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Abstract: Braille is used as a mode of communication all over the world. Technological advancements
are transforming the way Braille is read and written. This study developed an English Braille pattern
identification system using robust machine learning techniques using the English Braille Grade-1
dataset. English Braille Grade-1 dataset was collected using a touchscreen device from visually
impaired students of the National Special Education School Muzaffarabad. For better visualization,
the dataset was divided into two classes as class 1 (1–13) (a–m) and class 2 (14–26) (n–z) using
26 Braille English characters. A position-free braille text entry method was used to generate synthetic
data. N = 2512 cases were included in the final dataset. Support Vector Machine (SVM), Decision Trees
(DT) and K-Nearest Neighbor (KNN) with Reconstruction Independent Component Analysis (RICA)
and PCA-based feature extraction methods were used for Braille to English character recognition.
Compared to PCA, Random Forest (RF) algorithm and Sequential methods, better results were
achieved using the RICA-based feature extraction method. The evaluation metrics used were the True
Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value (PPV), Negative Predictive
Value (NPV), False Positive Rate (FPR), Total Accuracy, Area Under the Receiver Operating Curve
(AUC) and F1-Score. A statistical test was also performed to justify the significance of the results.

Keywords: machine learning; RICA features; PCA features; Braille patterns; visually impaired; SVM;
KNN; Decision Tree; text conversion

1. Introduction

Visual impairment is defined as a loss of the ability to see that cannot be fixed with
conventional procedures such as medication or glasses. In a report presented by the World
Health Organization (WHO), 2.2 billion people all over the world suffer from near or
distance vision problems [1]. Enormous efforts are required to assess the impact of illness
on individuals and society. Recent advances in quantitative measures of the quality of life,
life expectancy, the financial impact of disease and its treatment have allowed us to calculate
the effects of illness and assist in future research to improve public health. Over 120 diseases
and conditions have been thoroughly reviewed in terms of disability-adjusted life years
(DALYs), quality-adjusted life years (QALYs), quality of life and financial measures [2].
Visual impairment harms the well-being of children and adults. School-aged children with
vision impairments may have lower levels of academic achievement [3].

To educate visually impaired people, Louis Braille invented a language known as
Braille, also known as night writing, which is a language introduced by Louis Braille
specifically for visually impaired people [4]. Braille is composed of six dots. Using these
different dots patterns, the visually impaired can read and write different characters.
Previously, Braille was read and written using a slate and stylus. The world these days
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is equipped with the latest technologies that make people’s lifestyles more comfortable.
Touchscreen devices are used more commonly; between 2009 and 2014, mobile screen
readers’ popularity rose exponentially from 12% to 82% [5]. The use of touchscreen-based
devices helped visually impaired people to live their lives in a better way. Touchscreens
have shown remarkable developments in recent years. It encourages users to perform a
wide range of tasks [6]. This includes e-learning, medical diagnosis, performing household
chores, gaming, online shopping, etc. Touchscreens are easy to carry and simple to deal with,
thus making them a leading tool used in our daily lives. People with visual impairments
are an integral part of every community.

To live a better life, visually impaired people also adopt touchscreen devices for
smoothly carrying out their daily activities [7]. Many famous applications are available
for visually impaired users to help improve their living conditions, such as: “Look Tel”—
the money identification mobile application, “Kurzweil-National Federation of the Blind
Reader (KNFB) Reader” that reads any text aloud [8], “TapTapSee” that identifies objects
using photos [9], “Color ID Free” that discovers the names of the colors around you [10] and
“Be My Eyes”—the one that helps visually impaired people in real time [11]. Georgios et al.
analyzed different assistive tools to highlight visually impaired people’s issues using these
applications [12]. Braille, also known as night writing, is a language introduced by Louis
Braille specifically for visually impaired people [13,14]. There are several touchscreen-based
Braille applications like Braille Easy [14], Single Tap Braille [5], Braille Ecran [15], Braille
Enter [16], Braille Sketch [17], etc. available for people with visual impairments. Visually
impaired people face serious usability and accessibility issues with these applications.
Research is progressing to develop practical and more friendly devices for visually impaired
people. Recently, machine learning techniques have been widely used for converting Braille
into natural language and vice versa. Currently, a lot of work is done for converting English
into Braille [18–25]. However, these conversions are based on handwritten scanned Braille
sheets. These procedures do not reduce the burden of visually impaired users.

Braille to English character conversion has not been explored considerably; to the best
of our knowledge, no current application for the visually impaired recognizes a position-
free touchscreen-based Braille data entry in real time and provides both texts as well as
voice feedback. Therefore, there is a strong need for an application that is both accessible
to and usable for visually impaired users. The application proposed by the authors of
Reference [19] is unique, because visually impaired users can tap anywhere on the screen
and are not required to find the precise location of the dots. This work is the extension of a
previous study conducted by Sana et al. The English Braille dataset used in this study was
collected using the application proposed by Sana et al. In this research, the input storage
mechanism was changed. Previously, Braille’s image was saved and used by the authors
for character prediction. Here, the coordinate value of each dot entered is saved in a text
file. The authors manually validated the numerical dataset acquired using the touchscreen
application. Anomalies were removed before processing. Using this new dataset, Braille to
English character recognition was made using machine learning techniques like DT, SVM
and KNN combined with RICA- and PCA-based feature extraction methods. The Random
Forest and Sequential methods were also implemented for a comparative analysis. Figure 1
represents the schematic diagram for the research conducted.

The following are the main contributions of this research paper:

(a) Collection of the English Braille Grade 1 dataset from visually impaired students of
Muzaffarabad Special Education School, using the position-free Braille input appli-
cation developed by Sana et al. This dataset was collected, as no such prior dataset
exists that gathers Braille input from visually impaired users directly on touchscreen
devices in real time.

(b) A novel backend storage mechanism for Braille characters entered using the touchscreen-
based application.
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(c) Prediction of the English alphabet for the corresponding Braille characters using
Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and
Random Forest (RF) with RICA- and PCA-based feature extraction methods.

(d) Evaluation and comparison of the proposed mechanism with previous studies and
using other techniques like the Random Forest and Sequential methods.

Figure 1. Schematic Diagram.

This manuscript is organized as follows: Section 2 provides a literature review,
Section 3 presents the materials and methods, Section 4 contains the detailed results and
comparative analysis, Section 5 contains the discussion and Section 6 contains the conclu-
sions and future recommendations.

2. Literature Review

Braille is a language invented by Louis Braille, and it is still used worldwide as the
standard communication tool for people with visual impairment. Braille is written by
punching dots on paper and read by gliding the fingers over the raised dots. A Braille
cell is defined by combining six dot patterns of 3 × 2 matrixes [26]. A couple of decades
ago, efforts began to develop machines that could assist and speed up the writing process.
Touchscreen devices, invented in 1965, have become an important part of everyday life.
People can easily interact with touchscreens without using any other tools. Touchscreens
enable developers to create interfaces tailored to the audience’s specific needs. A wide
range of touchscreen-based applications are available to assist visually impaired people in
the accomplishment of their daily life tasks with ease, like Braille Tap and Nav Tap [27],
V-Braille [28], TypeIn Braille [29], Braille Touch [9,30], TapTapSee [9], Braille Play [31], Edge
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Braille [32], Braille Ecran [15], BeSpecular [33], Color Teller [34], KNFBReader [8], Text to
Speech Synthesizer [35] and so on. Since Braille is a popular language for the visually
impaired, converting Braille to other languages has become an important study area. Many
researchers have used Braille in natural language conversion mechanisms by considering
it an important research topic. Several techniques have been used in multiple studies
to achieve better results for Braille in natural language predictions. Machine learning
and Deep Learning techniques with different feature extraction methods were used in
these studies. A study carried out by Hassan et al., a feed-forward neural network with
400 inputs in the input layer and 190 hidden neurons in the hidden layer, was designed
to convert English books into Braille text. For this purpose, small and capital English
alphabets, 10 numbers and space were used with and without noise removal. The neural
networks achieved satisfactory results for converting text into Braille. The network was
built with a simple structure that included several layers and neurons in each layer. Noisy
input patterns were introduced to the network, including the noise of a standard 0.2 to
all characters, resulting in one or two characters being detected incorrectly each time the
program was run [18]. An automated value thresholding algorithm was used for accurately
converting English text into Braille. After feeding English text to the system, every word
was read and converted into Braille characters. With the advent of this method, visually
impaired people can easily read novels, books, etc. Flexibility, low cost and portability were
the major advantages of the system, but this system can only be used for reading purposes.
Using this method, reading books becomes easier for visually impaired users [20]. Similarly,
Braille character segmentation was performed using image processing techniques. Then,
Support Vector Machine (SVM) with the Histogram of Oriented Gradients (HOG) feature
extraction method was applied to translate English Braille characters. The Histogram of
Oriented Gradients, or HOG, is a feature descriptor used to extract features from image
data. It is generally used for image/object detection tasks. For this purpose, Megha et al.
proposed another SVM technique to include a preprocessing step like noise removal and
contrast enhancement on Braille images. Preprocessing was performed at each step to
predict Braille to English characters accurately. A better performance achieved 96% accuracy
using this technique. However, this study also worked only for scanned documents [23].
In a study by Raghunandan et al., an algorithm was designed that converts text to Braille
and Braille to text. Raw data was captured in the form of images. After image acquisition
and character segmentation, ASCII characters are converted to Braille text using newly
designed algorithms. This method is also limited in the scanned-based input method [24].
The HAAR feature extraction method, along with SVM, was used by Li et al., using scanned
Braille sheets for Braille to English conversion. The two-dimensional HAAR wavelet is often
utilized in digital image processing as a feature extraction approach. Various versions of 2D
HAAR wavelets detect edges in different orientations. Original, as well as cropped, images
were used for training using the SVM. English characters were recognized successfully [36].
English characters were converted to the Braille system. Input characters were read using
scanned files. Word segmentation was performed, and blank spaces were removed. The
Braille database was accessed, the output was matched and the Braille characters were
raised on a Braille pad [25]. English and Hindi text to Braille translation was performed. In a
study carried out by Singh et al., English and Hindi words were read by the system. After
removing spaces from the words and breaking them into the corresponding characters,
they were matched using a lookup table [19]. A similar study was carried out to convert
Scanned Braille English, Hindi and Tamil into text. For this purpose, 20 scanned Braille
sheets were used. Ten were English Braille documents, five were Tamil Braille and five
were Hindi Braille. Image enhancement and necessary noise removal were performed
for converting Braille into text. A 100% accuracy was achieved by two English Braille
documents and one Tamil Braille document. More than 97% accuracy was achieved for the
rest of the documents [22]. An image-based Braille character recognition for English and
Sinhala was performed using SVM with a Histogram of Oriented Gradient (HOG) feature
extraction method. Characters were extracted after applying preprocessing steps and
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segmentation techniques. More than 99% accuracy was achieved for converting English-
and Sinhala-based Braille characters [23]. The math to speech translation system made
learning easy for people with visual disabilities. This tool helps non-native speakers and
visually impaired people to solve mathematical equations easily [37–39].

Braille has been converted into other languages like Urdu [40,41], Arabic [42–44],
Hindi [19,45], Bengali [46,47] Tamil [22], Sinhala [23], Kannada [48], ODIA [49], Chinese [50,51],
Korean [52] and Gujarati [53–55].

In an earlier study conducted by the authors, a new touchscreen-based position-
free application was developed that takes Braille input and converts it into equivalent
Urdu characters. The English Braille dataset for this study was collected using the same
application. This dataset was collected from the “National Special Education School”,
Manak Payyan Muzaffarabad, Pakistan. Each student was requested to enter English Braille
codes using the position-free application touchscreen device. This application was less
tiring, because users had to tap only active dots for each character. This application can only
recognize its equivalent English character based on the active dots entered. Every “X” and
“Y” coordinate value of the tap dot is stored and further processed for character prediction.

In this research, the input storage mechanism was changed. Previously, Braille’s image
was saved and used by the authors for character predictions. Here, the coordinate value
of each dot entered was saved in a text file. The author manually validated the numerical
dataset acquired using the touchscreen application. Anomalies were completely removed
before processing. For Braille to English character recognition, machine learning techniques
such as DT, SVM, KNN and RF are combined with the RICA- and PCA-based feature
extraction methods. These techniques are simple to use to give better results, even with a
small dataset.

3. Materials and Methods
3.1. Dataset Collection

A position-free touchscreen-based braille input application was designed and devel-
oped by the authors in Reference [56]. Using this application, a new dataset of English
Braille Patterns was collected from the students of the National Special Education School
(NSEC) Manak Payyan, Muzaffarabad, Pakistan, as shown in Figure 2. The age of the
students ranged between 12 and 19 years. Visually impaired students entered each English
letter by tapping their fingers on the touchscreen. English Braille alphabets comprise dif-
ferent arrangements of six dots. Our application facilitates the users by requiring tapping
of only the active dots for each character. “x”- and “y”-coordinate values of the tapped
dots against one alphabet are stored with comma separators in a “.txt file”. The inactive
dots are filled with a “0” value. All the comma separators are removed, and finally, af-
ter removing all the redundant data, a .csv file comprised of 2512 characters is made for
further processing.

Figure 2. Visually Impaired student entering Braille patterns using a touchscreen device.
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3.2. English Braille Character Recognition

This study used robust supervised machine learning techniques like SVM, KNN and
Decision Trees to predict English Braille characters correctly. Even with small datasets,
these algorithms are well-known for better text prediction [49]. These machine learning
techniques were combined with the RICA-based feature extraction method, as it helps
improve accuracy, reduce the risk of overfitting the model and speeds up the training
process. The RICA (Reconstruction Independent Component Analysis method) also reduces
the dimensionality by taking the input data as a mixture of independent components and
correctly identifying each one by eliminating unnecessary noise.

The steps included for English Braille alphabet prediction are as follows:
Step 1: A “.csv” file is given as input for a machine learning application.
Step 2: Input data is divided into test and train data.
Step 3: 5-K cross-validation for (k = 5) was used.
Step 4: All three models are trained using training data.
Step 5: New models are generated for each applied algorithm.
Step 6: Performance of the newly built models are predicted using test data.
Step 7: English Braille alphabets are predated.

3.3. Feature Extraction

The first stage in classification is the extraction of features according to the type of
problem. Previously, various feature extraction techniques used Braille to text predictions.
Jha and Parvathi extracted the HOG feature for Braille to Hindi text conversion, and later,
they were used by the SVM classifier [57]. In the same way, Li, Xeng and Zu used conven-
tional extraction methods to identify Braille characters using KNN and the Naïve Bayes
classifier [58]. Additionally, Li, Yan and Zhang employed HOG extractor methods using
SVM to translate Braille to Odia, Sinhala and English [23,49]. The current study uses the re-
construction Independent Component Analysis (RICA)- and PCA-based feature extraction
techniques with SVM, DT and KNN for Braille to English alphabet text translation.

3.3.1. RICA Feature Extraction Method

RICA is not a supervised machine learning method; therefore, it does not require class
label information. The RICA algorithm was implemented to address the shortcomings and
disadvantages of the Independent Component Analysis (ICA) algorithm. This approach
yielded more positive results than ICA. Many algorithms for learning sparse features have
been introduced in the last few years. The sparse filter is being used to separate many
natural signals and man-made ones, and this feature plays a significant role in various
machine learning techniques.

The unlabeled data is indicated as the input.{
y(i)
}n

i=1
, y(i) ∈ Rm (1)

The problem of standard ICA [59] optimization for calculating independent compo-
nents can be described mathematically as

min
X

1
n

n

∑
i=1

h
(

Xyi
)

(2)

Subject to . . . . . . . . . .XXU = I

where h(.) is a variation penalty function, “X ∈ SL × m” is a matrix-vector, L is the count of
the vectors and “I” represents the identity matrix. Besides, XXU= I is used to prevent the
vectors in “X” from degenerating. A smooth penalty function can be used for this purpose,
i.e., h(.) = log(cos h(.)) [60]. On the other hand, the traditional Independent Component
Analysis is blocked by some restrictions relevant to orthonormality from learning on an
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overcomplete basis. As a result, the deficiency mentioned above prevented ICA from
scaling up to high-dimensional data. Therefore, soft reconstruction costs are used in RICA
to cover orthonormality constraints in ICA. After this substitution, RICA filtering can be
expressed with the following unconstrained problem:

min
X

λ

n

n

∑
i=1

(
||XUXyi − yi ||22 +

n

∑
i=1

l

∑
k=1

h
(

Xkyi
) )

(3)

In the above equation, π > 0 indicates the tradeoff between sparsity and reconstruction
error rate. RICA can learn sparse representations when X is over-completed after exchang-
ing orthonormality constraints with reconstruction costs, even on unwhitened data in this
way. However, penalty h can yield sparse, but not invariant, representations [61]. RICA [62]
therefore swapped it with an additional pooling penalty defined by L2, which, at the same
time, helps to facilitate pooling features into associated features in the cluster. In addition,
L2 pooling also encourages sparsity for the learning of features. L2 [63,64] pooling stands
for a two-layered network in the first layer (.)2 with square nonlinearity and nonlinearity

in the second layer
(√

(.)
)2

square root.

h
(

Xyi
)
=

L

∑
k=1

√
ε+ Hk .

(
(Xyi)� (Xy i

))
(4)

In the pooling matrix H ∈ P(L×L) by which Hk reflects a row of the pooling matrix set
to uniform weights, i.e., 1 for each component in the matrix H, element-wise multiplication
is defined by a �, and ε > 0 is a small average, as well as an element-wise multiplication.
The RICA is a linear approach that only explores sparse representation in the real data
space. The RICA method cannot use the relation between class label knowledge and
sample training.

3.3.2. Principal Component Analysis

PCA is one of the popular dimensionality reduction feature extraction methods. It is
used for data exploration and predictive model development. It decreases the dataset’s
dimensionality by merging several features into a few. While creating new features, PCA
keeps the majority of the variance. PCA allows us to find correlations and patterns in a
dataset to be converted into a dataset with relatively fewer dimensions while retaining all
important data. PCA is the foundation of a projection-based multivariate data analysis.
The most common application of PCA is to represent a multivariate data table as a smaller
number of variables (summary indices) so that trends, jumps, clusters and outliers can be
observed. PCA is a powerful technique that can evaluate datasets with missing values,
categorical data and erroneous measurements. Its goal is to extract the most significant facts
from the data and describe it as a set of summary indices known as principal components.
The major advantage of using PCA on the dataset are removal of the correlation between the
components, expediating the algorithm performance, resolving the problem of overfitting
in the model and better visualization. However, due to feature reduction, there are chances
of information loss [65].

3.4. Classification

Classification is the fundamental process for categorizing two or many classes ac-
cording to the extracted features. Several machine learning methods are supervised,
unsupervised, Ensemble Reinforced, Deep Learning and Neural Networks. Previously,
most researchers used supervised Braille to text conversion learning techniques. Therefore,
we used machine learning techniques such as Decision Trees, KNN and SVM based on the
RICA extraction method [66].
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3.4.1. Decision Trees

Decision Trees are a predictive method used in machine learning. DT works well for
both categorical and continuous data. Decision Trees require less effort to prepare data than
other decision techniques. This is a standard classifier for machine learning, since it does
not involve many computations [67]. Decision Tree classifiers have a tree-like structure,
splitting the dataset into various subsets. This classifier trains the model by imposing basic
rules on training data while making decisions [68]. Then, the model is used to predict and
identify the targeted values by reading the dataset according to its classes [69].

Mathematically, a Decision Tree classifier can be formed using the following equations:

X = {X 1, X2, X3, . . . . . . . . . . . . . . ..Xm
}T (5)

Xi =
{

x1, x2, x3, . . . . . . .xij, . . . . . . . . . xin
}

(6)

S = {S 1, S2, . . . . . . . . . Si, . . . . . ...Sm} (7)

In this analysis, we divided the test and training data with a ratio of 70:30. Using the
training data is to construct a model, and test data is used to verify the model’s validity.
This study used Decision Trees to predict Braille to English text using a multiclass approach.
The default parameters were used to change the trees’ decisions.

3.4.2. K-Nearest Neighbor

KNN is the most common and straightforward nonparametric technique employed in
machine learning for regression and classification models. KNN is a simple algorithm that
works well with smaller datasets, and only two parameters are required for implementation:
the value of K and the distance function. The KNN algorithm does not require training
before making predictions, and new data can be added without affecting the algorithm’s
accuracy. The samples’ differences are determined using the following Euclidian Distance
formula [67]:

EUa,b =

√
n

∑
i=1

(ai − bi)
2 (8)

where a and b represent the number of samples, and (ai − bi) is the ith feature dimensions
of the samples, and n denotes the total number of features dimension.

The Output value with the KNN classifier depends on the number of neighbors closest
to it. If K = 1, the value means the object can be categorized and allocated to the nearest
neighbor of that single class [68]. In this study, we used KNN to classify Braille into English
text. We selected K = 3 in this analysis, with the Euclidean distance and equal weight.

3.4.3. Random Forest

Random Forest is a supervised machine learning algorithm widely used in classifica-
tion and regression problems. Random Forest is capable of handling both continuous and
categorical data. It constructs Decision Trees from various samples and uses their majority
vote for classification and average for regression, thus eliminating overfitting. It works well,
even when the data contains null or missing values. Random Forest selects observations
at random, builds a Decision Tree and uses the average result. It does not rely on any
formulas. Different parameters are used for enhancing the predictive power and speed. Hy-
perparameters like n_estimators, max_features, mini-sample_leaf and n_jobs, random_state
and oob_score are used to increase the predictive power and speed, respectively. Random
Forest is more complex and requires more training time [70].

3.4.4. Support Vector Machine

SVM is the most well-known machine learning classification algorithm for pattern
identification and character recognition. SVM is a powerful classification technique for
supervised data. It has been applied successfully to many applications, including Computer
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Vision, Biomedical Imaging and Speech Recognition, which require efficiently dealing with
linear and nonlinear dimension data [71]. SVM is good at handling outliers and requires
less training time and effort. To obtain better classification, SVM builds a hyperplane in
high-dimensional areas. A classifier can achieve good efficiency if the hyperplane has a high
functional margin [72]. A more significant margin reduces the risk of generalized mistakes.
SVM finds the hyperplane, which provides the training data with the most significant
minimum distance. SVM can produce a better, more generic performance. SVM is a double
classifier that converts data into a hyperplane that depends on data of a higher dimension.

Let us consider hyperplane x. If w + b = 0, w is normal.
The representation of linearly separable data is as given below:

{xi, yi}, xi εRNd, yi ε{−1, 1}, i = 1, 2, . . . . . . . . . .N (9)

where yi is the label of a two-fold class.
When we optimize the margin by maximizing the value of the objective function,

E = ‖ w‖ 2 gives
xi.w + b ≥ 1, for yi = +1 (10)

xi.w + b ≤ 1, for yi = −1 (11)

By eliminating the inconsistencies of the above equations, we now have

(xi.b + b) yi ≥ 1, for all i (12)

If a dataset cannot be separated linearly, a slack variable “Ξi” is used to recognize
classification errors. Thus, the objective function in this scenario is defined as

E =
1
2
‖ w ‖2 +C ∑

i
L(Ξi) (13)

Subject to
(xi.b + b)yi ≥ 1− ξi, for all i (14)

Here, “C” and “L”. respectively, describe hyperparameters and cost functions. Cost
functions for identifying outliers are used. The dual formulation with L(Ξi) = Ξi is

α = maxα(∑
i,j

αiαjyiyjxixj) (15)

Subject to
0 ≤∝ αi ≤ C, ∑

i
αiyj = 0 (16)

Here,
α = {α1, α2, α3 . . . . . . . . . . αi}, ω0 = ∑

i
αixiyi (17)

A kernel trick is being used to accommodate separable data, which are not linear [73].
The nonlinear mapping function is transformed from the input space into a higher dimen-
sional feature space. The dot product of (xi, yi) is replaced by functions to apply this kernel
trick to two classes. The most popular kernels: Polynomial, Gaussian and Radial-based
functions are given in Table 1.
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Table 1. SVM kernel descriptions.

Kernel Type Classification Method Mathematical Description

Linear Kernel Linear SVM K(xi, yi) = (xi, yi)

Polynomial Kernel
Quadratic SVM K(xi, yi) = (1 + xi, yi)

2

Cubic SVM K(xi, yi) = (1 + xi, yi)
3

Gaussian Radial
Base Function

Fine Gaussian SVM K(xi, yi) = exp
(
||xi−yi

2||
2σ2

)
, σ = 0.75

Medium Gaussian SVM K(xi, yi) exp
(
||xi−yi

2||
2σ2

)
, σ = 3

Course Gaussian SVM K(xi, yi) = exp
(
||xi−yi

2||
2σ2

)
, σ = 12

The dual formation of a nonlinear case is shown as

α∗ = maxα(∑
i

αi + ∑
i,j

αiαjyiyj, K(xi.yj)) (18)

Subject to
0 ≤ αi ≤ C, ∑

i
αiyj = 0 (19)

Grid search is the famous assessment metric used for evaluating SVM. The appropriate
parameters are carefully selected by setting the grid range and phase size. Only one
parameter, the “C” constant of soft margins, is used in a linear kernel, whereas SVM
Gaussian kernel and SVM fine Gaussian kernel have two training parameters that cost
“C” and Gamma to control the degree of nonlinearity. We used the RICA and PCA feature
extraction methods with train test splits of 70:30 and 80:20, respectively. We applied default
parameters to the Polynomial kernel.

3.4.5. Sequential Model

The Sequential model is one of the simplest linear function neural network models.
This model is suitable for a simple stack of layers with one input and one output tensor.
In this model, not all the nodes are connected to other nodes of other layers. It handles
input or output data sequences in text streams, audio clips, video clips, time series data
and other types of sequential data. It comprises a convolution layer, nonlinear activation
layer, pooling layer and a fully connected layer [74].

4. Results

English Braille alphabet recognition is performed using SVM, KNN and Decision Trees
with the RICA-based feature extraction method. The performance metrics used for the
evaluation are the True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate
(FPR), Positive Predicted Value (PPV), Negative Predicted Value (NPV), Total Accuracy,
Area Under the curve (AUC) and F1-Score.

Figure 3a,b shows AUC values for category-1 (class a–class m) and category-2 (class
n–class z) using DT. The highest performance achieved from category-1 (class a–class m) by
using the RICA feature extraction method is for Braille classes a, c, d, h, i, j and k with TA
(100%), TPR (100%), TNR (100%), AUC = 1 and F1-Score = 1. Following that, other classes
like b and f achieved accuracy of 99.87% and 99.60%, AUC of 0.99 and 0.97 and F1-Score
0.99 and 0.94, respectively. As shown in Figure 3b, classes p, u and w from category-2
(n–z) have the best performances with TA (100%), TPR (100%), TNR (100%), AUC (1) and
F1-Score = 1. Following them are classes q, s, t, v, y and z with TA (99.87%); TPR (100%,
94.74%, 100%, 96.15% and 97.44%); TNR (96.30%, 100%, 96.55%, 97.14%, 100% and 100%)
and AUC (0.99, 0.97, 0.99, 0.99, 0.98 and 0.98). As shown in Table 2. the highest separation
(AUC = 1) was achieved for the classes a, c, d, h, i, j, k, p, u and w. The AUC value of classes
b, f, g, q, t and v is greater than 99.5%, indicating good classification.
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Figure 3. (a) Category-1 (a–m) using DT and (b) category-2 (n–z) using DT.

The highest accuracy achieved for category-1 (a-m) using KNN was for classes a, i,
j and k, with TA (100%), TPR (100%), TNR (100%), AUC (1) and F1- Score achieved also
equal to 1. As shown in Figure 4a, classes d, l and m have TA (99.87%); TPR (100%, 94.74%
and 100%); TNR (99.86%, 100% and 99.87%) and AUC (0.99, 0.97 and 0.99), respectively.
As shown in Figure 4b, the classes p, u and y achieve the highest TA of 100%, AUC and
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F1-Score equal to 1. For category-2 (n–z), followed by q, v, w and x with TA (99.87%); TPR
(100%, 96.97%, 96.67% and 100%); TNR (99.86%, 100%, 100% and 99.86%); AUC (0.99, 0.98,
0.98 and 0.99) and F1-Score (0.98, 0.98, 0.98 and 0.97). The overall results indicated that
English Braille characters such as a, i, j, k, p, u and y achieved the highest AUC value
of 1, indicating 100% separation. Using KNN on the extracted feature set yielded AUC
values greater than 0.99 for English Braille characters such as b, c, d, m, q and x. KNN also
showed promising results for recognizing Urdu Braille characters. It has also improved the
results for English Braille alphabet recognition. Table 3 exhibits detailed KNN results for
all the characters.

Table 2. Performance metrics showing the results obtained for the Decision Tree classifier.

Serial
Number

English
Characters TPR (%) TNR (%) PPV (%) NPV (%) FPR (%) Total

Accuracy (%) AUC F1-Score

1 a 100 100 100 100 0.00 100 1.00 1.00

2 b 100 99.86 97.14 100 0.14 99.87 0.99 0.99

3 c 100 100 100 100 0.00 100 1.00 1.00

4 d 100 100 100 100 0.00 100 1.00 1.00

5 e 83.87 99.86 96.30 99.31 0.14 99.20 0.91 0.90

6 f 96.15 99.72 92.59 99.86 0.28 99.60 0.97 0.94

7 g 100 99.45 88.89 100 0.55 99.47 0.99 0.94

8 h 100 100 100 100 0.00 100 1.00 1.00

9 i 100 100 100 100 0.00 100 1.00 1.00

10 j 100 100 100 100 0.00 100 1.00 1.00

11 k 100 100 100 100 0.00 100 1.00 1.00

12 l 90.48 99.73 90.48 99.73 0.27 99.47 0.95 0.90

13 m 95.83 99.45 85.19 99.86 0.55 99.34 0.97 0.90

14 n 96.77 99.58 90.91 99.86 0.42 99.47 0.98 0.94

15 o 84.21 100 100 99.59 0.00 99.60 0.92 0.91

16 p 100 100 100 100 0.00 100 1.00 1.00

17 q 100 99.86 96.30 100 0.14 99.87 0.99 0.98

18 r 96.15 99.86 96.15 99.86 0.14 99.73 0.98 0.96

19 s 94.74 100 100 99.86 0.00 99.87 0.97 0.97

20 t 100 99.86 96.55 100 0.14 99.87 0.99 0.98

21 u 100 100 100 100 0.00 100 1.00 1.00

22 v 100 99.86 97.14 100 0.14 99.87 0.99 0.99

23 w 100 100 100 100 0.00 100 1.00 1.00

24 x 87.88 100 100 99.45 0.00 99.47 0.93 0.94

25 y 96.15 100 100 99.86 0.00 99.87 0.98 0.98

26 z 97.44 100 100 99.86 0.00 99.87 0.98 0.99

26 z 97.44 100 100 99.86 0.00 99.87 0.98 0.99
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Figure 4. (a) Category-1 (a–m) using KNN and (b) category-2 (n–z) using KNN.
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Table 3. Performance metrics showing the results obtained for the KNN classifier.

Serial
Number

English
Characters

TPR
(%)

TNR
(%)

PPV
(%)

NPV
(%)

FPR
(%)

Total
Accuracy (%) AUC F1-Score

1 a 100 100 100 100 0.00 100 1.00 1.00

2 b 100 99.58 91.89 100 0.42 99.60 0.99 0.96

3 c 100 99.32 80.00 100 0.68 99.34 0.99 0.89

4 d 100 99.86 96.67 100 0.14 99.87 0.99 0.98

5 e 55.81 99.86 96.00 97.39 0.14 97.34 0.77 0.71

6 f 96.15 98.35 67.57 99.86 1.65 98.27 0.97 0.79

7 g 100 97.36 62.75 100 2.64 97.48 0.98 0.77

8 h 96.43 99.31 84.38 99.86 0.69 99.20 0.98 0.90

9 i 100 100 100 100 0.00 100 1.00 1.00

10 j 100 100 100 100 0.00 100 1.00 1.00

11 k 100 100 100 100 0.00 100 1.00 1.00

12 l 94.74 100 100 99.86 0.00 99.87 0.97 0.97

13 m 100 99.87 92.31 100 0.13 99.87 0.99 0.96

14 n 96.30 99.17 81.25 99.86 0.83 99.07 0.97 0.88

15 o 85.71 100 100 99.59 0.00 99.60 0.93 0.92

16 p 100 100 100 100 0.00 100 1.00 1.00

17 q 100 99.86 96.43 100 0.14 99.87 0.99 0.98

18 r 96.15 99.72 92.59 99.86 0.28 99.60 0.98 0.94

19 s 88.89 100 100 99.73 0.00 99.73 0.94 0.94

20 t 89.66 100 100 99.59 0.00 99.60 0.95 0.95

21 u 100 100 100 100 0.00 100 1.00 1.00

22 v 96.97 100 100 99.86 0.00 99.87 0.98 0.98

23 w 96.97 100 100 99.86 0.00 99.87 0.98 0.98

24 x 100 99.86 94.44 100 0.14 99.87 0.99 0.97

25 y 100 100 100 100 0.00 100 1.00 1.00

26 z 84.62 100 100 99.17 0.00 99.20 0.92 0.92

Furthermore, SVM was used to evaluate performances of different classes. Category-
1 (a–m) achieved the highest accuracy with TA, TPR and TNR (100%) and the highest
separation AUC of 1 and F1-Score also 1 for classes a, c, d, h, i, j and k. Followed by b and l
with TA (99.87%), TPR (100%), TNR (99.86%) and AUC (0.99), as shown in Figure 5a. The
highest performance for category-2 (n–z) was achieved for classes n, p, t, u, v, w, y and z
with the TA, TPR and TNR (100%) and AUC (1) and F1-Score also 1. As shown in Figure 5b,
classes q and r with TA (99.87%), TPR (100%), TNR (99.86%) and AUC (0.99) are followed
by classes o and s with TA (99.73%), TPR (94.74% and 88.89%), TNR (99.86% and 100%),
AUC (0.97 and 0.94) and F1-Score (0.95 and 0.94), respectively. Among all classes, a, c, d, h,
i, j, k, n, p, t, u, v, w, y and z have the greatest separation of 1. Table 4 presents the SVM
classifier’s detailed performance for English Braille character recognition.
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Figure 5. (a)Category-1 (a–m) using SVM and (b) category-2 (n–z) using SVM.

For comparison purposes, we used PCA-based feature extraction methods, Random
Forest and the Simple neural network. Among all the results, classifiers used with the RICA-
based feature extraction method showed the best performances. Using Random Forest
with five n_folds, a max_depth of 10 and Trees value of 10, the mean accuracy achieved
was 75.61%. The results revealed by implementing the Sequential model using activation
functions ReLu and Softmax, a batch size of five and 2000 epochs accuracy achieved was
93.51%, with a loss of 0.1736. With PCA feature extraction, the accuracy achieved for SVM,
KNN and DT were 86.32%, 75.40% and 70.02%, respectively. All performances of SVM
were better than DT and KNN using both feature extraction methods. SVM achieved a
TA of (99.86%), TPR of (98.23%), TNR of (99.91%), PPV of (97.94%), NPV of (99.94%), FPR
of (0.0009%) and F1-Score = 0.980. Followed by DT, which shows the TA (99.79%), TPR
(96.91%), TNR (99.89%), PPV (97.22%), NPV (99.89%), FPR (0.0011) and F1-score (0.970),
followed by KNN with TA (99.50%), TPR (95.32%), TNR (99.70%), PPV (93.70%), NPV
(99.79%), FPR (0.0030%) and F1-Score (0.939), as shown in Table 5.
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Table 4. Performance metrics showing the results obtained for the SVM classifier.

Serial
Number

English
Characters

TPR
(%)

TNR
(%)

PPV
(%)

NPV
(%)

FPR
(%)

Total
Accuracy (%) AUC F1-Score

1 a 100 100 100 100 0.00 100 1.00 1.00

2 b 100 99.86 97.30 100 0.14 99.87 0.99 0.99

3 c 100 100 100 100 0.00 100 1.00 1.00

4 d 100 100 100 100 0.00 100 1.00 1.00

5 e 92.86 100 100 99.72 0.00 99.73 0.96 0.96

6 f 100 99.73 92.00 100 0.27 99.73 0.99 0.96

7 g 100 99.16 85.37 100 0.84 99.20 0.99 0.92

8 h 100 100 100 100 0.00 100 1.00 1.00

9 i 100 100 100 100 0.00 100 1.00 1.00

10 j 100 100 100 100 0.00 100 1.00 1.00

11 k 100 100 100 100 0.00 100 1.00 1.00

12 l 100 99.86 95.00 100 0.14 99.87 0.99 0.97

13 m 92.59 99.59 89.29 99.72 0.41 99.34 0.96 0.91

14 n 100 100 100 100 0.00 100 1.00 1.00

15 o 94.74 99.86 94.74 99.86 0.14 99.73 0.97 0.95

16 p 100 100 100 100 0.00 100 1.00 1.00

17 q 100 99.86 96.43 100 0.14 99.87 0.99 0.98

18 r 100 99.86 96.30 100 0.14 99.87 0.99 0.98

19 s 88.89 100 100 99.73 0.00 99.73 0.94 0.94

20 t 100 100 100 100 0.00 100 1.00 1.00

21 u 100 100 100 100 0.00 100 1.00 1.00

22 v 100 100 100 100 0.00 100 1.00 1.00

23 w 100 100 100 100 0.00 100 1.00 1.00

24 x 84.85 100 100 99.31 0.00 99.34 0.92 0.92

25 y 100 100 100 100 0.00 100 1.00 1.00

26 z 100 100 100 100 0.00 100 1.00 1.00

Table 5. Overall results achieved using Decision Trees, SVM and KNN with the RICA and PCA
feature extraction methods.

Classifier Feature Extraction
Method Precision (%) Recall (%) F1-Score Accuracy (%)

DT

RICA

97.22 96.91 0.970 99.79

KNN 93.70 95.32 0.939 99.50

SVM 97.94 98.23 0.980 99.86

RF 90.12 90.34 0.904 90.02

DT

PCA

72.01 68.04 0.71 70.02

KNN 79.56 75.45 0.76 75.40

SVM 88.12 86.32 0.86 86.32

RF 80.0 79.0 0.79 80.0
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Two hypotheses were built to measure the significance between the results achieved us-
ing RICA- and PCA-based feature extraction method on different classification techniques.
A t-test was applied to calculate the p-value.

Hypothesis 1 (Null Hypothesis). There is no difference in the results of the RICA-based features
extraction method using DT, KNN, SVM and RF.

Hypothesis 1 (Alternative Hypothesis). There is a difference between the results of the RICA-
based feature extraction method using DT, KNN, SVM and RF.

Hypothesis 2 (Null Hypothesis). There is no difference in the results of the PCA-based features
extraction method using DT, KNN, SVM and RF.

Hypothesis 2 (Alternative Hypothesis). There is a difference between the results of the PCA-
based feature extraction method using DT, KNN, SVM and RF.

The results of the RICA-based feature extraction method showed that there is a signifi-
cant difference among the values of DT vs. KNN and DT vs. RF, as the p-value was less
than 0.05, but no significant difference was found between SVM and DT. For the PCA-based
feature extraction method, a significant difference was observed in all three comparisons.
The results are shown in Table 6.

Table 6. p-values for DT, SVM, KNN and RF using the RICA- and PCA-based feature extraction methods.

Classifier Feature Extraction Method p-Value

DT vs. KNN

RICA

0.001

SVM vs. DT 0.000

DT vs. RF 0.021

KNN vs. DT

PCA

0.024

DT vs. SVM 0.031

RF vs. DT 0.03

5. Discussion

Braille to natural language conversion is essential for people with visual impairment.
This can help to improve their living quality. English is the most common medium used
for communication all over the world. Various studies have been carried out for converting
Braille into English. In the literature, several studies have converted Braille to English
or vice versa. However, those studies usually used the conventional methods for text
conversion. Previous studies used handwritten scanned Braille sheets a thes input, and
then, those scanned sheets were converted into other languages. Padmavathi et al. used
English, Hindi and Tamil handwritten scanned sheets for Braille conversion [22].

Similarly, Perera et al. used scanned Braille sheets using a histogram of gradient
features and SVM [23]. Most of the studies used conventional methods like scanned-based
input with different character prediction techniques like Deep Learning; Image classification
and other machine learning techniques like SVM, KNN, Artificial Neural Network (ANN),
etc. These classification techniques were used with different feature extraction methods for
character recognition, as shown in Table 7. Whereas we used touchscreen-based real-time
Braille input for Braille to natural language conversion, the focus of this study was to
provide users with a position-free Braille input method using touchscreen-based android
devices to provide an improved Braille to English Language conversion mechanism that
would be more user-friendly and easily accessible.

For the prediction of Braille to English characters, DT, SVM and KNN, along with
RICA- and PCA-based feature extraction, were used. The English Braille dataset was
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collected from visually impaired students at the National Special Education School using
a previously developed position-free touchscreen-based application. SVM, KNN and DT
showed better performances using the RICA feature extraction method. The major findings
were achieved using DT for the highest TA for characters: a, c, d, h, i, j, k, p, u and w,
yielding TA = 100%, AUC = 1 and F1-Score = 1. Characters like b, m, q, s, t, v, y and z were
next, with TA = 99.87%; AUC of 0.999, 0.976, 0.999, 0.974, 0.999, 0.999, 0.981 and 0.985 and
F1-Scores 0.99, 0.98, 0.97, 0.98, 0.99, 0.98 and 0.99, respectively. The maximum accuracy
was achieved with the KNN classifier for characters a, i, j, k, p, u and y, with TA, TPR
and TNR = 100%, AUC = 1 and F1-Score = 1. This was followed by characters d, l, m,
q, v, w and x with TA = 99.87%; TPR = 100%, 99.74%, 100%, 100%, 96.97%, 96.97%, and
100%; TNR > 99%; AUC 0.999, 0.974, 0.999, 0.985, 0.985 and 0.999 and F1-Score 0.98, 0.97,
0.96, 0.98, 0.98, 0.98 and 0.97, respectively. Similarly, the SVM classifier achieved the best
performance for classes a, c, d, h, i, j, k, n, p, t, u, v, w, y and z with TA, TPR, TNR = 100%
and with F1-Score = 1, and the highest separation of 1 was achieved. Classes b, l, q and
r were next, with TA = 99.87%; TPR = 100%; TNR = 99.86%, 99.86%, 100% and 99.96%;
AUC 0.999, 0.999, 1 and 0.999 and F1-Scores 0.99, 0.97, 0.98 and 0.98, respectively. The total
accuracy achieved using PCA with SVM, KNN and DT were 86.32%, 75.40% and 70.02%,
respectively. Other results achieved were Precision (88.12%, 79.56% and 72.01%); Recall
(86.32%, 75.45% and 68.04%) and F1- Score (0.86, 0.75 and 0.71). For comparison purposes,
Random Forest with the RICA and PCA and Sequential models has also been employed,
and they achieved accuracies of 80%, 90.02% and 93.51%, respectively.

Table 7. Comparative analysis with previous studies.

Paper Title Input Method Supported
Language

Braille
to Text

Text to
Braille

Techniques
Used

Feature Extrac-
tion/Algorithms/

Others
Accuracy Reference

Braille Messenger: Adaptive
Learning Based Non-Visual

Touchscreen Text Input for the
Blind Community

Using Braille

Gesture-Based
Touchscreen

Input

English Yes No KNN Bayesian Touch
Distance 97.4%

[73]

Nill

Newly Proposed
Static

Mathematical
Algorithm

94.86%

Conversion of Braille to Text in
English, Hindi, And

Tamil Languages

Hand-Written
Scanned

Braille Sheets
English Yes No Nill

Image
Segmentation

Technique
99.4% [22]

Optical Braille Recognition
with HAAR Wavelet Features

and Support-Vector
Machine

Hand-Written
Scanned

Braille Sheets
English Yes No SVM HAAR Feature

Extraction Method

Reduced
classification error

to 10
[36]

Optical Braille Recognition
Based on Histogram of

Oriented Gradient Features
and Support-Vector Machine

Hand-Written
Scanned

Braille Sheet
English Yes No SVM HOG Feature

Extraction Method 99% [23]

Robust Braille recognition
system using image

preprocessing and feature
extraction algorithms

Hand-Written
Braille

Scanned Sheet
English Yes No

Image
Processing

Techniques

Edge Detection,
Image Projection,

and Image
Segmentation

100% [75]

Braille Identification System
Using Artificial

Neural Networks

Hand-Written
Braille

Scanned Sheet
English Yes No

Artificial
Neural

Network

Back Propagation
Algorithm 85% [76]

Conversion Of English
Characters Into Braille Using

Neural Network

Hand-Written
English

Scanned Sheet
English No Yes Neural

Network
Noise with 0.1 std
showed no errors [18]

Designing Of English Text
To Braille

Conversion System: A Survey

Hand-Written
English

Scanned Sheet
English No Yes Microcontroller

Accurate mapping
of English to
Braille text

[20]

Efficient Approach for English
Braille to Text
Conversion

Hand-Written
English

Scanned Sheet
English Yes No SVM

Image
Enhancement,

Noise Reduction,
Contrast

Enhancement and
Image Dilation

96% [21]

The Methods Used in Text
to Braille

Conversion and Vice Versa

Image Taken
from Camera English No Yes Raspberry PI Accurate output

was achieved [24]
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Table 7. Cont.

Paper Title Input Method Supported
Language

Braille
to Text

Text to
Braille

Techniques
Used

Feature Extrac-
tion/Algorithms/

Others
Accuracy Reference

Automated Conversion of
English and Hindi Text to

Braille Representation

Hand-Written
Scanned
Sheets

English No Yes Using Lookup
Tables

English To Braille
characters were

accurately mapped
[19]

Application of Deep Learning
to Classification of Braille Dot

for Restoration of Old
Braille Books

Hand-Written
Braille

Scanned
Sheets

Braille Deep
Learning

Image
Enhancement and

Restoration
Techniques

98% [77]

A Recurrent Neural Network
Approach to Image

Captioning in Braille for
Blind-Deaf People

English
Captions of

Images Taken
from Camera

English

Deep
Recurrent

Neural
Network

BLEU-4 Score
Of 0.24 is achieved [78]

Smart Braille
Recognition System

Braille Images
Taken from

Camera
English Yes No

Bayesian Centroid Features 100%

[79]KNN 100%
Classification

Tree 80.76%

SVM 67.9%

Proposed Schemes
Touch-Screen
Based Input

Method
English Yes No

SVM
RICA Feature

Extraction

99.86%
KNN 99.50%

DT 99.79%
RF 90.02%

SVM
PCA Feature

Extraction

86%
KNN 75%

DT 70.02%
RF 80%

Sequential
Method 93.51%

6. Conclusions and Future Work

Braille is used as an important means of communication for people with low or
no vision. There are approximately over 150 million Braille users worldwide. Braille is
becoming increasingly accessible to blind or visually challenged persons with the growing
use of technology. Numerous studies have been carried out for Braille to English conversion.
The majority of these conversions are carried out with scanned sheets as the input. This
research collected a new English Braille dataset using touchscreen devices. The authors
used the Android application developed to collect Braille English datasets in their previous
research. For visually impaired users, the application is less tiring and less complicated.
Machine learning techniques such as SVM with polynomial kernels, KNN = 3 and Decision
Trees with default parameters are combined with RICA- and PCA-based feature extraction
methods for English alphabet recognition. For training and testing, the dataset was split
into 70:30 and 80:20, respectively. Precision, Recall, F1-Score and Accuracy were used as
the evaluation metrics using PCA SVM, KNN and DT accuracies of 86.32%, 75.40% and
70.02%, whereas better results were obtained using RICA with SVM, KNN and DT. The
SVM classifier outperformed all others, achieving an accuracy of 99.85%. KNN and DT
achieved 99.50% and 99.79% accuracy, respectively. For comparing these results with other
techniques, Random Forest with the RICA and PCA and Sequential methods were used,
and they achieved an accuracy of 90.01% and 80%, respectively.

This work was limited to only Grade 1 Braille for the English language. This work can
be enhanced by increasing the number of datasets not only for Grade 1 but also for Grade 2
and contracted Braille. Currently, the results of the proposed models are not satisfactory
when implemented on mobile devices with limited computation power; thus, we tested
these results only for computers. The future plan includes converting these models into
lighter versions to work appropriately on Android devices. This study used RICA- and
PCA-based feature extraction methods for English Braille character prediction with robust
machine learning techniques on the Grade 1 Braille dataset. This work can be enhanced to
the Braille English dataset of Grade 2. Deep learning techniques like CNN, GoogLeNet and
Transfer Learning will improve the results for mobile devices.
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Abbreviations

ANN Artificial Neural Network
ASCII American Standard Code for Information Interchange
AUC Area under the Curve
DT Decision Tree
FDR False Discovery Rate
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
GPU’s Graphics Processing Unit
HOG Histogram of Oriented Gradients
KNN K-Nearest Neighbor
NPV Negative Predicted Value
PCA Principal Component Analysis
PPV Positive Predicted Value
RF Random Forest
ROC Receiver Operating Characteristics
SVM Support Vector Machine
Sn Sensitivity
Sp Specificity
TNR True Negative Rate
TPR True Positive Rate
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