the position of the algorithm population in the search space is updated until the implementation is completed. The most important difference between optimization algorithms is in the same process of updating members of the algorithm population from one iteration to another. In POA, the algorithm population update process is based on simulating the strategies of pelicans while hunting. In TOA, modeling the activities and interactions of individuals in a group by presenting teamwork to achieve the team goal is the main idea in updating the population.



The novelty of this paper is in the development and design of a new optimization method named Selecting Some Variables to Update-Based Algorithm (SSVUBA) to address the optimization challenges and applications in various sciences. The main contributions of this paper are described as follows:




	
A new stochastic-based approach called Selecting Some Variables to Update-Based Algorithm (SSVUBA) used in optimization issues is introduced.



	
The fundamental idea behind the proposed method is to change the number of selected variables to update the algorithm population throughout iterations, as well as to use more information from diverse members of the population to prevent the algorithm from relying on one or several specific members.



	
SSVUBA theory and steps are described and its mathematical model is presented.



	
On a set of fifty-three standard objective functions of various unimodal, multimodal types, and CEC 2017, SSVUBA’s capacity to optimize is examined.



	
The proposed algorithm is implemented in four engineering design problems to analyze SSVUBA’s ability to solve real-world applications,



	
SSVUBA’s performance is compared to the performance of eight well-known algorithms to better understand its potential to optimize.








The following is the rest of the paper: A study of optimization methods is provided in Section 2. The proposed SSVUBA is introduced in Section 3. Simulation investigations are presented in Section 4. A discussion is provided in Section 5. The performance of SSVUBA in optimizing real-world applications is evaluated in Section 6. Section 7 contains the conclusions and recommendations for future research.




2. Background


Optimization algorithms are usually developed based on the simulation of various ideas in nature, physics, genetics and evolution, games, and any type of process that can be modeled as an optimizer.



One of the first and most prominent meta-heuristic algorithms is the Genetic Algorithm (GA), which is based on the theory of evolution. The main operator of this algorithm is a crossover that combines different members of the population together. However, the mutation operator is also useful for preventing premature convergence and falling into the local optimal trap. The smart part of this method is the selection stage, which in each stage, transmits better solutions to the next generation [16]. Ant Colony Optimization (ACO) is designed based on the inspiration of ants’ group behavior in food discovery. Ants release pheromones along the way to food. The presence of more pheromones in a path indicates the presence of a rich food source near that path. By modeling the process of pheromone release, pheromone tracking, and its evaporation with sunlight, the ACO is completed [17]. Particle Swarm Optimization (PSO) is one of the most established swarm-based algorithms, which is inspired by the social behavior of different biological species in their group life, such as birds and fish. This algorithm mimics the interaction between members to share information. Every particle is affected by its best situation and the best situation of the whole swarm, but it must move randomly [18]. The Simulated Annealing (SA) algorithm is a physics-based stochastic search method for optimization that relies on the simulation of the gradual heating and cooling process of metals called annealing. The purpose of annealing metals is to achieve a minimum energy and a suitable crystalline structure. In SA, this idea has been applied for optimization and search [19]. The Firefly Algorithm (FA) is based on the natural behavior of fireflies that live together in large clusters. FA simulates the activity of a group of fireflies by assigning a value to each firefly’s position as a model for the quantity of firefly pigments and then updating the fireflies’ location in subsequent iterations. The two main stages of FA in each iteration are the pigment update phase and the motion phase. Fireflies move toward other fireflies with more pigments in their neighborhood. In this way, during successive repetitions, the proposed solutions tend towards a better solution [20]. The Teaching–Learning Based Optimization (TLBO) method is based on simulating a teacher’s impact on the output of students in a classroom. TLBO is built on two fundamental modalities of teaching and learning: (1) Teacher phase in which knowledge is exchanged between the teacher and learners and (2) Learner phase in which knowledge is exchanged between learners and they learn from each other [21]. The Harmony Search (HS) method is one of the simplest optimization algorithms, and it is based on the simultaneous playing of a musical orchestra in the search for the best solution to optimization problems. To put it another way, the design of this algorithm is based on the idea that finding an optimal solution to a complicated issue is similar to the act of performing music [22]. The Artificial Fish Swarm Algorithm (AFSA) is one of the collective intelligence algorithms that is derived from the social behaviors of fish in nature and works based on random search and behaviorism. In the underwater world, fish can find areas that have more food, which is achieved by individual or group search of fish. According to this feature, AFSA is presented with the behaviors of free movement, food search, group movement, and tracking, by which the problem space is searched [23]. Gray Wolf Optimization (GWO) is a nature-inspired optimization technique based on the behavior of a wolf species known as the gray wolf. To mimic the leadership structure, four sorts of gray wolves designated Alpha, Beta, Delta, and Omega are employed in this program. Moreover, three basic hunting stages have been modeled for solution updating: prey search, prey siege, and prey attack [24]. The Gravitational Search Method (GSA) is a physics-based approach that is built on simulating the law of gravitational pull between masses at different distances from each other. In GSA, the process of updating population members is based on calculating the gravitational force between masses and then implementing Newton’s laws of motion [25]. The Whale Optimization Algorithm (WOA) is a nature-based optimizer that depicts humpback whale social behavior. In WOA, the search agents’ position is updated in each iteration using three operators: prey siege, bubble-net attack method (exploitation stage), and prey search (exploration stage) [26]. The Marine Predators Algorithm (MPA) is a bio-inspired optimizer that is inspired by the marine predators’ movement strategies when trapping prey in the oceans. In MPA, population members are updated based on three different strategies in each iteration: (i) prey speed is faster than predator speed, (ii) prey and predator speeds are almost equal, and (iii) predator speed is faster than prey speed [27]. The Tunicate Swarm Algorithm (TSA) is a nature-inspired based optimizer that is built on simulations of swarm behavior and jet propulsion of the tunicate when finding a food source. In TSA, the jet propulsion behavior is modelled based on three principles: (i) preventing clashes between search agents, (ii) movement in the best neighbor’s direction, and (iii) converging towards the best search agent [28]. The Quantum-based Avian Navigation Algorithm (QANA) is an optimizer that is formed based on the simulation of the extraordinary precision navigation of migratory birds during long-distance aerial paths [29]. The Conscious neighborhood-based Crow Search Algorithm (CCSA) is a bio-inspired method that is introduced by imitation of the natural behaviors of crow and employs three search strategies: wandering around-based search, non-neighborhood-based global search, and neighborhood-based local search [30]. The Black Widow Optimization Algorithm (BWO) is a swarm-based technique that is proposed based on the mating behavior of black widow spiders in nature [31]. The Red Fox Optimization Algorithm (RFO) is a bio-inspired method that is produced based on natural behaviors of red fox habits including hunting, searching for food, and escaping mechanisms [32]. The Artificial Hummingbird Algorithm (AHA) is a swarm intelligence optimizer that is developed based on the simulation of the intelligent foraging behaviors and special flight abilities of hummingbirds in nature [33]. The Reptile Search Algorithm (RSA) is a nature-inspired optimizer that is formed based on the hunting behaviors of crocodiles. Two crocodile strategies, encircling and cooperation in hunting, have been employed in RSA design [34]. The Honey Badger Algorithm (HBA) is a bio-inspired technique that is developed based on the intelligent foraging behavior of honey badger. In the design of HBA, in addition to the search behavior of honey badgers, their honey-finding and digging strategies are also employed and modeled [35]. The Starling Murmuration Optimizer (SMO) is a bio-inspired algorithm that is formed based on the imitation of the starlings’ behaviors during their stunning murmuration. SMO uses three strategies, whirling, separating, and diving, to achieve solutions to optimization problems [36].




3. Selecting Some Variables to Update-Based Algorithm (SSVUBA)


In this section, the theory and all stages of the Selecting Some Variables to Update-Based Algorithm (SSVUBA) are described, and then its mathematical model is presented for application in tackling optimization issues.



3.1. Mathmatical Model of SSVUBA


SSVUBA is a population-based stochastic algorithm. Each optimization issue has a search space with the same number of axes as the problem’s variables. According to its position in the search space, each member of the population assigns values to these axes. As a result, each member of the population in the SSVUBA is a proposed solution to the optimization issue. Each member of the population can be mathematically described as a vector, each component of which represents the value of one of the problem variables. As a result, the population members of the proposed SSVUBA can be modeled using a matrix termed the population matrix, as shown in Equation (1).


  X =    [       X 1       ⋮       X i       ⋮       X N       ]    N × m   =    [       x  1 , 1      ⋯     x  1 , d      ⋯     x  1 , m        ⋮   ⋱   ⋮   ⋰   ⋮       x  i , 1      ⋯     x  i , d      ⋯     x  i , m        ⋮   ⋰   ⋮   ⋱   ⋮       x  N , 1      ⋯     x  N , d      ⋯     x  N , m        ]    N × m   ,  



(1)




where  X  is the SSVUBA’s population matrix,    X i    is the ith member,    x  i , d     is the value of the dth problem variable generated by the ith member,  N  is the number of population members, and  m  is the number of problem variables.



The objective function of the problem can be assessed using the theory that each member of the population provides values for the problem variables. As a result, the values derived for the objective function based on the evaluation of different members of the population can be described employing a vector according to Equation (2).


  F =    [       F 1       ⋮       F i       ⋮       F N       ]    N × 1   =    [      F  (   X 1   )       ⋮      F  (   X i   )       ⋮      F  (   X N   )       ]    N × 1   ,  



(2)




where  F  denotes the objective function vector and    F i    represents the objective function value obtained from the ith population member’s evaluation.



The process of updating population members in the proposed SSVUBA adheres to two principles.



The first principle is that some members of the population may be in a situation where if only the values of some variables change, they will be in a better position instead of changing all of the variables. Therefore, in the proposed SSVUBA, the number of variables selected for the update process is set in each iteration. In this way, in the initial repetitions, the number is set to the maximum and at the end of the repetitions to the minimum number of variables. This principle is mathematically simulated using an index based on Equation (3).


   I v  = round  (   (  1 −  t T   )  · m  )  ,  



(3)




where    I v    denotes the number of selected variables for the update process,  T  is the maximum number of iterations, and  t  is the repetition counter.



The second principle is to prevent the algorithm population update process from relying on specific members. Relying on algorithm updates to specific members of the population might cause the algorithm to converge towards the local optimum and prevent accurate scanning of the search space to attain the global optimum. The process of updating population members has been modeled using Equations (4)–(6) according to the two principles expressed. To update each member of the population, another member of the population is randomly selected. If the selected member has a better value for the objective function, the first formula in Equation (4) is used. Otherwise, the second formula is used.


   X i  n e w   :    x  i ,  k j      n e w   =  {       x  i ,  k j    + r ·  (   x  s ,  k j    − I ·  x  i ,  k j     )  ,        F s  <  F i  ,        x  i ,  k j    + r ·  (   x  i ,  k j    − I ·  x  s ,  k j     )  ,       e l s e ,        



(4)






  I = round  (  1 + r  )  ,  



(5)






   X i  =  {       X i  n e w   ,      F i  n e w   <  F i  ,        X i  ,     e l s e ,        



(6)




where    X i  n e w   ,   i = 1 , 2 ,   … ,   N ,    is the new status of the ith member,     x  i ,  k j      n e w   ,     j = 1 , 2 , … ,  I v  ,      k j     is a random element from the set    {  1 , 2 ,   … , m  }    is the kjth dimension of the ith member,    F i  n e w     is the objective function value of the ith population member in new status,  r  is a random number in interval    [  0 ,   1  ]   ,    x  s ,  k j      is the selected member for guiding the ith member in the kjth dimension, and    F s    is the its objective function value.




3.2. Repetition Process of SSVUBA


After all members of the population have been updated, the SSVUBA algorithm goes on to the next iteration. In the new iteration, index    I v    is adjusted using Equation (3), and then population members are updated based on Equations (4)–(6). This process repeats until the algorithm is completed. The best quasi-optimal solution found by the algorithm during execution is offered as the answer to the problem after the complete implementation of SSVUBA for the specified optimization problem. Figure 1 depicts the flowchart of the SSVUBA’s various steps, while Algorithm 1 presents its pseudocode.




3.3. Computational Complexity of SSVUBA


In this subsection, the computational complexity of SSVUBA is presented. In this regard, time and space complexities are discussed.



3.3.1. Time Complexity


SSVUBA preparation and initialization require   O  (  N · m  )    time where  N  is the number of SVVUBA population members and  m  is the number of problem variables. In each iteration of the algorithm, population members are updated, which requires   O  (  T · N ·  I v   )     time where  T  is the maximum number of iteations and    I v    is the number of selected variables for the update process. Accordingly, the total time computational complexity of SSVUBA is equal to   O ( N  (  m + T ·  I v   )   ).




3.3.2. Space Complexity


The space complexity of SSVUBA is equal to   O  (  N · m  )   , which is considered the maximum value of space pending its initialization procedure.



	
Algorithm 1. Pseudo-code of SSVUBA




	
Start SSVUBA.




	
1.

	
     Input the optimization problem information: Decision variables, constraints, and objective function




	
2.

	
     Set the T and N parameters.




	
3.

	
     For t = 1:T




	
4.

	

	
             Adjust   number   of   selected   variables   to   update   (  I v     )   using   Equation   ( 3 ) .    I v  ← round  (   (  1 −  t T   )  · m  )   




	
5.

	

	
           For i = 1:N




	
6.

	

	

	
                 For j = 1:     I v   




	
7.

	

	

	

	
                       Select a population member randomly to guide the ith population member.

                          X S  ← X  (  S , :  )  ,   S   r a n d o m l y   s e l e c t e d   f r o m    {  1 , 2 ,   … ,   N  }    a n d   S ≠ i  , is the Sth row of the population matrix.




	
8.

	

	

	

	
                       Select one of the variables at random to update.    x  i ,  k j    ,    k j    r a n d o m l y   s e l e c t e d   f r o m    {  1 , 2 ,   … , m  }   .




	
9.

	

	

	

	
                         Calculate   I   using   Equation   ( 5 ) .   I ← round  (  1 + r  )   




	
10.

	

	

	

	
                       If    F s  <  F i   




	
11.

	

	

	

	

	
                            Calculate   the   new   status   of   the    k j  th   dimension   using   Equation   ( 4 ) .    x  i ,  k j      n e w   ←  x  i ,  k j    + r ·  (   x  s ,  k j    − I ·  x  i ,  k j     )   




	
12.

	

	

	

	
                       else




	
13.

	

	

	

	

	
                            Calculate   the   new   status   of   the    k j  th   dimension   using   Equation   ( 4 ) .    x  i ,  k j      n e w   ←  x  i ,  k j    + r ·  (   x  i ,  k j    − I ·  x  s ,  k j     )   




	
14.

	

	

	

	
                       end




	
15.

	

	

	
                 end




	
16.

	

	

	
                   Calculate   the   objective   function   based   on    X i  n e w      .    F i  n e w   ← F  (   X i  n e w    )   




	
17.

	

	

	
                 If    F i  n e w   <  F i   




	
18.

	

	

	

	
                      Update   the   i th   population   member   using   Equation   ( 6 ) .    X i  ←  X i  n e w    




	
19.

	

	

	
                 else




	
20.

	

	

	

	
                      Update   the   i th   population   member   using   Equation   ( 6 ) .    X i  ←  X i   




	
21.

	

	

	
                 end




	
22.

	

	
           end




	
23.

	

	
           Save the best solution so far.




	
24.

	
     end




	
25.

	
     Output the best obtained solution.




	
End SSVUBA.




	

	

	

	

	

	

	











3.4. Visualization of the Movement of Population Members towards the Solution


In the SSVUBA approach, population members converge to the optimal area and solution in the search space under the exchange of information between each other and the algorithm steps. In this subsection, to provide the visualization of the members’ movement in the search space, the process of SSVUBA members’ access to the solution is intuitively shown. This visualization is presented in a two-dimensional space, with a population size equals 30 and 30 iterations in optimizing an objective function called the Sphere function; its mathematical model is as follows:


  F  (   x 1  ,  x 2   )  =  x 1 2  +  x 2 2   











Subject to:


  − 10 ≤  x 1  ,  x 2  ≤ 10  











Figure 2 shows the process of achieving SSVUBA towards the solution by optimizing the mentioned objective function. In this figure, the convergence of the population members towards the optimal solution of the variables (i.e.,    x 1  =  x 2  = 0  ) and the optimal value of the objective function (i.e.,   F  (   x 1  ,  x 2   )  = 0  ) is well evident.





4. Simulation Studies and Results


In this section, simulation studies are presented to evaluate the performance of the SSVUBA in optimization and provide appropriate solutions for optimization problems. For this purpose, the SSVUBA is utilized for twenty-three standard objective functions of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types [37] (see their definitions in Appendix A). In addition to the twenty-three objective functions, SSVUBA performance has been tested in optimizing CEC 2017 test functions [38] (see their definitions in Appendix A). Furthermore, the optimization results achieved for the above objective functions using SSVUBA are compared to the performance of twelve optimization methods: PSO, TLBO, GWO, WOA, MPA, TSA, GSA, GA, RFO, RSA, AHA, and HBA to assess the further proposed approach. Numerous optimization algorithms have been developed so far. Comparing an algorithm with all existing algorithms, although possible, will yield a large amount of results. Therefore, twelve optimization algorithms have been used to compare the results. The reasons for choosing these algorithms are as follows: (i) Popular and widely used algorithms: GA and PSO. (ii) Algorithms that have been widely cited and employed in a variety of applications: GSA, TLBO, GWO, WOA. (iii) Algorithms that have been published recently and have received a lot of attention: RFO, TSA, MPA, RSA, AHA, HBA. The average of the best obtained solutions (avg), the standard deviation of the best obtained solutions (std), the best obtained candidate solution (bsf), and the median of obtained solutions (med) are used to present the optimization outcomes of objective functions. Table 1 shows the values utilized for the control parameters of the compared optimization techniques.



4.1. Assessment of F1 to F7 Unimodal Functions


Unimodal functions are the first category of objective functions that are considered for analyzing the performance of optimization methods. The optimization results of unimodal objective functions including F1 to F7 using SSVUBA and eight compared algorithms are reported in Table 2. The SSVUBA has been able to find the global optimal for the F6 function. Further, SSVUBA is the first best optimizer for the F1 to F5 and F7 functions. Analysis of the performance of optimization algorithms against the results of the proposed approach indicates that SSVUBA is able to provide quasi-optimal solutions closer to the global optimum and thus has a higher capability in optimizing unimodal functions than the compared algorithms.




4.2. Assessment of F8 to F13 High-Dimensional Multimodal Functions


High-dimensional multimodal functions are the second type of objective function employed to assess the performance of optimization techniques. Table 3 reveals the results of the implementation of the SSVUBA and eight compared algorithms for functions F8 to F13. For the F9 and F11 functions, SSVUBA was able to deliver the best global solution. Furthermore, for the F8, F10, F12, and F13 functions, SSVUBA was the superior optimizer. SSVUBA outperformed the other algorithms in solving high-dimensional multimodal issues by offering effective solutions for the F8 to F13 functions, according to the simulation findings.




4.3. Assessment of F14 to F23 Fixed-Dimensional Multimodal Functions


Fixed-dimensional functions are the third type of objective function used to evaluate the efficiency of optimization techniques. Table 4 shows the optimization results for the F14 to F23 functions utilizing the SSVUBA and eight compared techniques. SSVUBA was able to deliver the global optimum for the F14 function. The SSVUBA was also the first best optimizer for the F15, F16, F21, and F22 functions. SSVUBA, in optimizing functions F17, F18, F19, F20, and F23, was able to converge to quasi-optimal solutions with smaller values of the standard deviation. By comparing the performance of optimization algorithms in solving the F14 to F23 functions, it is clear that SSVUBA provides superior and competitive results versus the compared algorithms. Figure 3 shows the performance of SSVUBA as well as eight competitor algorithms in the form of a boxplot.




4.4. Statistical Analysis


Use of the average of the obtained solutions, standard deviation, best candidate solution, and median of obtained solutions to analyze and compare the performance of optimization algorithms in solving optimization issues offers significant information about the quality and capabilities of optimization algorithms. However, it is possible that the superiority of one algorithm among several algorithms in solving optimization problems is random by even a low probability. Therefore, in this subsection, in order to statistically analyze the superiority of SSVUBA, the Wilcoxon sum rank test [39] is used. The Wilcoxon rank sum test is a nonparametric test to assess whether the distributions of results obtained between two separate methods for a dependent variable are systematically different from one another.



The Wilcoxon rank sum test was implemented for the optimization results obtained from the optimization algorithms. The results of this analysis are presented in Table 5. In the Wilcoxon rank sum test, a p-value indicates whether the superiority of one algorithm over another is significant. Therefore, the proposed SSVUBA in cases where the p-value is less than 5% has a statistically significant performance superior to the compared algorithm.




4.5. Sensitivity Analysis


The proposed SSVUBA is a population-based algorithm that is able to solve optimization problems in an iteration-based procedure. Therefore, the two parameters N and T affect the performance of SSVUBA in achieving the solution. As a result, the sensitivity analysis of the proposed SSVUBA to these two parameters is described in this subsection.



SSVUBA has been applied to F1 to F23 functions in independent runs for different populations with 20, 30, 50, and 80 members to investigate the sensitivity of the proposed SSVUBA performance to the N parameter. Table 6 reveals the findings of SSVUBA’s sensitivity analysis to N. In addition, the convergence curves of the proposed SSVUBA to attain a quasi-optimal solution for different populations are plotted in Figure 4. The sensitivity analysis of the SSVUBA to the number of population members show that increasing the search agents in the search space leads to more accurate scanning of the search space and achieving more appropriate optimal solutions.



The proposed approach is implemented in independent performances for the number of iterations 100, 500, 800, and 1000 in order to optimize the objective functions F1 to F23 with aim of the investigating the sensitivity of the performance of SSVUBA to parameter T. Table 7 shows the simulated results of this sensitivity study, and Figure 5 shows the convergence curves of the SSVUBA under the influence of this analysis. The results of the simulation and sensitivity analysis of the proposed algorithm to the parameter T illustrate that increasing the number of iterations of the algorithm provides more opportunity for the algorithm to converge towards optimal solutions. As a result, as the maximum number of iterations increases and the values of the objective functions decrease.



In addition to studying the analysis of SSVUBA sensitivity to the  N  and  T  parameters, each of the relationships used in Equation (4) also affects the performance of SSVUBA. Therefore, the effectiveness of all cases in Equation (4) is examined at this stage. In this regard, the proposed SSVUBA is implemented in three different modes for the objective functions F1 to F23. In the first case (mode 1), the first case of Equation (4), i.e.,    x  i ,  k j    + r ·  (   x  s ,  k j    − I ·  x  i ,  k j     )    is used. In the second case (mode 2), the second case of Equation (4), i.e.,    x  i ,  k j    + r ·  (   x  i ,  k j    − I ·  x  s ,  k j     )    is used. In the third case (mode 3), both cases introduced in Equation (4) are used simultaneously. The results of this analysis are shown in Table 8, and Figure 6 shows the SSVUBA convergence curves in the optimization of functions F1 to F23 in this study. What can be deduced from the simulation results is that applying the relationships in Equation (4) simultaneously has led to better and more efficient optimization results for the objective functions F1 to F23 compared to using each of the relationships separately.




4.6. Population Diversity Analysis


Population diversity has a significant impact on the success of the optimization process by optimization algorithms. Population diversity can improve the algorithm’s ability to search globally in the problem-solving space, thus preventing it from falling into the trap of local optimal solutions. In this regard, in this subsection, population diversity analysis of SSVUBA performance has been studied. To show the population diversity of SSVUBA in achieving the solution during the iterations of the algorithm, the    I C    index is used, which is calculated using Equations (7) and (8) [40].


   I C  =  ∑  j = 1  m   ∑  i = 1  N     (   x  i , j   −  c j   )   2   



(7)






   c j  =  1 N   ∑  i = 1  N   x  i , j    



(8)







Here,    I C    is the spreading of each population member from its centroid and    c j    is its centroid.



The impact of population diversity on the optimization process given by SSVUBA in optimizing functions F1 to F23 is shown in Figure 7. In this figure, population diversity and SSVUBA convergence curves are presented for each of the objective functions. As can be seen from the simulation results, SSVUBA has a high population diversity in the process of optimizing most of the target functions. By optimizing functions F1, F2, F3, F4, F7, F8, F9, F12, F13, F15, F16, F17, F18, F19, F20, F21, F22, and F23, it is evident that until the final iterations, the algorithm convergence process as well as population diversity continues. In handling the F5 function, it is evident that the convergence process continues until the final iteration. In the optimization of function F6, SSVUBA with high search power reached the global optimization, and then the population diversity decreased. In the optimization of function F10, the population diversity decreased while the algorithm achieved an acceptable solution. In solving function F11, the population diversity decreased, while SSVUBA converged to the best solution, the global optima. In optimizing function F14, the population diversity decreased after the algorithm converged to the optimal solution. Therefore, the results of population diversity analysis indicate the high ability of SSVUBA in maintaining population diversity, which has led to its effective performance in providing appropriate solutions for objective functions.




4.7. Evaluation of the CEC 2017 Test Functions


In this subsection, the performance of SSVUBA in addressing the CEC 2017 benchmark is examined. The CEC 2017 set includes three unimodal functions (C1 to C3), seven simple multimodal functions (C4 to C10), ten hybrid functions (C11 to C20), and ten composition functions (C21 to C30). The results obtained from the implementation of SSVUBA and competitor algorithms for these functions are shown in Table 9. What can be deduced from the simulation results is that SSVUBA performed better than competitor algorithms in handling the C1, C2, C4, C5, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C24, C26, C27, C29, and C30 functions.





5. Discussion


Two essential factors that influence the performance of optimization algorithms are the exploitation and exploration capabilities. To give an acceptable solution to an optimization issue, each optimization algorithm must strike a reasonable balance between these two requirements.



In the study of optimization algorithms, the idea of exploitation refers to the algorithm’s capacity to search locally. In reality, after reaching the optimal area in the optimization problem’s search space, an optimization algorithm should be able to converge as much as feasible to the global optimal. As a result, when comparing the performance of several algorithms in solving an optimization issue, an algorithm that provides a solution that is closer to the global optimal has a better exploitation capability. The exploitation ability of an algorithm is essential, especially when solving problems that have only one basic solution. The objective functions F1 to F7, which are unimodal functions, have the property that they lack local optimal solutions and have only one main solution. As a result, functions F1 to F7 are good candidates for testing the exploitation ability of optimization techniques. The optimization results of the unimodal objective functions reported in Table 2 show that the proposed SSVUBA has a higher capability in local search than the compared algorithms and with high exploitation power, is able to deliver solutions very close to the global optimal.



In the study of optimization algorithms, the idea of exploration refers to the algorithm’s capacity to search globally. In reality, to find the optimal area, an optimization algorithm should be able to correctly scan diverse portions of the search space. Exploration power enables the algorithm to pass through all optimal local areas and avoid becoming trapped in a local optimum. As a result, when comparing the potential of various optimization algorithms to handle an optimization issue, an algorithm that can appropriately check the problem search space to distance itself from all local optimal solutions and move towards the global optimal solution has a higher exploration ability. The exploration ability of an algorithm is of particular importance, especially when solving issues with several optimal local solutions in addition to the original solution. The objective functions F8 to F23, which are multimodal functions, have this feature. As a result, these functions are good candidates for testing the exploration ability in optimization algorithms. The examination of the results of optimization of multimodal functions, provided in Table 3 and Table 4, shows that the SSVUBA has a superior ability in global search and is capable of passing through the local optimum areas due to its high exploration power.



Although exploitation and exploration affect the performance of optimization algorithms, each alone is not enough for the algorithm to succeed in optimization. Therefore, there is a need for a balance between these two indicators for an algorithm to be able to handle optimization problems. The simulation results show that SSVUBA has a high potential for balancing exploration and exploitation. The superiority of SSVUBA in the management of optimization applications with statistical criteria and ranking compared to competitor algorithms is evident. However, statistical analysis of the Wilcoxon rank sum test shows that this superiority is also statistically significant.



SSVUBA sensitivity analysis to parameters  N  and  T  shows that the performance of the proposed algorithm under the influence of changes in these two parameters provides different results. This is because the algorithm must have sufficient power to scan the search space whose tool is search agents (population members, i.e.,  N ), as well as a sufficient opportunity (i.e.,  T ) to identify the optimal area and converge towards the global optima. Thus, as expected, increasing the  T  and  N  values improved the SSVUBA performance and decreased the target function values.



To further analyze the performance of SSVUBA in optimization applications, this proposed method, along with competitor algorithms, was implemented on the CEC 2017 test suite. The simulation results in this type of optimization challenge indicate the successful performance of SSVUBA in addressing this type of optimization problem. Comparing SSVUBA with competing algorithms, it was found that SSVUBA ranked first in most cases and was more efficient than the compared algorithms.




6. SSVUBA for Engineering Design Applications


In order to analyze the efficiency of SSVUBA in real world purposes, this optimizer has been employed to address four engineering problems: pressure vessel design, speed reducer design, welded beam design, and tension/compression spring design.



6.1. Pressure Vessel Design Problem


Pressure vessel design is an engineering challenge in which the design purpose is minimizing the total cost (material, forming, and welding) of the cylindrical pressure vessel [41]. The schematic of this issue is shown in Figure 8. This problem’s mathematical model is as follows:



Consider:   X =  [   x 1  ,    x 2  ,    x 3  ,    x 4   ]  =  [   T s  ,    T h  ,   R ,   L  ]   .



Minimize:   f  ( x )  = 0.6224  x 1   x 3   x 4  + 1.778  x 2   x 3 2  + 3.1661  x 1 2   x 4  + 19.84  x 1 2   x 3  .  



Subject to:



    g 1   ( x )  = −  x 1  + 0.0193  x 3    ≤   0 ,   



    g 2   ( x )  = −  x 2  + 0.00954  x 3  ≤   0 ,   



    g 3   ( x )  = − π  x 3 2   x 4  −  4 3  π  x 3 3  + 1,296,000 ≤   0 ,   



    g 4   ( x )  =  x 4  − 240   ≤   0 .   



With


  0 ≤  x 1  ,  x 2  ≤ 100 ,      and    10 ≤  x 3  ,  x 4  ≤ 200 .  











The implementation results of SSVUBA and eight competitor algorithms in achieving the optimal design for pressure vessel are reported in Table 10. SSVUBA presents the optimal solution with the values of the variables equal to (0.7789938, 0.3850896, 40.3607, 199.3274) and the value of the objective function (5884.8824). The statistical results of SSVUBA performance against eight competitor algorithms in optimizing the pressure vessel problem are presented in Table 11. What can be seen from the statistical results is that SSVUBA has a superior performance over the compared algorithms by providing better values in statistical indicators. The behavior of the SSVUBA convergence curve during achieving the optimal solution for pressure vessel design is presented in Figure 9.




6.2. Speed Reducer Design Problem


Speed reducer design is a minimization challenge whose main goal in optimal design is to reduce the weight of the speed reducer, which is depicted schematically in Figure 10 [42,43]. This problem’s mathematical model is as follows:



Consider:   X =  [   x  1 ,      x 2  ,    x 3  ,    x 4  ,    x 5    ,  x 6    ,  x 7   ]  =  [  b ,   m ,   p ,    l 1  ,    l 2  ,    d 1  ,    d 2   ]   .



Minimize:   f  ( x )  = 0.7854  x 1   x 2 2   (  3.3333  x 3 2  + 14.9334  x 3  − 43.0934  )  − 1.508  x 1   (   x 6 2  +  x 7 2   )  + 7.4777  (   x 6 3  +  x 7 3   )  + 0.7854  (   x 4   x 6 2  +  x 5   x 7 2   )   .



Subject to:



    g 1   ( x )  =   27    x 1   x 2 2   x 3    − 1   ≤   0 ,   



    g 2   ( x )  =   397.5    x 1   x 2 2   x 3    − 1 ≤   0 ,   



    g 3   ( x )  =   1.93  x 4 3     x 2   x 3   x 6 4    − 1 ≤   0 ,   



    g 4   ( x )  =   1.93  x 5 3     x 2   x 3   x 7 4    − 1   ≤   0 ,   



    g 5   ( x )  =  1  110  x 6 3         (    745  x 4     x 2   x 3     )   2  + 16.9 ×   10  6    − 1 ≤   0 ,   



    g 6   ( x )  =  1  85  x 7 3         (    745  x 5     x 2   x 3     )   2  + 157.5 ×   10  6    − 1   ≤   0 ,   



    g 7   ( x )  =    x 2   x 3    40   − 1   ≤   0 ,   



    g 8   ( x )  =   5  x 2     x 1    − 1   ≤   0 ,   



    g 9   ( x )  =    x 1    12  x 2    − 1   ≤   0 ,   



    g  10    ( x )  =   1.5  x 6  + 1.9    x 4    − 1   ≤   0 ,   



    g  11    ( x )  =   1.1  x 7  + 1.9    x 5    − 1   ≤   0 .   



With


  2.6 ≤  x 1  ≤ 3.6 ,   0.7 ≤  x 2  ≤ 0.8 ,   17 ≤  x 3  ≤ 28 ,   7.3 ≤  x 4  ≤ 8.3 ,   7.8 ≤  x 5         ≤ 8.3 ,   2.9 ≤  x 6  ≤ 3.9 ,       and     5 ≤  x 7  ≤ 5.5   .  











The results obtained from SSVUBA and eight competing algorithms in optimizing the speed reducer design are presented in Table 12. Based on the simulation results, it is obvious that SSVUBA has provided the optimal design of this problem for the values of the variables equal to (3.50003, 0.700007, 17, 7.3, 7.8, 3.35021, 5.28668) and the value of the objective function equal to (2996.3904). The statistical results of the SSVUBA performance as well as competitor algorithms in optimizing the speed reducer problem are reported in Table 13. Statistical results show the superiority of SSVUBA over competitor algorithms. The SSVUBA convergence curve when solving the speed reducer design is shown in Figure 11.




6.3. Welded Beam Design


Welded beam design is an engineering topic with the main goal of minimizing the fabrication cost of the welded beam, a schematic of which is shown in Figure 12 [26]. This problem’s mathematical model is as follows:



Consider:   X =  [   x 1  ,    x 2  ,    x 3  ,    x 4   ]  =  [  h ,   l ,   t ,   b  ]   .



Minimize:   f    ( x )  = 1.10471  x 1 2   x 2  + 0.04811  x 3   x 4     (  14.0 +  x 2   )   .



Subject to:



    g 1     ( x )  = τ  ( x )  − 13,600   ≤   0 ,   



    g 2     ( x )  = σ  ( x )  − 30,000   ≤   0 ,   



    g 3     ( x )  =  x 1  −  x 4  ≤   0 ,   



    g 4     ( x )  = 0.10471  x 1 2  + 0.04811  x 3   x 4     (  14 +  x 2   )  − 5.0   ≤   0 ,   



    g 5   ( x )  = 0.125 −  x 1  ≤   0 ,   



    g 6   ( x )  = δ    ( x )  − 0.25   ≤   0 ,   



    g 7     ( x )  = 6000 −  p c     ( x )    ≤   0 .   



where



   τ  ( x )  =    τ ′  +  (  2 τ  τ ′   )     x 2    2 R   +    (  τ ”  )   2    ,   



    τ ′  =   6000    2   x 1   x 2    ,   



   τ ” =   M R  J  ,   



   M = 6000  (  14 +    x 2   2   )  ,   



   R =      x 2 2   4  +    (     x 1  +  x 3   2   )   2    ,   



   J = 2  {   x 1   x 2   2   [     x 2 2    12   +    (     x 1  +  x 3   2   )   2   ]   }  ,   



   σ  ( x )  =   50,4000    x 4   x 3 2      



   δ    ( x )  =   65,856,000    (  30 ·   10  6   )   x 4   x 3 3    ,   



    p c     ( x )  =   4.013  (  30 ·   10  6   )       x 3 2   x 4 6    36       196    (  1 −    x 3    28       30 ·   10  6    4  (  12 ·   10  6   )       )  .   



With


  0.1 ≤  x 1  ,    x 4  ≤ 2   and   0.1 ≤  x 2  ,    x 3  ≤ 10 .  











The optimization results for the welded beam design are reported in Table 14. Analysis of the simulation results shows that SSVUBA has provided the optimal design for the welded beam with the values of the variables equal to (0.205730, 3.4705162, 9.0366314, 0.2057314) and the value of the objective function equal to (1.724852). The statistical results obtained from the implementation of SSVUBA and eight competitor algorithms on this design are presented in Table 15. Analysis of the results of this table shows that SSVUBA with better values in statistical indicators provides superior performance in solving the welded beam design against competitor algorithms. The SSVUBA convergence curve for the optimal solution of the welded beam design problem is shown in Figure 13.




6.4. Tension/Compression Spring Design Problem


Tension/compression spring design is an engineering challenge aimed at reducing the weight of the tension/compression spring, a schematic of which is shown in Figure 14 [26]. This problem’s mathematical model is as follows:



Consider  :   X =  [   x 1  ,    x 2  ,    x 3     ]  =  [  d ,   D ,   P  ]  .  



Minimize:   f    ( x )  =  (   x 3  + 2  )   x 2   x 1 2  .  



Subject to:



    g 1     ( x )  = 1 −    x 2 3   x 3    71,785  x 1 4      ≤   0 ,   



    g 2     ( x )  =   4  x 2 2  −  x 1   x 2    12,566  (   x 2   x 1 3   )    +  1  5108  x 1 2    − 1 ≤   0 ,   



    g 3     ( x )  = 1 −   140.45  x 1     x 2 2   x 3    ≤   0   ,



   g 4     ( x )  =    x 1  +  x 2    1.5   − 1   ≤   0  .



With


  0.05 ≤  x 1  ≤ 2 ,   0.25 ≤  x 2  ≤ 1.3      and      2 ≤    x 3  ≤ 15 .  











The results for the tension/compression spring design variables using SSVUBA and compared methods are provided in Table 16. The simulation results reveal that SSVUBA provides the optimal solution with the values of the variables equal to (0.051704, 0.357077, 11.26939) and the value of the objective function equal to (0.012665). The statistical results of implementation of SSVUBA and compared algorithms for the tension/compression spring problem are presented in Table 17. The observations indicate the superiority of SSVUBA performance due to the provision of better values of statistical indicators compared to competitor algorithms. The SSVUBA convergence curve when achieving the optimal solution to the tension/compression spring problem is shown in Figure 15.




6.5. The SSVUBA’s Applicability in Sensor Networks and Image Processing


Many complex problems in the field of image processing are the focus of extensive research to find efficient methods. In this subject, local search approaches are commonly utilized for solving difficult problems. However, many issues and research in image processing are combinatorial and NP-hard. As optimization algorithms are population-based stochastic approaches, they are generally better suited to solving these complicated challenges. As a result, optimization algorithms such as proposed SSVUBA can prevent becoming stuck in the local optimum and can frequently locate the global optimal solution. Recent advancements have resulted in an increased use of artificial intelligence approaches for image processing. Today, wireless sensor networks are one of the most popular wireless networks due to their various applications. These networks consist of a set of automated sensors to monitor physical or environmental conditions such as heat, sound, vibration, pressure, motion, or pollution. As a result, sensor networks are faced with a huge amount of valuable information. In this type of application, data analysis using classical methods is not very efficient and appropriate. Because of this, artificial intelligence approaches, such as the employment of the proposed SSVUBA for various applications in image processing and sensor networks, have become significant. The proposed SSVUBA approach is effective for topics such as energy optimization in sensor networks, sensor network placement, network coding (NC) in wireless sensor networks, sensor network coverage optimization, clustering in sensor networks, medical image processing, pattern recognition, video processing, and so on.





7. Conclusions and Future Works


Numerous optimization issues have been defined in various disciplines of science that must be addressed by employing proper approaches. One of the most successful and extensively used approaches for tackling such issues is optimization algorithms, which belong to the category of random methods. To handle different optimization challenges, a novel optimization technique named “Selecting Some Variables to Update-Based Algorithm” (SSVUBA) was developed in this study. Making more use of the information of different members of the population and adjusting the number of selected variables in order to update the population of the algorithm during successive iterations of the algorithm were the main ideas in the design of the proposed SSVUBA. The ability of SSVUBA to solve optimization problems was tested on fifty-three different objective functions. The results of optimization of unimodal functions indicated the strong ability of the proposed algorithm in the exploitation index and the presentation of solutions very close to the global optimal. The optimization results of multi-model functions showed that the SSVUBA with high capability in the exploration index is able to scan the search space of the problem and accurately and converge to the global optimal by passing local optimal areas. Further, in order to analyze the optimization results obtained from SSVUBA, these results were compared with the performance of eight well-known algorithms: PSO, TLBO, GWO, WOA, MPA, TSA, GSA, GA, RFO, RSA, AHA, and HBA. What is clear from the analysis of simulation results is that the SSVUBA has a strong ability to solve optimization problems by providing appropriate quasi-optimal solutions, and its performance is superior and more competitive than that of similar algorithms. In order to further analyze SSVUBA in optimization, the proposed algorithm was employed to optimize four engineering design challenges. The optimization results indicated the effective performance of SSVUBA in real-world applications and the provision of optimal values for design variables.



The authors provide various recommendations for future research, including the development of multi-objective and binary SSVUBA versions. Other proposals for future investigations of this work include using the proposed SSVUBA to solve optimization issues in many fields as well as real-world applications. The proposed SSVUBA approach opens up a wide range of future studies. These studies include the SSVUBA employment in wireless sensor networks, image processing, machine learning, signal denoising, artificial intelligence, engineering, feature selection, big data, data mining, and other optimization chalenges.



As with all stochastic approaches for optimization problems, the limitation of the proposed SSVUBA is that it offers no guarantee that the solutions provided by it will be the global optimal. Another limitation of any random approach, including SSVUBA, is that it is always possible for researchers to develop new algorithms that can provide more effective solutions to optimization issues. Moreover, according to the NFL theorem, another limitation of SSVUBA is that its strong performance in solving a group of optimization applications leaves no reason to offer the same performance in all other optimization applications.
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Appendix A


The information of the objective functions utilized in the simulation section is shown in Table A1, Table A2 and Table A3.
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Table A1. Information of unimodal functions.






Table A1. Information of unimodal functions.





	Objective Function
	Range
	Dimensions
	     F  m i n      





	    F 1   ( x )  =  ∑  i = 1  m   x i 2    
	    [  − 100 ,   100  ]    
	30
	0



	    F 2   ( x )  =  ∑  i = 1  m   |   x i   |  +  ∏  i = 1  m   |   x i   |    
	    [  − 10 ,   10  ]    
	30
	0



	    F 3   ( x )  =  ∑  i = 1  m     (   ∑  j = 1  i   x i   )   2    
	    [  − 100 ,   100  ]    
	30
	0



	    F 4   ( x )  = m a x  {   |   x i   |    ,     1 ≤ i ≤ m    }    
	    [  − 100 ,   100  ]    
	30
	0



	    F 5   ( x )  =  ∑  i = 1   m − 1    [  100    (   x  i + 1   −  x i 2   )   2  +    (   x i  − 1  )   2  )  ]    
	    [  − 30 ,   30  ]    
	30
	0



	    F 6   ( x )  =  ∑  i = 1  m     (   [   x i  + 0.5  ]   )   2    
	    [  − 100 ,   100  ]    
	30
	0



	    F 7   ( x )  =  ∑  i = 1  m  i  x i 4  + r a n d o m  (  0 , 1  )    
	    [  − 1.28 ,   1.28  ]    
	30
	0
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Table A2. Information of high-dimensional multimodal functions.






Table A2. Information of high-dimensional multimodal functions.





	Objective Function
	Range
	Dimensions
	     F  m i n      





	    F 8   ( x )  =  ∑  i = 1  m  −  x i    sin  (     |   x i   |     )    
	    [  − 500 ,   500  ]    
	30
	−12,569



	    F 9   ( x )  =  ∑  i = 1  m   [     x i 2  − 10 cos  (  2 π  x i   )  + 10  ]    
	    [  − 5.12 ,   5.12  ]    
	30
	0



	    F  10    ( x )  = − 20 exp  (  − 0.2    1 m   ∑  i = 1  m   x i 2     )  − exp  (   1 m   ∑  i = 1  m  cos  (  2 π  x i   )   )  + 20 + e   
	    [  − 32 ,   32  ]    
	30
	0



	    F  11    ( x )  =  1  4000    ∑  i = 1  m   x i 2  −  ∏  i = 1  m  c o s  (     x i     i     )  + 1   
	    [  − 600 ,   600  ]    
	30
	0



	        F  12    ( x )  =  π m     {  10       sin  (  π  y 1   )          +  ∑  i = 1  m     (   y i  − 1  )   2   [  1 + 10   sin  2   (  π  y  i + 1    )   ]  +    (   y n  − 1  )   2   }        +  ∑  i = 1  m  u  (   x i  , 10 , 100 , 4  )        

   u  (   x i  , a , i , n  )  =  {      k    (   x i  − a  )   n                                 x i  > − a       0                                       − a <  x i  < a       k    (  −  x i  − a  )   n                         x i  < − a         
	    [  − 50 ,   50  ]    
	30
	0



	       F  13    ( x )  = 0.1  {     sin        2   (  3 π  x 1   )       +  ∑  i = 1  m     (   x i  − 1  )   2   [  1 +   sin  2   (  3 π  x i  + 1  )   ]  +    (   x n  − 1  )   2   [ 1        +   sin  2   (  2 π  x m   )   ] } +  ∑  i = 1  m  u  (   x i  , 5 , 100 , 4  )       
	    [  − 50 ,   50  ]    
	30
	0
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Table A3. Information of fixed-dimensional multimodal functions.






Table A3. Information of fixed-dimensional multimodal functions.





	Objective Function
	Range
	Dimensions
	     F  m i n      





	    F  14    ( x )  =    (   1  500   +  ∑  j = 1   25    1  j +  ∑  i = 1  2     (   x i  −  a  i j    )   6     )    − 1     
	    [  − 65.53 ,   65.53  ]    
	2
	0.998



	    F  15    ( x )  =  ∑  i = 1   11      [   a i  −    x 1   (   b i 2  +  b i   x 2   )     b i 2  +  b i   x 3  +  x 4     ]   2    
	    [  − 5 ,   5  ]    
	4
	0.00030



	    F  16    ( x )  = 4  x 1 2  − 2.1  x 1 4  +  1 3   x 1 6  +  x 1   x 2  − 4  x 2 2  + 4  x 2 4    
	    [  − 5 ,   5  ]    
	2
	−1.0316



	    F  17    ( x )  =    (   x 2  −   5.1   4  π 2     x 1 2  +  5 π   x 1  − 6  )   2  + 10  (  1 −  1  8 π    )  cos  x 1  + 10   
	[−5, 10]   ×   [0, 15]
	2
	0.398



	       F  18    ( x )  = [ 1 + (  x 1       +  x 2  + 1  )  2  ( 19 − 14  x 1  + 3  x 1 2  − 14  x 2  + 6  x 1   x 2       + 3  x 2 2  ) ] × [ 30 +    (  2  x 1  − 3  x 2   )   2  × (  18 − 32  x 1  + 12  x 1 2        + 48  x 2  − 36  x 1   x 2  + 27  x 2 2  ) ]      
	    [  − 5 ,   5  ]    
	2
	3



	    F  19    ( x )  = −  ∑  i = 1  4   c i  exp  (  −  ∑  j = 1  3   a  i j      (   x j  −  P  i j    )   2   )    
	    [  0 ,   1  ]    
	3
	−3.86



	    F  20    ( x )  = −  ∑  i = 1  4   c i  exp  (  −  ∑  j = 1  6   a  i j      (   x j  −  P  i j    )   2   )    
	    [  0 ,   1  ]    
	6
	−3.22



	    F  21    ( x )  = −  ∑  i = 1  5     [   (  X −  a i   )     (  X −  a i   )   T  + 6  c i   ]    − 1     
	    [  0 ,   10  ]    
	4
	−10.1532



	    F  22    ( x )  = −  ∑  i = 1  7     [   (  X −  a i   )     (  X −  a i   )   T  + 6  c i   ]    − 1     
	    [  0 ,   10  ]    
	4
	−10.4029



	    F  23    ( x )  = −  ∑  i = 1   10      [   (  X −  a i   )     (  X −  a i   )   T  + 6  c i   ]    − 1     
	    [  0 ,   10  ]    
	4
	−10.5364
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Table A4. Information of CEC 2017 test functions.
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Functions

	
     f  m i n      






	
Unimodal functions

	
C1

	
Shifted and Rotated Bent Cigar Function

	
100




	
C2

	
Shifted and Rotated Sum of Different Power Function

	
200




	
C3

	
Shifted and Rotated Zakharov Function

	
300




	
Simple multimodal functions

	
C4

	
Shifted and Rotated Rosenbrock Function

	
400




	
C5

	
Shifted and Rotated Rastrigin Function

	
500




	
C6

	
Shifted and Rotated Expanded Scaffer Function

	
600




	
C7

	
Shifted and Rotated Lunacek Bi_Rastrigin Function

	
700




	
C8

	
Shifted and Rotated Non-Continuous Rastrigin Function

	
800




	
C9

	
Shifted and Rotated Levy Function

	
900




	
C10

	
Shifted and Rotated Schwefel Function

	
1000




	
Hybrid functions

	
C11

	
Hybrid Function 1 (N = 3)

	
1100




	
C12

	
Hybrid Function 2 (N = 3)

	
1200




	
C13

	
Hybrid Function 3 (N = 3)

	
1300




	
C14

	
Hybrid Function 4 (N = 4)

	
1400




	
C15

	
Hybrid Function 5 (N = 4)

	
1500




	
C16

	
Hybrid Function 6 (N = 4)

	
1600




	
C17

	
Hybrid Function 6 (N = 5)

	
1700




	
C18

	
Hybrid Function 6 (N = 5)

	
1800




	
C19

	
Hybrid Function 6 (N = 5)

	
1900




	
C20

	
Hybrid Function 6 (N = 6)

	
2000




	
Composition functions

	
C21

	
Composition Function 1 (N = 3)

	
2100




	
C22

	
Composition Function 2 (N = 3)

	
2200




	
C23

	
Composition Function 3 (N = 4)

	
2300




	
C24

	
Composition Function 4 (N = 4)

	
2400




	
C25

	
Composition Function 5 (N = 5)

	
2500




	
C26

	
Composition Function 6 (N = 5)

	
2600




	
C27

	
Composition Function 7 (N = 6)

	
2700




	
C28

	
Composition Function 8 (N = 6)

	
2800




	
C29

	
Composition Function 9 (N = 3)

	
2900




	
C30

	
Composition Function 10 (N = 3)

	
3000
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Figure 1. Flowchart of SSVUBA. 
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Figure 2. Visualization of the movement of SSVUBA members towards the solution in the search space. 
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Figure 3. Boxplot displaying SSVUBA performance against compared algorithms in the F1 to F23 optimization. 
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Figure 4. Sensitivity analysis of the SSVUBA for the number of population members. 
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Figure 5. Sensitivity analysis of the SSVUBA for the maximum number of iterations. 
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Figure 6. Sensitivity analysis of the SSVUBA to effectiveness of each case in Equation (4). 
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Figure 7. The population diversity and convergence curves of the SSVUBA. 
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Figure 8. Schematic of the pressure vessel design. 
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Figure 9. SSVUBA’s performance convergence curve in the pressure vessel design. 
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Figure 10. Schematic of the speed reducer design. 
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Figure 11. SSVUBA’s performance convergence curve in the speed reducer design. 
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Figure 12. Schematic of the welded beam design. 
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Figure 13. SSVUBA’s performance convergence curve for the welded beam design. 
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Figure 14. Schematic of the tension/compression spring design. 
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Figure 15. SSVUBA’s performance convergence curve for the tension/compression spring. 
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Table 1. Parameter values for the compared algorithms.
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	Algorithm
	Parameter
	Value





	HBA
	The ability of a honey badger to get food
	   β = 6   



	
	Constant number
	C = 2



	AHA
	
	



	
	Migration coefficient
	2N (N is the population size)



	RSA
	
	



	
	Sensitive parameter
	   β = 0.01   



	
	Sensitive parameter
	   α = 0.1   



	
	Evolutionary Sense (ES)
	ES: randomly decreasing values between 2 and −2



	RFO
	
	



	
	  Fox   observation   angle   (  φ 0   )
	    φ 0  ∈  (  0 ,   2 π  )    



	
	  Weather   conditions   ( θ  )
	random value between 0 and 1



	
	Scaling parameter
	   a ∈  (  0 ,   0.2  )    



	MPA
	
	



	
	Constant number
	P = 0.5



	
	Random vector
	R ∈    [  0 ,   1  ]   



	
	Fish-Aggregating Devices (FADs)
	FADs = 0.2



	
	Binary vector
	U = 0 or 1



	TSA
	
	



	
	Pmin
	1



	
	Pmax
	4



	
	    c 1  ,  c 2  ,  c 3    
	   random   numbers   in   the   interval    [  0 ,   1  ]  .   



	WOA
	
	



	
	a: Convergence parameter
	Linear reduction from 2 to 0.



	
	r: random vector
	r ∈    [  0 ,   1  ]  .  



	
	l: random number
	l ∈    [  − 1 ,   1  ]  .  



	GWO
	
	



	
	Convergence parameter (a)
	a: Linear reduction from 2 to 0.



	TLBO
	
	



	
	TF: teaching factor
	    T F  = round    [   (  1 + r a n d  )   ]    



	
	random number
	rand ∈    [  0 ,   1  ]  .  



	GSA
	
	



	
	Alpha
	20



	
	Rpower
	1



	
	Rnorm
	2



	
	G0
	100



	PSO
	
	



	
	Topology
	Fully connected



	
	Cognitive constant
	    C 1  = 2   



	
	Social constant
	    C 2  = 2   



	
	Inertia weight
	Linear reduction from 0.9 to 0.1



	
	Velocity limit
	10% of variables’ dimension range



	GA
	
	



	
	Type
	Real coded



	
	Selection
	Roulette wheel (Proportionate)



	
	Crossover
	Whole arithmetic (Probability = 0.8,

  α ∈  [  − 0.5 ,   1.5  ]   )



	
	Mutation
	Gaussian (Probability = 0.05)
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Table 2. Assessment results of unimodal functions.
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GA

	
PSO

	
GSA

	
TLBO

	
GWO

	
WOA

	
TSA

	
MPA

	
RFO

	
RSA

	
AHA

	
HBA

	
SSVUBA






	
F1

	
avg

	
13.22731

	
  1.77   ×   10−5

	
  2.02   ×   10−17

	
1.33   ×   10−59

	
1.09   ×   10−58

	
1.79   ×   10−64

	
8.2   ×   10−33

	
1.7   ×   10−18

	
6.46 × 10−84

	
3.1 × 10−126

	
2.8 × 10−140

	
4.77 × 10−75

	
5.02   ×   10−185




	
std

	
5.72164

	
  5.85   ×   10−5

	
  7.09   ×   10−18

	
2.05   ×   10−59

	
4.09   ×   10−58

	
2.75   ×   10−64

	
2.53   ×   10−32

	
6.75   ×   10−18

	
2.64 × 10−83

	
1.3 × 10−125

	
1.1 × 10−139

	
1.41 × 10−74

	
1.72   ×   10−665




	
bsf

	
5.587895

	
  2   ×   10−10

	
  8.19   ×   10−18

	
9.35   ×   10−61

	
7.72   ×   10−61

	
1.25   ×   10−65

	
1.14   ×  10−62

	
3.41   ×   10−28

	
9.43 × 10−93

	
1 × 10−132

	
3.6 × 10−166

	
5.24 × 10−81

	
9.98   ×   10−193




	
med

	
11.03442

	
  9.91   ×   10−7

	
  1.78   ×   10−17

	
4.69   ×   10−60

	
1.08   ×   10−59

	
6.28   ×   10−65

	
3.89   ×   10−38

	
1.27   ×   10−19

	
3.69 × 10−88

	
5.3 × 10−129

	
7.4 × 10−150

	
2.45 × 10−76

	
2.22   ×   10−189




	
rank

	
13

	
12

	
11

	
7

	
8

	
6

	
9

	
10

	
4

	
3

	
2

	
5

	
1




	
F2

	
avg

	
2.476931

	
0.340796

	
  2.37   ×   10−8

	
5.54   ×   10−35

	
1.29   ×   10−34

	
1.57   ×   10−51

	
5.01   ×   10−39

	
2.78   ×   10−9

	
6.78 × 10−46

	
1.31 × 10−66

	
1.07 × 10−74

	
3.84 × 10−40

	
1.60   ×   10−99




	
std

	
0.642211

	
0.668924

	
  3.96   ×   10−9

	
4.7   ×   10−35

	
2.2   ×   10−34

	
5.94   ×   10−51

	
1.72   ×   10−38

	
1.08   ×   10−8

	
1.51 × 10−45

	
5.02 × 10−66

	
2.83 × 10−74

	
1.25 × 10−39

	
2.68   ×   10−99




	
bsf

	
1.589545

	
0.00174

	
  1.59   ×   10−8

	
1.32   ×   10−35

	
1.54   ×   10−35

	
1.14   ×   10−57

	
8.25   ×   10−43

	
4.25   ×   10−18

	
4.79 × 10−49

	
4.81 × 10−71

	
1.59 × 10−85

	
2.28 × 10−43

	
3.41   ×   10−101




	
med

	
2.46141

	
0.129983

	
  2.33   ×   10−8

	
4.37   ×   10−35

	
6.37   ×   10−35

	
1.89   ×   10−54

	
8.25   ×   10−41

	
3.18   ×   10−11

	
3.56   ×   10−47

	
1.33 × 10−68

	
2.45 × 10−78

	
1.73 × 10−41

	
6.87   ×   10−100




	
rank

	
13

	
12

	
11

	
8

	
9

	
4

	
7

	
10

	
5

	
3

	
2

	
6

	
1




	
F3

	
avg

	
1535.359

	
588.9025

	
279.0646

	
7   ×   10−15

	
7.4   ×   10−15

	
7.55   ×   10−9

	
3.19   ×   10−19

	
0.37663

	
4.76 × 10−58

	
4.62 × 10−84

	
5.9 × 10−128

	
9.05 × 10−51

	
2.01   ×   10−154




	
std

	
366.8302

	
1522.483

	
112.1922

	
1.27   ×   10−14

	
1.9   ×   10−14

	
2.38   ×   10−9

	
9.89   ×   10−19

	
0.20155

	
1.3 × 10−57

	
2.07 × 10−83

	
2 × 10−127

	
3.54 × 10−50

	
8.97   ×   10−154




	
bsf

	
1013.675

	
1.613322

	
81.8305

	
1.21   ×   10−16

	
4.74   ×   10−20

	
3.38   ×   10−9

	
7.28   ×   10−30

	
0.032006

	
1.19 × 10−69

	
5.8 × 10−100

	
8.3 × 10−162

	
1.2 × 10−57

	
3.29   ×   10−169




	
med

	
1509.204

	
54.1003

	
291.1394

	
1.86   ×   10−15

	
1.59   ×   10−16

	
7.19   ×   10−9

	
9.8   ×   10−21

	
0.378279

	
1.49 × 10−61

	
2.61 × 10−94

	
2.1 × 10−138

	
1.39 × 10−54

	
7.70   ×   10−162




	
rank

	
13

	
12

	
11

	
7

	
8

	
9

	
6

	
10

	
4

	
3

	
2

	
5

	
1




	
F4

	
avg

	
2.092152

	
3.959462

	
  3.25 ×   10−9

	
1.58   ×   10−15

	
1.26   ×   10−14

	
0.001283

	
2.01   ×   10−22

	
3.66  ×  10−8

	
1.34 × 10−35

	
9.09 × 10−52

	
5.93 × 10−57

	
2.65 × 10−31

	
6.62   ×   10−59




	
std

	
0.336658

	
2.201879

	
  7.49 ×   10−10

	
7.13   ×   10−16

	
2.32   ×   10−14

	
0.00062

	
5.96   ×   10−22

	
6.44   ×   10−8

	
3.82 × 10−35

	
3.17 × 10−51

	
2.65 × 10−56

	
5.17 × 10−31

	
1.76   ×   10−58




	
bsf

	
1.388459

	
1.602806

	
  2.09 ×   10−9

	
6.41   ×   10−16

	
3.43   ×   10−16

	
5.87   ×   10−5

	
1.87   ×   10−52

	
3.42   ×   10−17

	
3.83 × 10−40

	
5.65 × 10−57

	
2.83 × 10−60

	
2.98 × 10−34

	
1.43   ×   10−63




	
med

	
2.096441

	
3.257411

	
  3.34 ×   10−9

	
1.54   ×   10−15

	
7.3   ×   10−15

	
0.001416

	
3.13   ×   10−27

	
3.03   ×   10−8

	
2.7 × 10−37

	
5.77 × 10−55

	
1 × 10−58

	
3.55 × 10−32

	
4.27   ×   10−60




	
rank

	
12

	
13

	
9

	
7

	
8

	
11

	
6

	
10

	
4

	
3

	
1

	
5

	
1




	
F5

	
avg

	
310.1169

	
50.2122

	
36.07085

	
145.5196

	
26.83384

	
27.14826

	
28.73839

	
42.45484

	
27.45887

	
28.69673

	
26.65474

	
26.68016

	
2.54   ×   10−12




	
std

	
120.3226

	
36.48688

	
32.43014

	
19.72018

	
0.883186

	
0.627034

	
0.364483

	
0.614622

	
0.72896

	
0.651915

	
0.41764

	
1.008602

	
1.08   ×   10−21




	
bsf

	
160.3408

	
3.643404

	
25.81227

	
120.6724

	
25.1868

	
26.40605

	
28.50977

	
41.54523

	
26.21217

	
27.0064

	
26.08727

	
25.11442

	
3.16   ×   10−24




	
med

	
279.2378

	
28.66429

	
26.04868

	
142.7508

	
26.68203

	
26.9085

	
28.5106

	
42.44818

	
27.18532

	
28.98402

	
26.64571

	
26.51364

	
2.60   ×   10−17




	
rank

	
13

	
11

	
9

	
12

	
4

	
5

	
8

	
10

	
6

	
7

	
2

	
3

	
1




	
F6

	
avg

	
14.53545

	
20.22975

	
0

	
0.44955

	
0.641682

	
0.071455

	
3.84   ×   10−20

	
0.390478

	
1.54416

	
6.901619

	
0

	
0.646884

	
0




	
std

	
5.829403

	
12.76004

	
0

	
0.509907

	
0.300774

	
0.078108

	
1.5   ×   10−19

	
0.080203

	
0.399298

	
0.87614

	
0

	
0.27258

	
0




	
bsf

	
5.994

	
4.995

	
0

	
0

	
1.57   ×   10−5

	
0.014631

	
6.74   ×   10−26

	
0.274307

	
0.862897

	
3.58704

	
0

	
0.015007

	
0




	
ed

	
13.4865

	
18.981

	
0

	
0

	
0.620865

	
0.029288

	
6.74   ×   10−21

	
0.406241

	
1.639428

	
7.210589

	
0

	
0.674911

	
0




	
rank

	
10

	
11

	
1

	
5

	
6

	
3

	
2

	
4

	
8

	
9

	
1

	
7

	
1




	
F7

	
avg

	
0.005674

	
0.1133

	
0.020671

	
0.003127

	
0.000819

	
0.001928

	
0.000276

	
0.00218

	
0.000401

	
0.000147

	
0.000304

	
0.00019

	
9.00   ×   10−5




	
std

	
0.00243

	
0.04582

	
0.011349

	
0.00135

	
0.000503

	
0.003338

	
0.000123

	
0.000466

	
0.000307

	
0.000169

	
0.000268

	
0.000257

	
6.34   ×   10−25




	
bsf

	
0.002109

	
0.029564

	
0.01005

	
0.00136

	
0.000248

	
4.24   ×   10−5

	
0.000104

	
0.001428

	
2.99 × 10−05

	
1.24 × 10−05

	
2.81 × 10−06

	
3.96 × 10−06

	
7.75   ×   10−6




	
med

	
0.005359

	
0.107765

	
0.016978

	
0.002909

	
0.000629

	
0.000979

	
0.000367

	
0.002178

	
0.000317

	
8.1 × 10−05

	
0.000182

	
0.000104

	
7.75   ×   10−5




	
rank

	
11

	
13

	
12

	
10

	
7

	
8

	
4

	
9

	
6

	
2

	
5

	
3

	
1




	
Sum rank

	
85

	
84

	
64

	
56

	
50

	
46

	
42

	
63

	
37

	
30

	
15

	
34

	
7




	
Mean rank

	
12.1428

	
12

	
9.1428

	
8

	
7.1428

	
6.5714

	
6

	
9

	
5.2857

	
4.2857

	
2.1428

	
4.8571

	
1




	
Total rank

	
13

	
12

	
11

	
9

	
8

	
7

	
6

	
10

	
5

	
3

	
2

	
4

	
1
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Table 3. Assessment results of high-dimensional multimodal functions.
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GA

	
PSO

	
GSA

	
TLBO

	
GWO

	
WOA

	
TSA

	
MPA

	
RFO

	
AHA

	
RSA

	
HBA

	
SSVUBA






	
F8

	
avg

	
−8176.2

	
−6901.75

	
−2846.22

	
−7795.8

	
−5879.23

	
−7679.85

	
−5663.98

	
−3648.49

	
−7548.39

	
−5281.28

	
−11,102.4

	
−8081.04

	
−12,569.5




	
std

	
794.342

	
835.8931

	
539.8674

	
985.735

	
983.5375

	
1103.956

	
21.87234

	
474.1073

	
1154.307

	
563.2137

	
578.0354

	
968.1117

	
1.87   ×   10−22




	
bsf

	
−9708.0

	
−8492.94

	
−3965.26

	
−9094.7

	
−7219.83

	
−8588.51

	
−5700.59

	
−4415.48

	
−9259.4

	
−5647.03

	
−12,173.2

	
−10,584.1

	
−12,569.5




	
med

	
−8109.5

	
−7091.86

	
−2668.65

	
−7727.5

	
−5768.85

	
−8282.39

	
−5663.96

	
−3629.21

	
−7805.26

	
−5508.56

	
−11,135.5

	
−8049.62

	
−12,569.5




	
rank

	
3

	
8

	
13

	
5

	
9

	
6

	
10

	
12

	
7

	
11

	
2

	
4

	
1




	
F9

	
avg

	
62.349

	
57.0043

	
16.25131

	
10.6668

	
8.52   ×   10−15

	
0

	
0.005882

	
152.539

	
0

	
0

	
0

	
0

	
0




	
std

	
15.2006

	
16.50103

	
4.654009

	
0.39675

	
2.08   ×   10−14

	
0

	
0.000696

	
15.16653

	
0

	
0

	
0

	
0

	
0




	
bsf

	
36.8294

	
27.83098

	
4.96982

	
9.86409

	
0

	
0

	
0.004772

	
128.1024

	
0

	
0

	
0

	
0

	
0




	
med

	
61.6169

	
55.16946

	
15.40644

	
10.8757

	
0

	
0

	
0.005865

	
154.4667

	
0

	
0

	
0

	
0

	
0




	
rank

	
7

	
6

	
5

	
4

	
2

	
1

	
3

	
8

	
1

	
1

	
1

	
1

	
1




	
F10

	
avg

	
3.21861

	
2.152524

	
3.56   ×   10−9

	
0.26294

	
1.7   ×   10−14

	
3.9   ×   10−15

	
6.4   ×   10−11

	
8.3   ×   10−10

	
4.5   ×   10−13

	
8.9   ×   10−16

	
8.9   ×   10−16

	
7.1   ×   10−13

	
8.9   ×   10−16




	
std

	
0.36141

	
0.548903

	
5.3   ×   10−10

	
0.07279

	
3.2   ×   10−15

	
2.6   ×   10−15

	
2.6   ×   10−10

	
2.8   ×   10−9

	
2.0   ×   10−12

	
0

	
0

	
3.2   ×   10−12

	
0




	
bsf

	
2.75445

	
1.153996

	
2.6   ×   10−9

	
0.15615

	
1.5   ×   10−14

	
8.9   ×   10−16

	
8.1   ×   10−15

	
1.7   ×   10−18

	
8.9   ×   10−16

	
8.9   ×   10−16

	
8.9   ×   10−16

	
8.9   ×   10−16

	
8.9   ×   10−16




	
med

	
3.1172

	
2.167913

	
3.63   ×   10−9

	
0.26128

	
1.5   ×   10−14

	
4.4   ×   10−15

	
1.09   ×   10−13

	
1.1   ×   10−11

	
8.9   ×   10−16

	
8.9   ×   10−16

	
8.9   ×   10−16

	
8.9   ×   10−16

	
8.9   ×   10−16




	
rank

	
11

	
10

	
8

	
9

	
3

	
2

	
6

	
7

	
4

	
1

	
1

	
5

	
1




	
F11

	
avg

	
1.228978

	
0.046246

	
3.733827

	
0.587096

	
0.003749

	
0.003017

	
1.54   ×   10−6

	
0

	
0

	
0

	
0

	
0

	
0




	
std

	
0.062697

	
0.051782

	
1.66862

	
0.16895

	
0.007337

	
0.013494

	
3.38   ×   10−6

	
0

	
0

	
0

	
0

	
0

	
0




	
bsf

	
1.139331

	
7.28   ×   10−9

	
1.517769

	
0.309807

	
0

	
0

	
4.23   ×   10−15

	
0

	
0

	
0

	
0

	
0

	
0




	
med

	
1.226004

	
0.029444

	
3.420843

	
0.581444

	
0

	
0

	
8.76   ×   10−7

	
0

	
0

	
0

	
0

	
0

	
0




	
rank

	
7

	
5

	
8

	
6

	
4

	
3

	
2

	
1

	
1

	
1

	
1

	
1

	
1




	
F12

	
avg

	
0.046979

	
0.480186

	
0.036247

	
0.020531

	
0.037173

	
0.007721

	
0.050113

	
0.082476

	
0.069238

	
1.275979

	
0.000916

	
0.016112

	
1.62   ×   10−32




	
std

	
0.028455

	
0.601971

	
0.060805

	
0.028617

	
0.013862

	
0.008975

	
0.009845

	
0.002384

	
0.039794

	
0.318983

	
0.001997

	
0.007672

	
2.16   ×   10−33




	
bsf

	
0.018345

	
0.000145

	
5.57   ×   10−20

	
0.002029

	
0.019275

	
0.001141

	
0.035393

	
0.077834

	
0.012096

	
0.595234

	
5.91   ×   10−5

	
0.000811

	
1.57   ×   10−32




	
med

	
0.041748

	
0.155444

	
1.48   ×   10−19

	
0.015166

	
0.032958

	
0.003915

	
0.050884

	
0.082026

	
0.061529

	
1.368211

	
0.000229

	
0.017314

	
1.57   ×   10−32




	
rank

	
8

	
12

	
6

	
5

	
7

	
3

	
9

	
11

	
10

	
13

	
2

	
4

	
1




	
F13

	
avg

	
1.207336

	
0.507903

	
0.002083

	
0.328792

	
0.575742

	
0.1931

	
2.656091

	
0.564683

	
1.803955

	
0.454655

	
2.113078

	
1.253473

	
7.65   ×   10−32




	
std

	
0.333421

	
1.25043

	
0.00547

	
0.198741

	
0.170178

	
0.150736

	
0.009777

	
0.187631

	
0.41072

	
0.922164

	
0.416593

	
0.460513

	
1.61   ×   10−31




	
bsf

	
0.497592

	
9.98   ×   10−7

	
1.18   ×   10−18

	
0.038228

	
0.297524

	
0.029632

	
2.629118

	
0.280015

	
1.051985

	
1.22   ×   10−19

	
1.063506

	
0.547271

	
1.35   ×   10−32




	
med

	
1.216834

	
0.043953

	
2.14   ×   10−18

	
0.282482

	
0.577744

	
0.151854

	
2.659088

	
0.579275

	
1.694537

	
8.11   ×   10−14

	
2.100496

	
1.258265

	
1.35   ×   10−32




	
rank

	
9

	
6

	
2

	
4

	
8

	
3

	
13

	
7

	
11

	
5

	
12

	
10

	
1




	
Sum rank

	
45

	
47

	
42

	
33

	
33

	
18

	
43

	
46

	
34

	
32

	
19

	
25

	
6




	
Mean rank

	
7.5000

	
7.8333

	
7

	
5.5000

	
5.5000

	
3

	
7.1666

	
7.6666

	
5.6666

	
5.3333

	
3.1666

	
4.1666

	
1




	
Total rank

	
10

	
12

	
8

	
6

	
6

	
2

	
9

	
11

	
7

	
5

	
3

	
4

	
1
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Table 4. Assessment results of fixed-dimensional multimodal functions.
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GA

	
PSO

	
GSA

	
TLBO

	
GWO

	
WOA

	
TSA

	
MPA

	
RFO

	
RSA

	
AHA

	
HBA

	
SSVUBA






	
F14

	
avg

	
0.999359

	
2.175108

	
3.593904

	
2.265863

	
3.74346

	
3.108317

	
1.799941

	
0.998449

	
4.823742

	
5.383632

	
0.998004

	
1.592841

	
0.9980




	
std

	
0.002474

	
2.938595

	
2.780694

	
1.150438

	
3.972512

	
3.536153

	
0.527866

	
0.000329

	
3.851995

	
3.816964

	
1.02    ×    10−16

	
1.036634

	
0




	
bsf

	
0.998702

	
0.998702

	
1.000208

	
0.99909

	
0.998702

	
0.998702

	
0.998599

	
0.997598

	
0.998004

	
2.156824

	
0.998004

	
0.998004

	
0.9980




	
med

	
0.998716

	
0.998702

	
2.988748

	
2.276823

	
2.984193

	
0.998702

	
1.913947

	
0.998599

	
3.96825

	
2.98213

	
0.998004

	
0.998004

	
0.9980




	
rank

	
4

	
7

	
10

	
8

	
11

	
9

	
6

	
3

	
12

	
13

	
2

	
5

	
1




	
F15

	
avg

	
0.005399

	
0.001685

	
0.002404

	
0.003172

	
0.006375

	
0.000664

	
0.000409

	
0.003939

	
0.005053

	
0.002185

	
0.00031

	
0.005509

	
0.0003




	
std

	
0.008105

	
0.004936

	
0.001195

	
0.000394

	
0.009407

	
0.00035

	
7.6    ×    10−5

	
0.005054

	
0.008991

	
0.001896

	
2.27    ×    10−8

	
0.009072

	
2.3    ×    10−19




	
bsf

	
0.000776

	
0.000308

	
0.000805

	
0.002208

	
0.000308

	
0.000313

	
0.000265

	
0.00027

	
0.000307

	
0.000773

	
0.0003

	
0.000307

	
0.0003




	
med

	
0.002075

	
0.000308

	
0.002312

	
0.003187

	
0.000308

	
0.000522

	
0.00039

	
0.002702

	
0.000653

	
0.001457

	
0.0003

	
0.000309

	
0.0003




	
rank

	
11

	
5

	
7

	
8

	
13

	
4

	
3

	
9

	
10

	
6

	
2

	
12

	
1




	
F16

	
avg

	
−1.03058

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03056

	
−1.03056

	
−0.99082

	
−1.02581

	
−1.03162

	
−1.03162

	
−1.03163




	
std

	
3.5    ×    10−5

	
5.5    ×    10−16

	
1.4    ×    10−16

	
7.03    ×    10−15

	
8.4    ×    10−9

	
1.5    ×    10−10

	
8.7    ×    10−6

	
3.06    ×    10−5

	
0.1825

	
0.011165

	
5.9    ×    10−13

	
1.0    ×    10−16

	
8.3    ×    10−17




	
bsf

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03058

	
−1.03057

	
−1.03163

	
−1.03159

	
−1.03163

	
−1.03163

	
−1.03163




	
med

	
−1.03059

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03060

	
−1.03057

	
−1.03057

	
−1.03163

	
−1.03054

	
−1.03163

	
−1.03163

	
−1.03163




	
rank

	
4

	
3

	
3

	
3

	
3

	
3

	
5

	
5

	
7

	
6

	
2

	
2

	
1




	
F17

	
avg

	
0.437274

	
0.785993

	
0.3978

	
0.3978

	
0.398166

	
0.398167

	
0.400369

	
0.399577

	
0.3978

	
0.439638

	
0.3978

	
0.3978

	
0.3978




	
std

	
0.140844

	
0.72226

	
1.1 × 10−16

	
1.1    ×    10−16

	
4.5    ×    10−7

	
1.19    ×    10−6

	
0.004484

	
0.003676

	
9.0    ×    10−16

	
0.075523

	
7.1    ×    10−16

	
6.4    ×    10−14

	
4.0    ×    10−18




	
bsf

	
0.3978

	
0.3978

	
0.3978

	
0.3978

	
0.3978

	
0.3978

	
0.398331

	
0.397849

	
0.397887

	
0.398126

	
0.397887

	
0.397887

	
0.3978




	
med

	
0.3978

	
0.3978

	
0.3978

	
0.3978

	
0.3978

	
0.3978

	
0.399331

	
0.398099

	
0.397887

	
0.411485

	
0.397887

	
0.397887

	
0.3978




	
rank

	
6

	
8

	
1

	
1

	
2

	
3

	
5

	
4

	
1

	
7

	
1

	
1

	
1




	
F18

	
avg

	
4.36235

	
3.0020

	
3.0021

	
3.0000

	
3.002111

	
3.002109

	
3.0002

	
3.0021

	
13.8

	
7.423751

	
3

	
4.35

	
3.0000




	
std

	
6.039455

	
2.5    ×    10−15

	
1.8    ×    10−15

	
6.3    ×    10−16

	
1.0    ×    10−5

	
1.56    ×    10−5

	
0.0308

	
4.6    ×    10−16

	
20.3563

	
19.78234

	
4.3    ×    10−16

	
6.037384

	
0




	
bsf

	
3.002101

	
3.0021

	
3.0021

	
3.0000

	
3.0021

	
3.0021

	
3.0001

	
3.0021

	
3

	
3.000011

	
3

	
3

	
3.0000




	
med

	
3.003183

	
3.0021

	
3.0021

	
3.0021

	
3.002106

	
3.002102

	
3.00297

	
3.0021

	
3

	
3.000217

	
3

	
3

	
3.0000




	
rank

	
8

	
3

	
4

	
1

	
6

	
5

	
2

	
4

	
10

	
9

	
1

	
7

	
1




	
F19

	
avg

	
−3.85049

	
−3.86278

	
−3.86278

	
−3.85752

	
−3.8583

	
−3.85682

	
−3.80279

	
−3.85884

	
−3.74604

	
−3.78545

	
−3.86278

	
−3.86081

	
−3.86278




	
std

	
0.014825

	
1.6    ×    10−15

	
1.5    ×    10−15

	
0.00135

	
0.001695

	
0.002556

	
0.015203

	
2.2    ×    10−15

	
0.282864

	
0.055424

	
2.3    ×    10−15

	
0.003501

	
9.0    ×    10−16




	
bsf

	
−3.85892

	
−3.85892

	
−3.85892

	
−3.85864

	
−3.85892

	
−3.85892

	
−3.83276

	
−3.85884

	
−3.86278

	
−3.8432

	
−3.86278

	
−3.86278

	
−3.86278




	
med

	
−3.85853

	
−3.85892

	
−3.85892

	
−3.85814

	
−3.8589

	
−3.8578

	
−3.80279

	
−3.85884

	
−3.86278

	
−3.79995

	
−3.86278

	
−3.86278

	
−3.86278




	
rank

	
7

	
1

	
1

	
5

	
4

	
6

	
8

	
3

	
10

	
9

	
1

	
2

	
1




	
F20

	
avg

	
−2.82108

	
−3.25869

	
−3.322

	
−3.19797

	
−3.24913

	
−3.21976

	
−3.3162

	
−3.31777

	
−3.19517

	
−2.65147

	
−3.31011

	
−3.29793

	
−3.322




	
std

	
0.385593

	
0.070568

	
0

	
0.031767

	
0.076495

	
0.090315

	
0.003082

	
8.34    ×    10−5

	
0.311345

	
0.395844

	
0.036595

	
0.049393

	
0




	
bsf

	
−3.31011

	
−3.31867

	
−3.322

	
−3.25848

	
−3.31867

	
−3.31866

	
−3.31788

	
−3.31797

	
−3.322

	
−3.05451

	
−3.322

	
−3.322

	
−3.322




	
med

	
−2.96531

	
−3.31867

	
−3.322

	
−3.20439

	
−3.25921

	
−3.19197

	
−3.31728

	
−3.31778

	
−3.322

	
−2.79233

	
−3.322

	
−3.322

	
−3.322




	
rank

	
11

	
6

	
1

	
9

	
7

	
8

	
3

	
2

	
10

	
12

	
4

	
5

	
1




	
F21

	
avg

	
−4.29971

	
−5.38381

	
−5.14352

	
−9.18098

	
−9.63559

	
−8.86747

	
−5.39669

	
−9.94449

	
−8.78928

	
−5.0552

	
−10.1532

	
−7.63362

	
−10.1532




	
std

	
1.739082

	
3.016705

	
3.051569

	
0.120673

	
1.560428

	
2.26122

	
0.966938

	
0.532084

	
3.181731

	
3.2    ×    10−7

	
1.06    ×    10−5

	
3.97831

	
2.07    ×    10−7




	
bsf

	
−7.81998

	
−10.143

	
−10.143

	
−9.6542

	
−10.143

	
−10.1429

	
−7.49459

	
−10.143

	
−10.1532

	
−5.0552

	
−10.1532

	
−10.1532

	
−10.1532




	
med

	
−4.15822

	
−5.09567

	
−3.64437

	
−9.14405

	
−10.1425

	
−10.1411

	
−5.49659

	
−10.143

	
−10.1524

	
−5.0552

	
−10.1532

	
−10.1532

	
−10.1532




	
rank

	
12

	
9

	
10

	
4

	
3

	
5

	
8

	
2

	
6

	
11

	
1

	
7

	
1




	
F22

	
avg

	
−5.11231

	
−7.6247

	
−10.0746

	
−10.0386

	
−10.3921

	
−9.32799

	
−5.90758

	
−10.2757

	
−8.05397

	
−5.08767

	
−10.4029

	
−8.4968

	
−10.4029




	
std

	
1.967685

	
3.538195

	
1.421736

	
0.397881

	
0.000176

	
2.177861

	
1.753184

	
0.245167

	
3.599306

	
7.2    ×    10−7

	
0.00035

	
3.428023

	
1.61    ×    10−5




	
bsf

	
−9.10153

	
−10.3925

	
−10.3925

	
−10.3925

	
−10.3924

	
−10.3924

	
−9.05343

	
−10.3925

	
−10.4029

	
−5.08767

	
−10.4029

	
−10.4029

	
−10.4029




	
med

	
−5.02463

	
−10.3925

	
−10.3925

	
−10.1734

	
−10.3921

	
−10.3908

	
−5.05743

	
−10.3925

	
−10.3962

	
−5.08767

	
−10.4029

	
−10.4029

	
−10.4029




	
rank

	
11

	
9

	
4

	
5

	
2

	
6

	
10

	
3

	
8

	
12

	
1

	
7

	
1




	
F23

	
avg

	
−6.5556

	
−6.15864

	
−10.5364

	
−9.25502

	
−10.1201

	
−9.44285

	
−9.80005

	
−10.1307

	
−7.32853

	
−5.12847

	
−10.5334

	
−8.2629

	
−10.5364




	
std

	
2.614706

	
3.731202

	
2.0    ×    10−15

	
1.674862

	
1.812588

	
2.219704

	
1.604853

	
1.139028

	
4.034066

	
1.9    ×    10−6

	
0.013601

	
3.580884

	
2.0    ×    10−15




	
bsf

	
−10.2124

	
−10.5259

	
−10.5364

	
−10.5235

	
−10.5258

	
−10.5257

	
−10.3579

	
−10.5259

	
−10.5364

	
−5.12848

	
−10.5364

	
−10.5364

	
−10.5364




	
med

	
−6.55634

	
−4.50103

	
−10.5364

	
−9.66205

	
−10.5255

	
−10.5246

	
−10.3509

	
−10.5259

	
−10.508

	
−5.12847

	
−10.5364

	
−10.5364

	
−10.5364




	
rank

	
10

	
11

	
1

	
7

	
4

	
6

	
5

	
3

	
9

	
12

	
2

	
8

	
1




	
Sum rank

	
84

	
62

	
42

	
51

	
55

	
55

	
55

	
38

	
83

	
97

	
17

	
56

	
10




	
Mean rank

	
8.4

	
6.2

	
4.2

	
5.1

	
5.5

	
5.5

	
5.5

	
3.8

	
8.3

	
9.7

	
1.7

	
5.6

	
1




	
Total rank

	
10

	
8

	
4

	
5

	
6

	
6

	
6

	
3

	
9

	
11

	
2

	
7

	
1
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Table 5. p-values results from the Wilcoxon sum rank test.






Table 5. p-values results from the Wilcoxon sum rank test.





	
Compared Algorithms

	
Test Function Type




	
Unimodal

	
High-Multimodal

	
Fixed-Multimodal






	
SSVUBA vs. HBA

	
6.5    ×    10−20

	
7.58    ×    10−12

	
3.91    ×    10−2




	
SSVUBA vs. AHA

	
3.89    ×    10−13

	
1.63    ×    10−11

	
7.05    ×    10−7




	
SSVUBA vs. RSA

	
1.79    ×    10−18

	
1.63    ×    10−11

	
1.44    ×    10−34




	
SSVUBA vs. RFO

	
3.87    ×    10−23

	
5.17    ×    10−12

	
1.33    ×    10−7




	
SSVUBA vs. MPA

	
1.01    ×    10−24

	
4.02    ×    10−18

	
1.39    ×    10−3




	
SSVUBA vs. TSA

	
1.2    ×    10−22

	
1.97    ×    10−21

	
1.22    ×    10−25




	
SSVUBA vs. WOA

	
9.7    ×    10−25

	
1.89    ×    10−21

	
9.11    ×    10−24




	
SSVUBA vs. GWO

	
1.01    ×    10−24

	
3.6    ×    10−16

	
3.79    ×    10−20




	
SSVUBA vs. TLBO

	
6.49    ×    10−23

	
1.97    ×    10−21

	
2.36    ×    10−25




	
SSVUBA vs. GSA

	
1.97    ×    10−21

	
1.97    ×    10−21

	
5.2442    ×    10−2




	
SSVUBA vs. PSO

	
1.01    ×    10−24

	
1.97    ×    10−21

	
3.71    ×    10−5




	
SSVUBA vs. GA

	
1.01    ×    10−24

	
1.97    ×    10−21

	
1.44    ×    10−34
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Table 6. Results of sensitivity analysis of SSVUBA to N.
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Objective Function

	
Number of Population Members




	
20

	
30

	
50

	
80






	
F1

	
3    ×    10−174

	
3.9    ×    10−180

	
  5.02   ×    10−185

	
1.6    ×    10−198




	
F2

	
2.2    ×    10−92

	
2.3    ×    10−95

	
  1.60   ×    10−99

	
1.11    ×    10−107




	
F3

	
4.3    ×    10−144

	
1.9     ×    10−152

	
  2.01   ×    10−154

	
1.3    ×    10−177




	
F4

	
2.23    ×    10−60

	
2.79    ×    10−62

	
  6.62   ×    10−59

	
7.92    ×    10−67




	
F5

	
0.022098

	
0.004318

	
  2.54   ×    10−12

	
9.24    ×    10−26




	
F6

	
0

	
0

	
0

	
0




	
F7

	
0.000328

	
0.000181

	
  9.00   ×    10−5

	
2.99    ×    10−7




	
F8

	
−12,569.5

	
−12,569.5

	
−12,569.4866

	
−12,569.5000




	
F9

	
0

	
0

	
0

	
0




	
F10

	
8.88    ×    10−16

	
8.88    ×    10−16

	
  8.88   ×    10−16

	
8.88    ×    10−16




	
F11

	
0

	
0

	
0

	
0




	
F12

	
4.55    ×    10−23

	
3.46    ×    10−29

	
  1.62   ×    10−32

	
1.57    ×    10−32




	
F13

	
1.54    ×    10−22

	
1.88    ×    10−27

	
  7.65   ×    10−32

	
1.35      ×    10−32




	
F14

	
0.998

	
0.998

	
0.998

	
0.998




	
F15

	
0.000319

	
0.000314

	
0.000310

	
0.000308




	
F16

	
−1.03011

	
−1.03162

	
−1.03163

	
−1.03163




	
F17

	
0.399414

	
0.398137

	
0.3978

	
0.3978




	
F18

	
8.774656

	
3.000008

	
3

	
3




	
F19

	
−3.83542

	
−3.86173

	
−3.86278

	
−3.86278




	
F20

	
−2.83084

	
−2.99626

	
−3.322

	
−3.322




	
F21

	
−9.94958

	
−10.1532

	
−10.1532

	
−10.1532




	
F22

	
−10.4029

	
−10.4029

	
−10.4029

	
−10.4029




	
F23

	
−10.5358

	
−10.5364

	
−10.5364

	
−10.5364











[image: Table] 





Table 7. Results of sensitivity analysis of SSVUBA to T.
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Objective Function

	
Maximum Number of Iterations




	
100

	
500

	
800

	
1000






	
F1

	
4.28    ×    10−19

	
1.78    ×    10−93

	
3.9    ×    10−149

	
  5.02   ×    10−185




	
F2

	
4.2    ×    10−11

	
4.15    ×    10−51

	
4.98    ×    10−80

	
  1.60   ×    10−99




	
F3

	
1.64    ×    10−11

	
2.06    ×    10−76

	
5.1    ×    10−127

	
  2.01   ×    10−154




	
F4

	
4.07    ×    10−8

	
3.7    ×    10−31

	
3.49    ×    10−47

	
  6.62   ×    10−59




	
F5

	
0.000271

	
1.25    ×    10−10

	
1.6    ×    10−13

	
  2.54   ×    10−12




	
F6

	
0

	
0

	
0

	
0




	
F7

	
0.0013

	
0.000162

	
9.62    ×    10−5

	
  9.00   ×    10−5




	
F8

	
−12,569.5

	
−12,569.5

	
−12,569.5

	
−12,569.4866




	
F9

	
4.59    ×    10−9

	
0

	
0

	
0




	
F10

	
2.89    ×    10−8

	
8.88    ×    10−16

	
8.88    ×    10−16

	
  8.88   ×    10−16




	
F11

	
0

	
0

	
0

	
0




	
F12

	
2.31    ×    10−11

	
2.18    ×    10−23

	
1.47    ×    10−30

	
  1.62   ×    10−32




	
F13

	
1.59    ×    10−10

	
4.02    ×    10−23

	
3.27    ×    10−29

	
  7.65   ×    10−32




	
F14

	
0.998004

	
0.998004

	
0.998004

	
0.998




	
F15

	
0.000329

	
0.000312

	
0.000311

	
0.000310




	
F16

	
−1.0316

	
−1.03163

	
−1.03163

	
−1.03163




	
F17

	
0.397894

	
0.3978

	
0.3978

	
0.3978




	
F18

	
3.00398

	
3

	
3

	
3




	
F19

	
−3.86142

	
−3.86267

	
−3.86278

	
−3.86278




	
F20

	
−3.02449

	
−3.28998

	
−3.29608

	
−3.322




	
F21

	
−10.1516

	
−10.1532

	
−10.1532

	
−10.1532




	
F22

	
−10.4026

	
−10.4029

	
−10.4029

	
−10.4029




	
F23

	
−10.5362

	
−10.5364

	
−10.5364

	
−10.5364











[image: Table] 





Table 8. Results of sensitivity analysis of SSVUBA to the effectiveness of each case in Equation (4).
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Objective Function

	
Maximum Number of Iterations




	
Mode 1

	
Mode 2

	
Mode 3






	
F1

	
1.63    ×    10−114

	
2.80    ×    10−44

	
  5.02   ×    10−185




	
F2

	
1.47    ×    10−59

	
1.77    ×    10−22

	
  1.60   ×    10−99




	
F3

	
4.72    ×    10−11

	
5.70    ×    10−41

	
  2.01   ×    10−154




	
F4

	
2.59    ×    10−36

	
4.28    ×    10−23

	
  6.62   ×    10−59




	
F5

	
28.77

	
1.58    ×    10−11

	
  2.54   ×    10−12




	
F6

	
0

	
0

	
0




	
F7

	
0.000175

	
2.98    ×    10−4

	
  9.00   ×    10−5




	
F8

	
−5593.8266

	
−12,569.4866

	
−12,569.4866




	
F9

	
0

	
0

	
0




	
F10

	
4.44    ×    10−18

	
8.88    ×    10−16

	
  8.88   ×    10−16




	
F11

	
0

	
0

	
0




	
F12

	
0.312707

	
1.15    ×    10−30

	
  1.62   ×    10−32




	
F13

	
2.0409

	
1.84    ×    10−28

	
  7.65   ×    10−32




	
F14

	
2.7155

	
0.998004

	
0.998




	
F15

	
0.00033149

	
0.001674

	
0.000310




	
F16

	
−1.03159

	
−0.35939

	
−1.03163




	
F17

	
0.39792

	
0.785468

	
0.3978




	
F18

	
3.653902

	
24.03998

	
3




	
F19

	
−3.84923

	
−3.38262

	
−3.86278




	
F20

	
−3.21768

	
−1.74165

	
−3.322




	
F21

	
−7.18942

	
−10.1532

	
−10.1532




	
F22

	
−7.63607

	
−10.4028

	
−10.4029




	
F23

	
−8.96944

	
−10.5363

	
−10.5364
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Table 9. Assessment results of the CEC 2017 test functions.
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GA

	
PSO

	
GSA

	
TLBO

	
GWO

	
WOA

	
TSA

	
MPA

	
RFO

	
RSA

	
AHA

	
HBA

	
SSVUBA






	
C1

	
avg

	
9800

	
3960

	
296

	
19,800,000

	
325,000

	
8,470,000

	
296

	
3400

	
156

	
2470

	
2470

	
12,200

	
100




	
std

	
6534

	
4906

	
302.5

	
4,466,000

	
117,700

	
25,410,000

	
302.5

	
4037

	
40,040

	
291.5

	
2431

	
28,380

	
526.9




	
rank

	
7

	
6

	
3

	
11

	
9

	
10

	
4

	
5

	
2

	
4

	
5

	
8

	
1




	
C2

	
avg

	
5610

	
7060

	
7910

	
11,700

	
314

	
461

	
216

	
219

	
201

	
201

	
202

	
203

	
200




	
std

	
4587

	
2409

	
2376

	
7007

	
7909

	
7766

	
839.3

	
738.1

	
81.95

	
104.17

	
507.1

	
897.6

	
11.44




	
rank

	
9

	
10

	
11

	
12

	
7

	
8

	
5

	
6

	
2

	
3

	
3

	
4

	
1




	
C3

	
avg

	
8720

	
300

	
10,800

	
28,000

	
1540

	
23,400

	
10,800

	
300

	
301

	
1510

	
300

	
12,900

	
300




	
std

	
6490

	
2.1 × 10−10

	
1782

	
9724

	
2079

	
4103

	
1760

	
0

	
52.69

	
27.94

	
2.64 × 10−8

	
5291

	
1.091 × 10−10




	
rank

	
5

	
1

	
6

	
9

	
4

	
8

	
7

	
2

	
2

	
3

	
2

	
7

	
2




	
C4

	
avg

	
411

	
406

	
407

	
548

	
410

	
2390

	
407

	
406

	
403

	
404

	
404

	
478

	
400.03




	
std

	
20.35

	
3.608

	
3.212

	
16.72

	
8.305

	
453.2

	
3.212

	
11.11

	
104.17

	
8.987

	
0.8701

	
21.45

	
0.0627




	
rank

	
7

	
4

	
5

	
9

	
6

	
10

	
6

	
5

	
2

	
3

	
4

	
8

	
1




	
C5

	
avg

	
516

	
513

	
557

	
742

	
514

	
900

	
557

	
522

	
530

	
513

	
511

	
632

	
510.12




	
std

	
7.623

	
7.194

	
9.24

	
38.83

	
6.71

	
87.45

	
9.251

	
11.55

	
64.13

	
26.73

	
4.037

	
38.5

	
4.3505




	
rank

	
5

	
3

	
8

	
10

	
4

	
11

	
9

	
6

	
7

	
4

	
2

	
9

	
1




	
C6

	
avg

	
600

	
600

	
622

	
665

	
601

	
691

	
622

	
610

	
682

	
600

	
600

	
643

	
600




	
std

	
0.07348

	
1.078

	
9.922

	
46.2

	
0.968

	
11.99

	
9.922

	
9.086

	
38.94

	
1.54

	
0.000165

	
18.15

	
0.0006776




	
rank

	
1

	
2

	
4

	
6

	
2

	
8

	
5

	
3

	
7

	
2

	
2

	
5

	
2




	
C7

	
avg

	
728

	
719

	
715

	
1280

	
730

	
1860

	
715

	
741

	
713

	
713

	
721

	
878

	
723.32




	
std

	
8.019

	
5.61

	
1.705

	
46.42

	
9.46

	
102.96

	
1.716

	
18.26

	
1.793

	
4.73

	
6.314

	
44.99

	
4.301




	
rank

	
6

	
3

	
2

	
10

	
7

	
11

	
3

	
8

	
1

	
2

	
4

	
9

	
5




	
C8

	
avg

	
821

	
811

	
821

	
952

	
814

	
1070

	
821

	
823

	
829

	
809

	
810

	
917

	
809.42




	
std

	
9.856

	
6.017

	
5.159

	
20.9

	
9.086

	
48.95

	
5.159

	
10.945

	
58.3

	
8.811

	
3.212

	
27.28

	
3.4342




	
rank

	
6

	
4

	
7

	
10

	
5

	
11

	
7

	
7

	
8

	
1

	
3

	
9

	
2




	
C9

	
avg

	
910

	
900

	
900

	
6800

	
911

	
28,900

	
900

	
944

	
4670

	
910

	
900

	
2800

	
900




	
std

	
16.72

	
6.5 × 10−14

	
6.5 × 10−15

	
1430

	
21.45

	
9614

	
0

	
115.5

	
2266

	
22

	
0.02497

	
921.8

	
0.01793




	
rank

	
2

	
1

	
2

	
7

	
3

	
8

	
2

	
4

	
6

	
3

	
2

	
5

	
2




	
C10

	
avg

	
1720

	
1470

	
2690

	
5290

	
1530

	
7470

	
2690

	
1860

	
2590

	
1410

	
1420

	
4630

	
1437.42




	
std

	
277.2

	
236.5

	
327.8

	
709.5

	
315.7

	
1496

	
327.8

	
324.5

	
455.4

	
38.5

	
288.2

	
677.6

	
155.188




	
rank

	
6

	
4

	
9

	
11

	
5

	
12

	
10

	
7

	
8

	
1

	
2

	
10

	
3




	
C11

	
avg

	
1130

	
1110

	
1130

	
1270

	
1140

	
1920

	
1130

	
1180

	
1110

	
1110

	
1110

	
1200

	
1102.93




	
std

	
26.18

	
6.908

	
11.55

	
43.78

	
59.51

	
2079

	
11.55

	
65.78

	
27.94

	
12.32

	
5.522

	
33.77

	
1.397




	
rank

	
3

	
2

	
4

	
7

	
4

	
8

	
4

	
5

	
3

	
3

	
3

	
6

	
1




	
C12

	
avg

	
37,300

	
14,500

	
703,000

	
2.18 × 107

	
625,000

	
1.84 × 108

	
7.1 × 105

	
1.98 × 106

	
1630

	
15,200

	
10,300

	
620,000

	
1247.2




	
std

	
38,280

	
12,430

	
46,310

	
2.31 × 107

	
1.24 × 106

	
1.87 × 109

	
462,000

	
2.1 × 106

	
217.8

	
2948

	
10,769

	
831,600

	
59.73




	
rank

	
6

	
4

	
9

	
12

	
8

	
13

	
10

	
11

	
2

	
5

	
3

	
7

	
1




	
C13

	
avg

	
10,800

	
8600

	
11,100

	
415,000

	
9840

	
186,000,000

	
11,100

	
16,100

	
1320

	
6820

	
8020

	
12,900

	
1305.92




	
std

	
9823

	
5632

	
2321

	
141,900

	
6193

	
150,700,000

	
2321

	
11,550

	
86.13

	
4686

	
7392

	
10,439

	
2.838




	
rank

	
7

	
5

	
8

	
11

	
6

	
12

	
9

	
10

	
2

	
3

	
4

	
9

	
1




	
C14

	
avg

	
7050

	
1480

	
7150

	
412,000

	
3400

	
2,010,000

	
7150

	
1510

	
1450

	
1450

	
1460

	
25,510

	
1403.09




	
std

	
8976

	
46.75

	
1639

	
250,800

	
2145

	
7,722,000

	
1639

	
56.21

	
61.6

	
24.64

	
35.75

	
32,780

	
4.466




	
rank

	
7

	
4

	
8

	
10

	
6

	
11

	
9

	
5

	
2

	
3

	
3

	
9

	
1




	
C15

	
avg

	
9300

	
1710

	
18,000

	
47,500

	
3810

	
14,300,000

	
18,000

	
2240

	
1510

	
1580

	
1590

	
4490

	
1500.77




	
std

	
9878

	
311.3

	
6050

	
16,500

	
4246

	
21,890,000

	
6050

	
628.1

	
18.04

	
140.8

	
52.8

	
3289

	
0.572




	
rank

	
9

	
5

	
10

	
11

	
7

	
12

	
11

	
6

	
2

	
3

	
4

	
8

	
1




	
C16

	
avg

	
1790

	
1860

	
2150

	
3500

	
1730

	
3000

	
2150

	
1730

	
1820

	
1730

	
1650

	
2600

	
1604.82




	
std

	
141.9

	
140.8

	
116.6

	
251.9

	
136.4

	
1320

	
116.6

	
139.7

	
253

	
132

	
55.99

	
322.3

	
1.089




	
rank

	
4

	
6

	
7

	
10

	
3

	
9

	
8

	
4

	
5

	
4

	
2

	
8

	
1




	
C17

	
avg

	
1750

	
1760

	
1860

	
2630

	
1760

	
4340

	
1860

	
1770

	
1830

	
1730

	
1730

	
2170

	
1714.55




	
std

	
43.78

	
52.25

	
118.8

	
209

	
34.43

	
348.7

	
118.8

	
37.62

	
193.6

	
37.95

	
19.91

	
232.1

	
10.384




	
rank

	
3

	
4

	
7

	
9

	
5

	
10

	
8

	
5

	
6

	
2

	
3

	
8

	
1




	
C18

	
avg

	
15,700

	
14,600

	
8720

	
749,000

	
25,800

	
37,500,000

	
8720

	
23,400

	
1830

	
7440

	
12,500

	
194,000

	
1800.95




	
std

	
14,080

	
13,090

	
5566

	
405,900

	
17,380

	
54,340,000

	
5566

	
15,400

	
14.85

	
4972

	
12,540

	
210,100

	
0.572




	
rank

	
7

	
6

	
4

	
11

	
9

	
12

	
5

	
8

	
2

	
3

	
5

	
10

	
1




	
C19

	
avg

	
9690

	
2600

	
13,700

	
614,000

	
9870

	
2,340,000

	
45,000

	
2920

	
1920

	
1950

	
1950

	
5650

	
1900.9




	
std

	
7447

	
2409

	
21,120

	
602,800

	
7007

	
17,820,000

	
20,900

	
2057

	
31.57

	
60.83

	
51.81

	
3443

	
0.495




	
rank

	
7

	
4

	
9

	
11

	
8

	
12

	
10

	
5

	
2

	
3

	
4

	
6

	
1




	
C20

	
avg

	
2060

	
2090

	
2270

	
2870

	
2080

	
3790

	
2270

	
2090

	
2490

	
2020

	
2020

	
2440

	
2015.52




	
std

	
66

	
68.53

	
89.87

	
224.4

	
57.2

	
486.2

	
89.87

	
54.23

	
267.3

	
27.83

	
24.53

	
206.8

	
10.637




	
rank

	
3

	
5

	
6

	
9

	
4

	
10

	
7

	
6

	
8

	
2

	
3

	
7

	
1




	
C21

	
avg

	
2300

	
2280

	
2360

	
2580

	
2320

	
2580

	
2360

	
2250

	
2320

	
2230

	
2310

	
2400

	
2203.72




	
std

	
48.18

	
59.4

	
31.02

	
67.87

	
7.7

	
202.4

	
31.02

	
66.44

	
74.58

	
47.85

	
23.1

	
69.19

	
22.385




	
rank

	
5

	
4

	
8

	
10

	
7

	
11

	
9

	
3

	
8

	
2

	
6

	
9

	
1




	
C22

	
avg

	
2300

	
2310

	
2300

	
7180

	
2310

	
14,100

	
2300

	
2300

	
3530

	
2280

	
2300

	
2450

	
2283.76




	
std

	
2.618

	
72.71

	
0.0792

	
1408

	
18.48

	
1133

	
0.077

	
12.98

	
932.8

	
14.63

	
20.24

	
910.8

	
41.91




	
rank

	
3

	
4

	
4

	
7

	
5

	
8

	
4

	
4

	
6

	
1

	
4

	
5

	
2




	
C23

	
avg

	
2630

	
2620

	
2740

	
3120

	
2620

	
3810

	
2740

	
2620

	
2730

	
2610

	
2620

	
2820

	
2611.63




	
std

	
14.74

	
10.153

	
43.01

	
91.41

	
9.317

	
240.9

	
43.01

	
9.559

	
267.3

	
4.532

	
6.083

	
55.99

	
4.323




	
rank

	
4

	
3

	
6

	
8

	
4

	
9

	
7

	
4

	
5

	
1

	
4

	
7

	
2




	
C24

	
avg

	
2760

	
2690

	
2740

	
3330

	
2740

	
3480

	
2740

	
2730

	
2700

	
2620

	
2740

	
3010

	
2516.88




	
std

	
16.39

	
118.8

	
6.072

	
178.2

	
9.603

	
240.9

	
6.105

	
70.84

	
80.74

	
87.56

	
7.59

	
46.97

	
42.229




	
rank

	
7

	
3

	
6

	
9

	
7

	
10

	
7

	
5

	
4

	
2

	
7

	
8

	
1




	
C25

	
avg

	
2950

	
2920

	
2940

	
2910

	
2940

	
3910

	
2940

	
2920

	
2930

	
2920

	
2930

	
2890

	
2897.92




	
std

	
21.23

	
27.5

	
16.94

	
19.36

	
25.96

	
280.5

	
16.83

	
26.29

	
22.99

	
13.86

	
21.78

	
15.29

	
0.539




	
rank

	
7

	
4

	
6

	
3

	
7

	
8

	
7

	
5

	
5

	
5

	
6

	
1

	
2




	
C26

	
avg

	
3110

	
2950

	
34,400

	
7870

	
3220

	
7100

	
3440

	
2900

	
3460

	
3110

	
2970

	
4010

	
2849.81




	
std

	
368.5

	
275

	
691.9

	
1001

	
469.7

	
3124

	
691.9

	
40.26

	
658.9

	
317.9

	
181.5

	
1017.5

	
105.919




	
rank

	
5

	
3

	
12

	
11

	
6

	
10

	
7

	
2

	
8

	
6

	
4

	
9

	
1




	
C27

	
avg

	
3120

	
3120

	
3260

	
3410

	
3100

	
4810

	
3260

	
3090

	
3140

	
3110

	
3090

	
3200

	
3089.37




	
std

	
21.12

	
27.5

	
45.87

	
90.31

	
23.98

	
675.4

	
45.87

	
3.058

	
23.54

	
22.99

	
2.464

	
0.0003399

	
0.506




	
rank

	
5

	
6

	
8

	
9

	
3

	
10

	
9

	
2

	
6

	
4

	
3

	
7

	
1




	
C28

	
avg

	
3320

	
3320

	
3460

	
3400

	
3390

	
5090

	
3460

	
3210

	
3400

	
2300

	
3300

	
3260

	
3100




	
std

	
138.6

	
134.2

	
37.18

	
130.9

	
112.2

	
346.5

	
37.18

	
124.3

	
144.1

	
136.4

	
147.4

	
46.86

	
0.00006974




	
rank

	
6

	
7

	
9

	
8

	
7

	
10

	
10

	
3

	
9

	
1

	
5

	
4

	
2




	
C29

	
avg

	
3250

	
3200

	
3450

	
4560

	
3190

	
8890

	
3450

	
3210

	
3210

	
3210

	
3170

	
3620

	
3146.26




	
std

	
90.2

	
57.53

	
188.1

	
543.4

	
47.19

	
1562

	
188.1

	
56.87

	
121

	
62.26

	
27.17

	
222.2

	
14.08




	
rank

	
6

	
4

	
7

	
9

	
3

	
10

	
8

	
5

	
6

	
6

	
2

	
8

	
1




	
C30

	
avg

	
537,000

	
351,000

	
1,300,000

	
4,030,000

	
298,000

	
18,800,000

	
940,000

	
421,000

	
305,000

	
296,000

	
297,000

	
6490

	
3414.92




	
std

	
700,700

	
555,500

	
400,400

	
1,760,000

	
580,800

	
146,300,000

	
396,000

	
624,800

	
489,500

	
23,540

	
504,900

	
8844

	
29.491




	
rank

	
9

	
7

	
11

	
12

	
5

	
13

	
10

	
8

	
6

	
3

	
4

	
2

	
1




	
Sum rank

	
167

	
128

	
206

	
282

	
166

	
305

	
217

	
159

	
142

	
88

	
108

	
212

	
44




	
Mean rank

	
5.5666

	
4.2666

	
6.8666

	
9.4

	
5.5333

	
10.1666

	
7.2333

	
5.3

	
4.7333

	
2.9333

	
3.6

	
7.0666

	
1.4666




	
Total rank

	
8

	
4

	
9

	
12

	
7

	
13

	
11

	
6

	
5

	
2

	
3

	
10

	
1
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Table 10. Performance of optimization algorithms in the pressure vessel design problem.






Table 10. Performance of optimization algorithms in the pressure vessel design problem.





	
Algorithm

	
Optimum Variables

	
Optimum Cost




	

	
Ts

	
Th

	
R

	
L

	






	
SSVUBA

	
0.7789938

	
0.3850896

	
40.3607

	
199.3274

	
5884.8824




	
AHA

	
0.778171

	
0.384653

	
40.319674

	
199.999262

	
5885.5369




	
RSA

	
0.8400693

	
0.4189594

	
43.38117

	
161.5556

	
6034.7591




	
RFO

	
0.81425

	
0.44521

	
42.20231

	
176.62145

	
6113.3195




	
MPA

	
0.787576

	
0.389521

	
40.80024

	
200.0000

	
5916.780




	
TSA

	
0.788411

	
0.389289

	
40.81314

	
200.0000

	
5920.592




	
WOA

	
0.818188

	
0.440563

	
42.39296

	
177.8755

	
5922.621




	
GWO

	
0.855898

	
0.423602

	
44.3436

	
158.2636

	
6043.384




	
TLBO

	
0.827417

	
0.422962

	
42.25185

	
185.782

	
6169.909




	
GSA

	
1.098868

	
0.961043

	
49.9391

	
171.5271

	
11611.53




	
PSO

	
0.761417

	
0.404349

	
40.93936

	
200.3856

	
5921.556




	
GA

	
1.112756

	
0.91749

	
44.99143

	
181.8211

	
6584.748
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Table 11. Statistical results of optimization algorithms for the pressure vessel design problem.






Table 11. Statistical results of optimization algorithms for the pressure vessel design problem.





	Algorithm
	Best
	Mean
	Worst
	Std. Dev.
	Median





	SSVUBA
	5884.8824
	5888.170
	5895.379
	23.716394
	5887.907



	AHA
	5885.5369
	5885.53823
	5885.85190
	31.1378
	5888.406



	RSA
	6034.7591
	6042.051
	6045.914
	31.204538
	6040.142



	RFO
	6113.3195
	6121.207
	6132.519
	38.26314
	6119.021



	MPA
	5916.780
	5892.155
	5897.036
	28.95315
	5890.938



	TSA
	5920.592
	5896.238
	5899.34
	13.92114
	5895.363



	WOA
	5922.621
	6069.87
	7400.504
	66.6719
	6421.248



	GWO
	6043.384
	6482.488
	7256.718
	327.2687
	6402.599



	TLBO
	6169.909
	6331.823
	6517.565
	126.7103
	6323.373



	GSA
	11611.53
	6846.016
	7165.019
	5795.258
	6843.104



	PSO
	5921.556
	6269.017
	7011.356
	496.525
	6117.581



	GA
	6584.748
	6649.303
	8011.845
	658.0492
	7592.079
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Table 12. Performance of optimization algorithms in the speed reducer design problem.






Table 12. Performance of optimization algorithms in the speed reducer design problem.





	
Algorithm

	

	

	

	
Optimum Variables

	

	

	
Optimum Cost




	

	
b

	
m

	
p

	
l1

	
l2

	
d1

	
d2

	






	
SSVUBA

	
3.50003

	
0.700007

	
17

	
7.3

	
7.8

	
3.350210

	
5.286681

	
2996.3904




	
HBA

	
3.4976

	
0.7

	
17

	
7.3000

	
7.8000

	
3.3501

	
5.2857

	
2996.4736




	
AHA

	
3.50000

	
0.7

	
17

	
7.300001

	
7.7153201

	
3.350212

	
5.286655

	
2996.4711




	
RSA

	
3.50279

	
0.7

	
17

	
7.30812

	
7.74715

	
3.35067

	
5.28675

	
2996.5157




	
RFO

	
3.509368

	
0.7

	
17

	
7.396137

	
7.800163

	
3.359927

	
5.289782

	
3005.1373




	
MPA

	
3.503621

	
0.7

	
17

	
7.300511

	
7.8

	
3.353181

	
5.291754

	
3001.85




	
TSA

	
3.508724

	
0.7

	
17

	
7.381576

	
7.815781

	
3.359761

	
5.289781

	
3004.591




	
WOA

	
3.502049

	
0.7

	
17

	
8.300581

	
7.800055

	
3.354323

	
5.289728

	
3009.07




	
GWO

	
3.510537

	
0.7

	
17

	
7.410755

	
7.816089

	
3.359987

	
5.28979

	
3006.232




	
TLBO

	
3.51079

	
0.7

	
17

	
7.300001

	
7.8

	
3.462993

	
5.292228

	
3033.897




	
GSA

	
3.602088

	
0.7

	
17

	
8.300581

	
7.8

	
3.371579

	
5.292239

	
3054.478




	
PSO

	
3.512289

	
0.7

	
17

	
8.350585

	
7.8

	
3.364117

	
5.290737

	
3070.936




	
GA

	
3.522166

	
0.7

	
17

	
8.370586

	
7.8

	
3.368889

	
5.291733

	
3032.335
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Table 13. Statistical results of optimization algorithms for the speed reducer design problem.






Table 13. Statistical results of optimization algorithms for the speed reducer design problem.





	Algorithm
	Best
	Mean
	Worst
	Std. Dev.
	Median





	SSVUBA
	2996.3904
	3000.0294
	3001.627
	1.6237192
	2999.0614



	HBA
	2996.4736
	3001.279
	30002.716
	4.163725
	3000.7196



	AHA
	2996.4711
	3000.471
	3002.473
	2.015234
	3000.1362



	RSA
	2996.5157
	3002.164
	3007.394
	5.219620
	3000.7315



	RFO
	3005.1373
	3012.031
	3027.619
	10.36912
	3010.641



	MPA
	3001.85
	3003.841
	3008.096
	1.934636
	3003.387



	TSA
	3004.591
	3010.055
	3012.966
	5.846116
	3008.727



	WOA
	3009.07
	3109.601
	3215.671
	79.74963
	3109.601



	GWO
	3006.232
	3033.083
	3065.245
	13.03683
	3031.271



	TLBO
	3033.897
	3070.211
	3109.127
	18.09951
	3069.902



	GSA
	3054.478
	3174.774
	3368.584
	92.70225
	3161.173



	PSO
	3070.936
	3190.985
	3317.84
	17.14257
	3202.666



	GA
	3032.335
	3299.944
	3624.534
	57.10336
	3293.263
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Table 14. Performance of optimization algorithms in the welded beam design problem.






Table 14. Performance of optimization algorithms in the welded beam design problem.





	
Algorithm

	

	
Optimum Variables

	

	
Optimum Cost




	

	
h

	
l

	
t

	
b

	






	
SSVUBA

	
0.205730

	
3.4705162

	
9.0366314

	
0.2057314

	
1.724852




	
HBA

	
0.2057

	
3.4704

	
9.0366

	
0.2057

	
1.72491




	
AHA

	
0.205730

	
3.470492

	
9.036624

	
0.205730

	
1.724853




	
RSA

	
0.14468

	
3.514

	
8.9251

	
0.21162

	
1.6726




	
RFO

	
0.21846

	
3.51024

	
8.87254

	
0.22491

	
1.86612




	
MPA

	
0.205563

	
3.474846

	
9.035799

	
0.205811

	
1.727656




	
TSA

	
0.205678

	
3.475403

	
9.036963

	
0.206229

	
1.728992




	
WOA

	
0.197411

	
3.315061

	
9.998

	
0.201395

	
1.8225




	
GWO

	
0.205611

	
3.472102

	
9.040931

	
0.205709

	
1.727467




	
TLBO

	
0.204695

	
3.536291

	
9.00429

	
0.210025

	
1.761207




	
GSA

	
0.147098

	
5.490744

	
10.0000

	
0.217725

	
2.175371




	
PSO

	
0.164171

	
4.032541

	
10.0000

	
0.223647

	
1.876138




	
GA

	
0.206487

	
3.635872

	
10.0000

	
0.203249

	
1.838373











[image: Table] 





Table 15. Statistical results of optimization algorithms for the welded beam design problem.






Table 15. Statistical results of optimization algorithms for the welded beam design problem.





	Algorithm
	Best
	Mean
	Worst
	Std. Dev.
	Median





	SSVUBA
	1.724852
	1.726331
	1.72842
	0.004328
	1.725606



	HBA
	1.72491
	1.72685
	1.72485
	0.007132
	1.725854



	AHA
	1.724853
	1.727123
	1.7275528
	0.005123
	1.725824



	RSA
	1.6726
	1.703415
	1.762140
	0.017425
	1.726418



	RFO
	1.86612
	1.892058
	2.016378
	0.007960
	1.88354



	MPA
	1.727656
	1.728861
	1.729097
	0.000287
	1.72882



	TSA
	1.728992
	1.730163
	1.730599
	0.001159
	1.730122



	WOA
	1.8225
	2.234228
	3.053587
	0.325096
	2.248607



	GWO
	1.727467
	1.732719
	1.744711
	0.004875
	1.730455



	TLBO
	1.761207
	1.82085
	1.8767
	0.027591
	1.823326



	GSA
	2.175371
	2.548709
	3.008934
	0.256309
	2.499498



	PSO
	1.876138
	2.122963
	2.324201
	0.034881
	2.100733



	GA
	1.838373
	1.365923
	2.038823
	0.13973
	1.939149
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Table 16. Performance of optimization algorithms for the tension/compression spring design problem.






Table 16. Performance of optimization algorithms for the tension/compression spring design problem.





	
Algorithm

	

	
Optimum Variables

	

	
Optimum Cost




	

	
d

	
D

	
p

	






	
SSVUBA

	
0.051704

	
0.357077

	
11.26939

	
0.012665




	
HBA

	
0.0506

	
0.3552

	
11.373

	
0.012707




	
AHA

	
0.051897

	
0.361748

	
10.689283

	
0.012666




	
RSA

	
0.057814

	
0.58478

	
4.0167

	
0.01276




	
RFO

	
0.05189

	
0.36142

	
11.58436

	
0.01321




	
MPA

	
0.050642

	
0.340382

	
11.97694

	
0.012778




	
TSA

	
0.049686

	
0.338193

	
11.95514

	
0.012782




	
WOA

	
0.04951

	
0.307371

	
14.85297

	
0.013301




	
GWO

	
0.04951

	
0.312859

	
14.08679

	
0.012922




	
TLBO

	
0.050282

	
0.331498

	
12.59798

	
0.012814




	
GSA

	
0.04951

	
0.314201

	
14.0892

	
0.012979




	
PSO

	
0.049609

	
0.307071

	
13.86277

	
0.013143




	
GA

	
0.049757

	
0.31325

	
15.09022

	
0.012881











[image: Table] 





Table 17. Statistical results of optimization algorithms for the tension/compression spring design problem.






Table 17. Statistical results of optimization algorithms for the tension/compression spring design problem.





	Algorithm
	Best
	Mean
	Worst
	Std. Dev.
	Median





	SSVUBA
	0.012665
	0.012687
	0.012696
	0.001022
	0.012684



	HBA
	0.012707
	0.0127162
	0.0128012
	0.006147
	0.012712



	AHA
	0.012666
	0.0126976
	0.0127271
	0.001566
	0.012692



	RSA
	0.01276
	0.012792
	0.012804
	0.007413
	0.012782



	RFO
	0.01321
	0.01389
	0.015821
	0.006137
	0.013768



	MPA
	0.012778
	0.012795
	0.012826
	0.005668
	0.012798



	TSA
	0.012782
	0.012808
	0.012832
	0.00419
	0.012811



	WOA
	0.013301
	0.014947
	0.018018
	0.002292
	0.013308



	GWO
	0.012922
	0.01459
	0.017995
	0.001636
	0.014143



	TLBO
	0.012814
	0.012952
	0.013112
	0.007826
	0.012957



	GSA
	0.012979
	0.013556
	0.014336
	0.000289
	0.013484



	PSO
	0.013143
	0.014158
	0.016393
	0.002091
	0.013115



	GA
	0.012881
	0.013184
	0.015347
	0.000378
	0.013065
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