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Abstract: We propose a linear regression model for the estimation of human body measurements.
The input to the model only consists of the information that a person can self-estimate, such as height
and weight. We evaluate our model against the state-of-the-art approaches for body measurement
from point clouds and images, demonstrate the comparable performance with the best methods, and
even outperform several deep learning models on public datasets. The simplicity of the proposed
regression model makes it perfectly suitable as a baseline in addition to the convenience for applica-
tions such as the virtual try-on. To improve the repeatability of the results of our baseline and the
competing methods, we provide guidelines toward standardized body measurement estimation.

Keywords: body measurement; linear regression; statistical models; anthropometry; SMPL; shape
estimation; mesh regression; virtual try-on

1. Introduction

Body measurement or anthropometry is a study of the numerical description of human
body segments and overall shape. Anthropometry is important for health applications [1],
virtual try-on and the fashion industry [2], fitness [3], and ergonomics [4]. Advances
in human body measurement and shape estimation have been significantly driven by
statistical models and deep learning. The statistical models such as SMPL [5] describe the
population of human bodies using pose and shape parameters. The parameters correspond
to specifically posed and shaped template meshes. The template meshes are particularly
useful for body measurement because each mesh contains a fixed number of vertices, and
their semantics are common for the entire population of meshes. Therefore, the procedure
for body measurement from the template meshes for a given statistical model, e.g., SMPL,
can be standardized. We describe the procedure for extracting 15 body measurements from
SMPL templates in Section 3 and use these measurements to compare the linear regression
model to the state-of-the-art.

Statistical models enable human body mesh regression, which can be described as
fitting point cloud (3D) or image (2D) features to the pose and shape parameters of a
given template mesh of the statistical model to obtain the best correspondence between the
estimated mesh and the input human body. The 3D point cloud-based approaches [6–8] are
generally more accurate than their image-based counterparts [9], but they require 3D scans
as input, making them impractical for most anthropometric applications. Image-based
methods greatly simplify the data acquisition stage. A very popular research topic is
pose and shape estimation using in-the-wild images of clothed people in various difficult
poses [10–20]. Even though these models recover a person’s pose remarkably well, less
attention is dedicated to the accurate estimation of shape parameters. Finally, there are
several image-based methods that estimate the shape parameters based on the extracted
silhouette(s) of a person [21–29]. Silhouette-based methods achieve state-of-the-art re-
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sults in shape estimation and body measurement, but their applications are limited to a
configuration with minimal clothing and fixed posture.

We propose a linear regression model that requires only the information that any
person can self-estimate, such as height and weight. We demonstrate strong performance
of the proposed model against the state-of-the-art for body measurement estimation on
two public datasets, BODY-fit [28] and ANSUR [30]. The linear model provides a simple
and straightforward way to obtain an estimate of body measurements, which makes it
convenient for virtual try-on and augmented reality. In this work, we focus on measurement
estimation of the bodies from the statistical human body population. Statistical models such
as SMPL are extensively used today, especially in computer vision, so we propose the linear
model as a baseline for future evaluations and provide guidelines for body measurement
from template meshes.

The main contributions of our work are the following:

1. We propose the linear regression model, that uses self-estimated height and weight,
to be used as a baseline for human body measurement estimation;

2. We demonstrate that the baseline performs strongly against the state-of-the-art meth-
ods for body measurement estimation and analyze its performance in detail;

3. We publish the source code, the demo for obtaining the body measurements given
height and weight as input, and the protocol for extracting the standard body mea-
surements from the SMPL mesh.

2. Related Work

Body measurements can be obtained using traditional anthropometric techniques
and tools, 3D scanning data such as point clouds or meshes (non-parametric approaches),
or features extracted from 3D or 2D data and then used to estimate the parameters of the
statistical model (parametric approaches). The accuracy of body measurements obtained us-
ing traditional tools and 3D scanning are usually more accurate compared to feature-based,
parametric approaches, but the former are more time consuming and relatively expensive.

Traditional Anthropometry. Traditional body measurement involves the use of tools
such as calipers and tape measures [2]. Measurements taken by an expert are considered
the gold standard and are generally used as the ground truth [31]. The public anthropo-
metric databases such as ANSUR are collected by the expert measurers. However, even
measurements taken by the experts are not perfectly accurate [32]. Therefore, the values
for the allowable or “expert” error [30] for each measurement are defined in the standard
ISO:7250 [33,34]. Based on the public databases, several works propose linear regression
models for the estimation of measurements [35–37] and other body characteristics such
as skeletal muscle mass [38]. We extend these analyses by focusing specifically on using
self-estimated height and weight as input as well as on using the statistical body models.

Non-Parametric Approaches. With the advances in 3D scanning technology, more
automatic approaches to body measurement have been proposed [7,39,40]. Most 3D-
based body measurement methods use landmarks to determine distances and calculate
measurements such as arm and leg length, shoulder-to-crotch, etc. Circumferences can
be obtained by slicing the point cloud with a vertical plane and summing up distances
between the nearest points [39]. The 3D-based methods are generally the most accurate
among the (semi-)automatic body measurement methods. However, their main drawback
is that they require 3D scanning, which is cumbersome and relatively expensive.

There are a number of image-based (2D) non-parametric models [20,41–43] that freely
deform meshes to best fit the input features. To improve convergence, they start with the
template human mesh. However, the final deformed mesh does not necessarily retain the
original vertex semantics. This property makes current image-based non-parametric models
less suitable for body measurements. On the other hand, compared to their parametric
counterparts, non-parametric models might have the advantage of better fitting out-of-
distribution samples.
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Parametric Approaches. Apart from direct body measurements from point clouds, 3D
scans are usually used to create the statistical models [5,44–46]. The initial template mesh
at rest (or T-position) is deformed (registered) to each 3D scan of the dataset [47–49] using
an optimization algorithm, such as L-BFGS [50]. To parameterize body poses, a kinematic
model of the human body is applied. To describe the shape variation in the dataset,
principal component analysis (PCA) is applied to the vertices of the deformed meshes [5].
The first ten principal components (shape parameters) are usually used for the mesh
regression. Tsoli et al. [6] first registers template meshes to the 3D scans and additionally
learns features for body measurement prediction. BUFF [51] addresses the problem of 3D
body shape estimation under clothing by allowing the mesh to deviate from the template
but regularizes the optimization to satisfy the anthropometric constraints. Similar to
non-parametric approaches, 3D parametric approaches are generally more accurate than
image-based approaches, but they also require 3D scans as input.

Image-based approaches (2D) can be divided into shape-aware pose estimation meth-
ods, which typically regress pose and shape parameters in-the-wild either from 2D key-
points or directly from images [10,11,13–17,52–66], and shape estimation methods, which
regress shape from silhouettes, usually in fixed pose and minimal clothing [21–28,31,67].
We compare the proposed baseline against the state-of-the-art 3D- and 2D-based approaches
for human body measurement estimation and achieve comparable performance to the best
methods, while outperforming several deep learning models (see Section 4).

3. Method

In this section, we describe the proposed linear regression model and the extraction
of body measurements from a template SMPL mesh. We fit separate regression models
for males and females. The purpose of the proposed method is to demonstrate that body
measurements can be determined using only the information that each person typically
knows about themselves, i.e., height and weight, without making any further measurement,
which makes it suitable as a baseline.

3.1. Linear Regression Model

The method is shown in Figure 1. Each human body sample i is defined by 10 shape
parameters, θSi, and 63 pose parameters, θPi. The height and the 15 body measurements of
the model are extracted from the template mesh. The input to the model consists of height
(h) and weight (w). Weight should be available in the dataset; otherwise, it can be estimated
from the calculated mesh volume. The output consists of the 15 other body measurements
(A–O). The measurement names are listed in Table 1, and their extraction is described in
Section 3.2. Then, the linear model for the j-th measurement is described as:

yj = xTaj + bj, j ∈ {1, 2, . . . , 15} (1)

where xT ∈ R2 is a row vector consisting of the height and weight of the samples (an
independent variable), aj ∈ R2 is a column vector of the linear coefficients (the slope),
bj ∈ R is an intercept of the regression model, and yj ∈ R is an output measurement (a
dependent variable). These equations can be written more compactly in matrix form as:

Yj = XAj, j ∈ {1, 2, . . . , 15} (2)

where X ∈ RN×3 are the heights and weights from the N samples from the training
dataset and Yj ∈ RN×1 are their output measurements. Additionally, a column of ones
is added to X to account for bj, which is now included in Aj ∈ R3×1, representing all the
model parameters.

Therefore, the least-squares closed-form solution is:

Aj =
(

XTX
)−1

XTYj, j ∈ {1, 2, . . . , 15} (3)
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The linear regression has four assumptions: linearity, homoscedasticity, independence,
and normality. The linearity assumes that the relationship between X and the mean Y is
linear. The homoscedasticity assumes that the variance of residual is the same for any value
of X. Independence assumes that the observations are independent of each other. Finally,
the normality assumes that for any fixed value of X, Y is normally distributed. The latter
three assumptions are related to residuals, and we verify those in Section 5.1. For further
details on linear regression, we refer readers to the relevant literature [68].

Note that we also experiment with the interaction terms (h is height, w is weight): w
h2

(BMI), wh, w2, h2, and add them to the input vector xT . The model with no interaction
terms is called the baseline, and the models with added interaction terms are called the
augmented baselines. The augmented baselines are marked in the remainder of the paper as
Baseline (I = N), where N is the number of interaction terms. The interaction terms I = 2
correspond to w

h2 and wh, and I = 4 corresponds to w
h2 , wh, w2, and h2.

In case that the weight measurement is not available in the dataset, we estimate it
using the extracted volume. The volume is extracted using a standard algorithm [69]. Then,
the body weight (w) is estimated based on the human body density, which is approximately
ρ = 1± 0.005 kg/L [31,70], and the extracted volume (V). To account for the variation in
body density w.r.t. weight, we model the volume as a normal stochastic variable:

V = Vextracted +N (µV = 0, σV = 5) [L]. (4)

Note that the standard deviation of 5 L applied to the extracted volume propagates
to the standard deviation of 5 kg applied to the estimated weight. Additionally, to ac-
count for the variation in self-estimation of height and weight, we model self-estimation
using another two stochastic variables, h = hextracted + N (µh = 0, σh = 1) cm, and
w = V · ρ +N (µw = 0, σw = 1.5) kg.

Extracted height
and volume

Volume -> Weight

Height

A

Weight
Height

INPUT
FEATURES

REGRESSION
MODELS ESTIMATIONS

O

Weight
Height

+

Head circum.

Neck circum.


Ankle circum.
Shoulder breadth


Extracted body
measurements

Shoulder to crotch
Chest circum.

Added
Gaussian

noise

TARGETS

Residuals

[A]

[B]

[C]

[D]


[N]

[O]


M(θS,θP)

Figure 1. An overview of the linear regression model for a single sample from the statistical model.
The sample mesh is defined using the shape and pose parameters, M(θS, θP)i. Both input and output
are extracted from the sample template mesh, Mi. The input consists of height and weight. Weight
can be either available in the dataset or estimated using the calculated mesh volume. The output
consists of the 15 body measurements (A–O), which are listed in Table 1. To account for the errors
in self-reporting height and weight, we model height and weight as stochastic variables by adding
Gaussian noise to the input. A linear regression model is fitted to each of the 15 body measurements.
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Table 1. The list of 15 (+3) body measurements. The 15 measurements (A–O) are used to compare to
the state-of-the-art. The arm length (J) and the three additional measurements are specifically used to
compare with [31].

Measurement Set Measurement Landmark Index

Standard

A Head circumference 14
B Neck circumference 10
C Shoulder to crotch 1, 10
D Chest circumference 4
E Waist circumference 13
F Hip circumference 19
G Wrist circumference 9
H Bicep circumference 20
I Forearm circumference 15
J Arm length 2, 9
K Inside leg length 11, 12
L Thigh circumference 16
M Calf circumference 17
N Ankle circumference 18
O Shoulder breadth 2, 3

Additional [31]
- Arm span 7, 8
- Inseam height 2, 19
- Hip width 5, 6

3.2. Extraction of Body Measurements

We use a total of 18 body measurements, 15 of which are a standard set of mea-
surements used in previous works [21–28,31,67], and 3 of which are used specifically to
compare with Virtual Caliper [31] (see Table 1). The measurements are either lengths or
circumferences and are calcuated using their corresponding landmarks. The complete list of
landmarks with their corresponding SMPL vertex index is shown in Table 2. To extract the
lengths, such as the shoulder width and arm length, we calculate the Euclidean distances
between the two respective landmarks. To extract the circumferences such as the waist or
thigh circumference, we slice the mesh with a horizontal or vertical plane at the specified
landmark location and sum up the resulting line segments [8,28].

Table 2. The list of 20 landmarks and their corresponding SMPL vertex indices.

Landmark Index Landmark Name Vertex Index Landmark Index Landmark Vertex Index

1 Inseam point 3149 11 Low left hip 3134
2 Left shoulder 3011 12 Left ankle 3334
3 Right shoulder 6470 13 Lower belly point 1769
4 Left chest 1423 14 Forehead point 335
5 Left hip 1229 15 Right forearm point 5084
6 Right hip 4949 16 Right thigh point 4971
7 Left mid finger 2445 17 Right calf point 4589
8 Right mid finger 5906 18 Right ankle point 6723
9 Left wrist 2241 19 Mid hip point 3145
10 Shoulder top 3068 20 Right bicep point 6281

4. Evaluation

We evaluate the linear baseline on BODY-fit [28] and ANSUR [30] datasets. More
specifically, the BODY-fit dataset is extended by weight estimations obtained from the ex-
tracted mesh volumes. We call the extended dataset BODY-fit+W. We compare the baseline
on BODY-fit+W with the following state-of-the-art image-based approaches: SMPLify [10],
ExPose [14], and Yan et al. [28]. Unfortunately, most of the other methods have not pub-
lished their source code or data, so we use their reported results on other datasets instead,
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such as CAESAR [49] and NOMO3D [8] datasets. In total, six datasets are referenced in
this work, as listed in Table 3.

Table 3. The list of datasets referenced in this work. Note that the baseline is evaluated on the first
three datasets, above the dashed line.

Dataset Samples Data Type Availability Approach Reported by

BODY-fit 4149 SMPL mesh Public 2D-based [28], Our
BODY-fit+W 4149 SMPL mesh Public 2D-based [10,14,28], Our
ANSUR 6068 Tabular Public Regression ISO [30], Our

CAESAR 3800 Point cloud Proprietary 3D-based [21,23,25–27]
[6,16,22,71,72]

NOMO3D 375 Point cloud Public 3D-based [8]
Virtual Caliper 20 Point cloud Private Regression [31]

4.1. Datasets

The BODY-fit dataset contains 1474 male and 2675 female SMPL meshes. The template
meshes are obtained by fitting them to the original 3D scans of people, which are not
publicly available. In addition, the BODY-fit+W dataset contains weights that are estimated
from corresponding mesh volumes. The distributions of male body measurements on
BODY-fit+W, obtained by measuring the template meshes as described in Section 3.2, are
shown in Figure 2. The range of the height is between 145 and 196 cm for male and between
135 and 190 cm for female, while weight is between 40 and 130 kg for male, and between
30 and 130 kg for female. Regarding other measurements, they also vary proportionally
to their absolute values. For example, ankle circumferences are generally smaller than
waist circumferences, etc. The body measurements on BODY-fit+W are similarly diverse
as the body measurements from the ANSUR dataset, as shown in Figure 3. The ANSUR
dataset is significant, as it represents the realistic human body population, while the BODY-
fit+W represents the population of SMPL meshes fitted to 3D scans. Note that not all
of the body measurements used in the BODY-fit+W dataset exist in the ANSUR dataset.
Table 4 specifies the ANSUR attributes and expressions used to obtain the corresponding
measurements from BODY-fit+W.

Table 4. The specification of ANSUR attributes and expressions corresponding to the body measure-
ments extracted from the SMPL meshes.

SMPL Mesh (BODY-fit+W) ANSUR Attribute/Expression

A Head circumference headcircumference
B Neck circumference neckcircumference
C Shoulder to crotch sittingheight-(stature-acromialheight)
D Chest circumference chestcircumference
E Waist circumference waistcircumference
F Hip circumference buttockcircumference
G Wrist circumference wristcircumference
H Bicep circumference bicepcircumferenceflexed
I Forearm circumference forearmcircumferenceflexed
J Arm length acromialheight-wristheight
K Inside leg length crotchheight-lateralmalleolusheight
L Thigh circumference thighcircumference
M Calf circumference calfcircumference
N Ankle circumference anklecircumference
O Shoulder breadth biacromialbreadth
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Figure 2. The distribution of body measurements for male subjects in the BODY-fit+W dataset.

Figure 3. The distribution of body measurements for male subjects in the ANSUR dataset.

4.2. Quantitative Evaluation

The methods are compared quantitatively against the 15 standard body measurements
and the three additional measurements to compare the baseline with the Virtual Caliper [31].
The metrics used for comparison are as follows:

• Mean absolute error (MAE), Ej,MAE = 1
N ∑N

i yest,j(i)− ygt,j(i), where i is the sample
index, j represents the measurement, and N is the number of samples;

• Mean relative error (MRE), Ej,MRE = 1
N ∑N

i
yest,j(i)−ygt,j(i)

ygt,j(i)
, where i is the sample index,

j represents measurement, and N is the number of samples;

• Expert ratio (%<Expert), %<Expertj =
#<Expertj

N , where j is the measurement and N is
the number of samples. This metric shows the ratio of samples that are within the ex-
pert errors [30,33,34]. The expert errors are shown in Tables 5 and 6 (Expert error rows).

We compare our linear models against the competing methods in several configurations:

• Against the methods that use ground-truth features as input, such as ground truth
silhouettes [21–23,25–27]. In this case, we evaluate the baseline using the ground
truth volume from the original BODY-fit data, i.e., the volume, height, and weight are
modeled as deterministic variables.

• Against the state-of-the-art methods that use estimated or extracted features, including
both 3D-based [6,8,72] and 2D-based [10,11,14,16,21–23,25–28] methods. The volume,
height, and weight are modeled as stochastic variables (see Section 3).
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• Against other methods such as the Virtual Caliper [31] that estimates body lengths
using a VR headset.

• More detailed comparison with the representative 2D-based [10] and 3D-based meth-
ods [8]. On top of MAE, we also report the mean relative error (MRE) and the
percentage of the samples within the expert errors (%<Expert).

Ground Truth Methods. We compare the baseline against the methods that use
ground truth information as input. Several previous silhouette-based body measurement
estimation methods [21–23,25–27] report their results using the ground truth silhouettes.
To evaluate the baseline, we use the BODY-fit dataset and the volume as input. This way, we
also exploit the ground truth information instead of estimating the weight. The results are
shown in Table 5. Note that several methods [21–23] perform within the expert errors. All of
these methods, including the baselines, perform comparably and achieve significantly low
body measurement errors below 1 cm for all body measurements. However, using ground-
truth silhouettes or body volume is unrealistic for real-world anthropometric applications.
We provide these analyses for the sake of completeness, following the previous works.

Table 5. Quantitative comparison to image-based body measurement approaches that use ground truth
silhouettes (MAEs, in mm). In this case, we also show the performance of the linear baseline using
the volume, height, and weight as deterministic variables (unrealistic). Note that we demonstrate
only the performance of the BODY-fit model, as ANSUR does not contain volume measurements. The
baseline (I = 4) additionally uses four interaction terms, as described in Section 3. Methods marked
with † are evaluated on different, non-public data, and the results are reported in [21]. The best
results are shown in bold.

Measurement Dataset A B C D E F G H I J K L M N O Mean

†Xi ’07 [27] CAESAR 50.0 59.0 119 36.0 55.0 23.0 56.0 146 182 109 19.0 35.0 33.0 61.0 24.0 67.1
†Chen ’10 [26] CAESAR 23.0 27.0 52.0 18.0 37.0 15.0 24.0 59.0 76.0 53.0 9.0 19.0 16.0 28.0 12.0 31.2
†Boisvert ’13 [25] CAESAR 10.0 11.0 4.0 10.0 22.0 11.0 9.0 17.0 16.0 15.0 6.0 9.0 6.0 14.0 6.0 11.1

Expert error [30] ANSUR 5.0 6.0 15.0 12.0 12.0 - - - 6.0 - 4.0 - - - 8.0 8.5

†Dibra ’17 [23] CAESAR 3.2 1.9 4.2 5.6 7.1 6.9 1.6 2.6 2.2 2.3 4.3 5.1 2.7 1.4 2.1 3.6
†Dibra ’16 [22] CAESAR 2.0 2.0 3.0 2.0 7.0 4.0 2.0 2.0 1.0 3.0 9.0 6.0 3.0 2.0 2.0 3.3
†Smith ’19 [21] CAESAR 5.1 3.0 1.5 4.7 4.8 3.0 2.5 2.7 1.9 1.7 1.5 2.4 2.3 2.1 1.9 2.7

Baseline (I = 4) BODY-fit 7.9 1.2 5.6 10.1 9.2 3.6 0.6 1.4 1.3 5.3 8.0 8.4 2.6 1.4 6.6 4.9

State-of-the-Art Methods. Table 6 shows the performance of state-of-the-art body
measurement estimation methods, compared to our baselines fitted on the BODY-fit+W and
ANSUR datasets. The baseline fitted on the BODY-fit+W dataset models the volume, height,
and weight as stochastic variables. For comparison with SMPLify [10,11] and ExPose [14],
we scale their meshes to match ground truth height; otherwise, their mesh estimates
would be significantly degraded by height estimation errors. Our baseline demonstrates
comparable performance with the competing methods, even outperforming several popular
deep learning approaches such as HMR [16], SMPLify [10,11], and ExPose [14]. Note that
the baseline achieves MAEs within the expert errors for neck circumference (B), shoulder-
to-crotch (C), and forearm circumference (I). The baseline evaluated on the ANSUR dataset
is less accurate on average, but it still shows competitive performance. A more detailed
comparison between BODY-fit+W and ANSUR is given in Section 5.3. The discussion on
the performance of deep mesh regression approaches is given in Section 5.4.
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Other Methods. We also compare to the Virtual Caliper [31] that proposes using a VR
headset for body measurement. Compared to our work, the Virtual Caliper evaluates its
performance on real subjects and compares it to measurements obtained by their expert,
which is more realistic. They also use self-reported weight as input, but they estimate
height. For fair comparison, we predict three additional body measurements such as arm
span, inseam height, and hip width, as shown in the additional part of Table 1. The results
are shown in Table 7. The baseline outperforms the measurements obtained using the
Virtual Caliper. The significant advantage of the proposed baseline is that it does not
require a VR headset.

More Detailed Comparison. To compare the representative 2D- and 3D-based meth-
ods to the baseline, we calculate MAE, MRE, and %Expert metrics. The representative
2D-based method is SMPLify [10], even though it does not achieve the best performance
among the 2D-based methods (see Table 6). However, the best performing method,
by Smith et al. [21], does not provide the source code to evaluate on BODY-fit+W. As shown
in Table 8, the 3D-based method by Yan et al. [8], evaluated on the NOMO3D dataset,
achieves the best overall performance, with the exception of wrist (G) and ankle circumfer-
ence (N). The baseline fitted to ANSUR achieves MREs below 5% for all body measurements,
which is reasonable and useful for the anthropometric applications. Interestingly, the ratio
of samples that are within the expert errors of above 50% are shoulder-to-crotch distance
(C) and wrist circumference (G). In general, most ratios are above 25% for most of the
body measurements.

Table 6. Quantitative comparison to image-based body measurement and shape estimation ap-
proaches (MAEs in mm). In this case, we show the performance of the linear baseline using self-
reported height and weight as stochastic variables (more realistic). The BODY-fit+W and ANSUR
datasets are used to present the baseline performance. The baseline used I = 2 interaction terms,
as described in Section 3. The best results are shown in bold.

Method Dataset A B C D E F G H I J K L M N O Mean

HMR [16] CAESAR 16.7 35.7 33.8 92.8 118 68.7 12.2 29.3 20.6 29.9 44.3 38.5 25.8 14.0 26.5 39.8
ExPose [14] BODY-fit 17.4 13.1 31.4 96.0 116.7 54.8 7.7 33.3 15.3 12.3 29.5 37.3 18.2 8.9 23.0 34.3
SMPLify [10] BODY-fit 15.3 7.7 8.7 57.5 74.7 39.7 5.1 21.0 9.5 5.7 11.4 27.2 12.3 6.5 10.4 21.6
Hasler ’09 [71] CAESAR 7.5 17.0 7.5 13.0 19.0 16.2 - - - 10.4 - - - 6.6 - 12.2
Anthroscan [72] CAESAR 7.4 21.1 7.5 12.4 17.0 7.5 - - - 11.7 - - - 7.6 - 11.5
Tsoli ’14 [6] CAESAR 5.9 15.8 5.5 12.7 18.6 12.4 - - - 10.1 - - - 6.2 - 10.9
Yan ’20 [28] BODY-fit 12.0 13.6 8.9 22.2 16.9 14.2 4.8 10.0 8.0 6.8 7.5 13.8 9.1 5.9 8.2 10.8
Dibra ’16 [22] CAESAR 9.3 10.0 6.6 22.8 24.0 20.0 9.9 12.0 7.9 6.4 8.9 15.5 13.2 7.6 6.0 10.7

Expert Error [30] ANSUR 5.0 6.0 15.0 12.0 12.0 - - - 6.0 - 4.0 - - - 8.0 8.5

Yan ’20 [8] NOMO3D - 3.7 - 13.2 12.4 8.9 4.5 5.5 3.0 13.2 - 7.9 3.0 10.6 12.4 8.2
Smith ’19 [21] CAESAR 6.7 8.0 5.1 12.5 15.8 9.3 9.3 8.1 5.7 5.1 6.8 8.8 7.2 5.0 4.5 7.9

Baseline (I = 2) BODY-fit+W 9.1 4.2 6.6 30.3 39.5 28.0 2.7 10.0 4.9 5.7 9.5 16.0 7.3 3.3 9.0 12.4

Baseline (I = 2) ANSUR 11.9 10.7 17.4 29.1 37.9 21.6 4.4 13.2 9.3 17.6 19.6 17.0 12.8 8.7 11.4 16.2

Table 7. Comparison to the Virtual Caliper [31] (MAEs in mm) w.r.t. four body measurements—arm
length (J) and the three additional measurements (arm span, inseam height, and hip width). We
present the baseline evaluated on the same data as in Table 6 (BODY-fit+W). Better results are shown
in bold.

Measurement Dataset Arm Span Arm Length Inseam Height Hip Width Mean

Virtual Caliper [31] Virtual Caliper 17.2 7.6 24.6 6.5 14.0

Baseline (I = 2) BODY-fit+W 13.1 5.7 8.8 6.7 8.6
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Table 8. Detailed comparison between 2D-based methods (SMPLify [10]), 3D-based methods
(Yan et al. [8]), and the two linear baselines (with I = 2 interaction terms), one fitted to the BODY-
fit+W dataset, and one fitted to the ANSUR dataset [30]. Note that to fairly compare with Yan et al.,
the expert error values are extended according to [8]. The best results in each row for MAEs and
%<Experts are shown in bold.

2D-Based 3D-Based Baseline (I = 2) Baseline (I = 2)
SMPLify [10] (BODY-fit+W) Yan et al. [8] (NOMO3D) BODY-fit+W ANSUR

MAE [mm] ↓ MRE (%) ↓ %<Expert ↑ MAE MRE %<Expert MAE MRE %<Expert MAE MRE %<Expert

A 15.3 2.3 25.1 - - - 9.1 1.5 43.1 11.9 2.1 27.9
B 7.7 4.4 50.7 3.7 - 87.6 4.2 1.1 74.9 10.7 2.9 34.9
C 8.7 1.4 85.2 - - - 6.6 0.9 94.2 17.4 3.0 50.1
D 57.5 5.5 13.6 13.2 - 67.6 30.3 1.4 23.8 29.1 2.9 27.3
E 74.7 7.0 9.3 12.4 - 58.7 39.5 1.6 19.8 37.9 4.2 20.6
F 39.7 5.9 12.3 8.9 - 72.4 28.0 1.1 23.4 21.6 2.1 35.8
G 5.1 3.3 59.5 4.5 - 66.5 2.7 0.7 87.0 4.4 2.7 63.2
H 21.0 7.5 17.2 5.5 - 65.8 10.0 1.4 33.8 13.2 4.0 28.5
I 9.5 3.8 40.0 3.0 - 74.2 4.9 0.9 63.9 9.3 3.2 40.1
J 5.7 1.6 - 13.2 - - 5.7 1.2 - 17.6 2.3 -
K 11.4 1.7 21.0 - - - 9.5 1.4 26.8 19.6 2.6 13.9
L 27.2 4.5 14.5 7.9 - 47.5 16.0 1.7 23.4 17.0 2.7 25.1
M 12.3 3.4 27.5 3.0 - 82.5 7.3 1.0 40.7 12.8 3.4 25.5
N 6.5 2.9 41.4 10.6 - 26.7 3.3 0.8 60.5 8.7 8.7 28.0
O 10.4 3.2 49.2 12.4 - - 9.0 1.8 56.2 11.4 2.9 43.1

5. Discussion

The presented baseline demonstrates strong performance on the public datasets. In
this section, we analyze the residual hypotheses, p-values, and R2 scores (Section 5.1),
comment on using height and weight for body measurement estimation in more detail
(Section 5.2), compare the BODY-fit+W and ANSUR datasets in more detail (Section 5.3),
discuss previous image-based mesh regression approaches (Section 5.4), and provide the
guidelines for future body measurement estimation methods (Section 5.5).

5.1. Residuals, p-Values, and R2 Scores

In this section, we verify the three assumptions of linear regression regarding residuals
(homoscedasticity, independence, and normality) and check the p-values and R2 scores for
the regression models of each body measurement. Figure 4 shows the residuals for the
BODY-fit+W and ANSUR models on train and test splits. The variance of the residuals is
generally constant for all the values of both models, which satisfies the homoscedasticity
assumption. The values are relatively randomly spread, which satisfies the independence
assumption. Finally, as shown in the right sides of the two figures, the means of the
residuals are zero and they are normally distributed, which satisfies the normality.

BODY-fit+W ANSUR

Figure 4. An analysis of the residuals for hip circumference (F), for BODY-fit+W and ANSUR, on train
and test splits.



Sensors 2022, 22, 1885 11 of 19

Tables 9 and 10 show the p-values, R2 scores, MAEs, and RMSEs for male and female
models, on BODY-fit+W and ANSUR, respectively, with two interaction terms (I = 2). We
can observe that the vast majority of p-values are within the <0.05 threshold. For the
simplicity of the analyses, we keep all the input variables that might lead to increased
variance in the predictions and hence larger RMSEs [73]. Ideally, the R2 scores should
be as high as possible. Most of the scores for BODY-fit+W datasets are above or close
to 0.8, except for head circumference (A) and shoulder breadth (O). It is reasonable that
the head circumference is more difficult to estimate based only on height and weight and
their derivative terms. Note that based on pBMI of the shoulder breadth, it would make
sense to fit the model without the BMI input term, which may improve the R2 score. The
ANSUR model has somewhat lower R2 scores, particularly for shoulder-to-crotch (C), wrist
circumference (G), and ankle circumference (N). Note that the shoulder-to-crotch measure
is derived from three manual measurements, as specified in Table 4, which might the
part of the reason for the lower score. Intuitively, wrist and ankle circumferences only
somewhat correspond to a person’s height and weight, which makes those more difficult
to estimate. Finally, even though the linear models could be further improved, the current
performance is competitive w.r.t the state-of-the-art 2D- and 3D-based methods, which is
the most important observation of these experiments.

Table 9. The linear regression statistics for the BODY-fit+W dataset, for males and females (I = 2).
The p-values correspond to the intercept (b), height (h), weight (w), BMI ( w

h2 ), and wh, respectively. In
addition, we report adjusted R2 scores, MAEs (mm), and RMSEs (mm).

MALE FEMALE

pb ph pw pBMI pwh Adj. R2 MAE RMSE pb ph pw pBMI pwh Adj. R2 MAE RMSE

A 0.004 0.000 0.000 0.000 0.000 0.508 8.90 12.36 0.000 0.000 0.000 0.000 0.000 0.442 8.31 12.67
B 0.000 0.255 0.000 0.033 0.000 0.796 4.00 5.04 0.000 0.000 0.000 0.000 0.000 0.795 4.12 5.22
C 0.351 0.000 0.000 0.000 0.000 0.892 6.95 8.77 0.001 0.000 0.000 0.000 0.000 0.903 6.16 7.73
D 0.402 0.000 0.000 0.067 0.000 0.805 26.68 33.81 0.053 0.000 0.000 0.000 0.000 0.808 31.81 40.29
E 0.094 0.000 0.000 0.000 0.000 0.811 38.55 49.18 0.000 0.000 0.000 0.000 0.000 0.819 38.27 48.95
F 0.904 0.000 0.000 0.001 0.000 0.829 22.25 28.50 0.000 0.000 0.000 0.000 0.000 0.833 30.77 39.45
G 0.264 0.000 0.000 0.001 0.000 0.845 2.74 3.46 0.52 0.000 0.000 0.000 0.000 0.85 2.44 3.14
H 0.718 0.005 0.000 0.055 0.000 0.811 8.46 10.76 0.000 0.000 0.000 0.000 0.000 0.825 10.47 13.40
I 0.019 0.000 0.000 0.354 0.000 0.841 4.44 5.71 0.000 0.000 0.000 0.000 0.000 0.848 4.99 6.44
J 0.489 0.000 0.421 0.281 0.359 0.930 5.81 7.81 0.000 0.000 0.055 0.648 0.055 0.923 6.07 8.19
K 0.600 0.000 0.000 0.128 0.001 0.903 10.10 13.26 0.000 0.000 0.007 0.009 0.111 0.920 8.91 11.51
L 0.580 0.000 0.000 0.021 0.002 0.742 14.01 18.70 0.846 0.000 0.000 0.000 0.000 0.790 8.91 21.57
M 0.011 0.000 0.000 0.113 0.000 0.810 7.10 9.29 0.012 0.000 0.000 0.000 0.000 0.835 6.69 8.70
N 0.257 0.000 0.000 0.000 0.000 0.856 2.76 3.49 0.925 0.000 0.000 0.000 0.000 0.848 3.17 4.11
O 0.000 0.034 0.000 0.980 0.015 0.679 8.54 10.78 0.000 0.000 0.000 0.000 0.000 0.689 8.45 10.81

Table 10. The linear regression statistics for the ANSUR dataset, for males and females (I = 2).
The p-values correspond to the intercept (b), height (h), weight (w), BMI ( w

h2 ), and wh, respectively. In
addition, we report adjusted R2 scores, MAEs (mm), and RMSEs (mm).

MALE FEMALE

pb ph pw pBMI pwh Adj. R2 MAE RMSE pb ph pw pBMI pwh Adj. R2 MAE RMSE

A 0.000 0.011 0.116 0.014 0.349 0.266 10.50 13.25 0.000 0.370 0.654 0.002 0.642 0.152 13.19 17.02
B 0.000 0.863 0.000 0.030 0.001 0.671 12.01 15.09 0.002 0.374 0.000 0.902 0.028 0.606 9.45 12.14
C 0.262 0.000 0.185 0.312 0.402 0.484 16.90 21.70 0.635 0.000 0.234 0.779 0.263 0.405 17.90 21.96
D 0.000 0.137 0.000 0.000 0.000 0.866 24.46 31.34 0.049 0.632 0.000 0.400 0.001 0.740 33.96 43.56
E 0.000 0.123 0.000 0.080 0.000 0.848 36.50 45.31 0.344 0.804 0.000 0.440 0.000 0.777 39.37 49.78
F 0.000 0.574 0.000 0.000 0.001 0.887 20.79 26.68 0.000 0.892 0.000 0.000 0.026 0.855 22.34 28.38
G 0.140 0.000 0.000 0.548 0.000 0.547 4.90 6.15 0.001 0.020 0.300 0.015 0.826 0.543 3.89 4.90
H 0.000 0.000 0.122 0.000 0.370 0.712 15.26 19.72 0.019 0.625 0.000 0.249 0.001 0.800 11.09 14.11
I 0.000 0.435 0.014 0.000 0.696 0.662 10.65 13.44 0.000 0.779 0.004 0.005 0.182 0.678 8.03 10.15
J 0.592 0.000 0.054 0.209 0.091 0.649 15.59 19.39 0.323 0.000 0.875 0.862 0.830 0.646 14.29 18.05
K 0.017 0.000 0.265 0.440 0.478 0.714 19.60 25.00 0.121 0.000 0.605 0.341 0.644 0.692 19.63 24.11
L 0.000 0.000 0.076 0.000 0.026 0.859 17.12 22.15 0.000 0.000 0.109 0.000 0.402 0.840 16.71 21.59
M 0.000 0.272 0.000 0.000 0.228 0.711 12.28 15.62 0.000 0.063 0.587 0.000 0.381 0.648 13.35 16.62
N 0.000 0.029 0.004 0.000 0.154 0.533 8.07 10.28 0.000 0.494 0.470 0.000 0.210 0.385 9.31 11.61
O 0.072 0.000 0.000 0.808 0.004 0.420 11.26 14.09 0.054 0.000 0.845 0.016 0.883 0.373 11.49 14.50
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5.2. Height and Weight for Body Measurement Estimation

It is not completely surprising that height and weight strongly correlate with the body
measurements for the statistical model population. The previous works, such as [5,74],
analyze the principal components of the SMPL and SCAPE [44] statistical body models,
respectively. They add several standard deviations separately to each principal component
of the mean shape. The resulting explained variance for the first 10 components is shown
in Figure 5, and the variation in shapes are shown in Figure 6. It can be observed that
the first two principal components explain most of the variance in body shapes (Figure 5),
which in turn define the extreme shape variations visible in Figure 6, particularly in terms
of height and weight. Minor variations are visible for the third and fourth components.
The remaining components do not significantly influence body shape and measurements.
Whether or not these linear relationships hold for the general population, it is currently not
easy to verify due to lack of public data. Still, the statistical models are expected to be made
from a diverse set of human bodies; therefore, we consider this linear relationship relevant.

Figure 5. Explained variance for the first 10 principal components of the dataset. The graph is
generated on CAESAR-fits data [74] by applying PCA to the given vertices. As expected, the first two
components, which most significantly correlate to height and weight, explain most of the variance in
the data.

Figure 6. Explained variance for the first 10 principal components of the dataset. As expected, the first
two components, which highly correlate to height and weight, explain most of the variance in the
data. The image is inspired by [74], originally made using SCAPE model [44]. We have drawn the
above image using SMPL model [5].

5.3. Comparing BODY-Fit and ANSUR Models

The two datasets used for the evaluation of the proposed baseline represent the syn-
thetic, statistical population (BODY-fit+W) and the realistic population (ANSUR). The linear
models fitted on the BODY-fit+W and ANSUR datasets perform differently for certain body
measurements, such as neck circumference (B), shoulder-to-crotch (C), arm length (J),
inside-leg length (K), and ankle circumference (N) (see Table 6).
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The differences can be explained by the fact that these body measurements are less
dispersed in the height–weight space, as shown in Figure 7, even though the volume,
height, and weight are modeled as stochastic variables. This might suggest that certain
body measurements of the bodies from the synthetic population retain a linear relationship
with height and weight, even though Gaussian noise has been added to input. Another
reason might be that the human body populations of the two datasets are significantly
different w.r.t. to these measurements. ANSUR represents the population of military
personnel, while the original population of BODY-fit subjects are probably different.

In order to verify these hypotheses, the actual weight information from BODY-fit
subjects is required, at least. Unfortunately, the weight information is not available. Finally,
note that we simplify the analysis of ANSUR by not accounting for the diversity in self-
estimation of height and weight, because a certain amount of error already exists in the
manual measurements, which is difficult to quantify.

Figure 7. Out of all measurements, the above images show the extreme three cases of body measure-
ments with different dispersions on the ANSUR (first row) and BODY-fit+W (second row) datasets:
shoulder-to-crotch (C), arm length (J), and ankle circumference (N). The fitted planes correspond to
the linear model with two interaction terms (I = 2).

5.4. On Image-Based Mesh Regression

Most of the previous image-based methods train deep learning models to regress
pose and shape parameters that correspond to the template 3D mesh [10,14,16,21–23,28],
which was made possible with the creation of the statistical models. This approach, while
simple and powerful, has the problem of estimating the size of the person in an image.
Due to 2D-to-3D scale ambiguity, it is impossible to determine absolute size without
additional information [75]. Mesh regression approaches [10,14,16] typically ignore this
problem by training convolutional networks on images and hoping that the network will
fit proper height by exploiting the image context. As a result, they often estimate an
incorrect absolute height when not explicitly trained for scale estimation. To allow a fair
comparison with these methods, we scale their output meshes to match the ground truth
height by multiplying with the ratio between the mesh height and the ground truth height.
Nevertheless, errors are propagated to the body measurements, which is probably because
the body measurements are distributed differently for different body heights. On the
other hand, silhouette-based methods [21–23,28] typically render human meshes at a fixed
distance from the camera and then train their model to estimate the height. The drawback
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of this approach is that the model only estimates the height correctly for that particular
camera–distance configuration.

5.5. Limitations, Assumptions, and Future Guidelines

Limitations. The major limitation of body measurement estimation in general is a
lack of large, public, and realistic benchmarks. The public benchmark used in this work,
based on BODY-fit [28], contains 3D template meshes fitted to 3D scans. Even though the
fitted meshes represent the scanning dataset, the SMPL fits are still an approximation of
the original scans. Moreover, the 3D scanning process is also not perfect [9], so the scans
themselves do not necessarily represent the original physical human bodies.

General Assumptions. Therefore, the first assumption is that the manual body mea-
surements are comparable to the body measurements obtained from the 3D scan, i.e., from
the SMPL template mesh. In addition, all ANSUR body measurements do not necessarily
physically correspond to the measurements from the SMPL model, such as shoulder-to-
crotch or waist circumference, as specified in Section 4.1, but we assume they are highly
linearly correlated and thus comparable. The height is measured as the difference between
the top head point and the heel point on the y (height) axis. However, most of the datasets’
subjects are expected to take approximately the A-pose, which is not fully erect. This might
result in height being incorrectly estimated in some cases. We assume that the posture
is not significantly affected by breathing, that the subjects wear minimal or tight clothes,
and that the body measurements such as height and head circumference are not affected
by hair artifacts. The problem with hair artifacts is particularly important for the female
subjects. Finally, we model all stochastic variables by adding normal distributions that are
uncorrelated with other variables, which is not realistic for all groups inside the population.
For example, underweight people tend to overestimate their weight and vice versa [76].

Future Guidelines. To be able to evaluate our model, as well as other body mea-
surement estimation models, even more reliably, future work should focus on creating
more realistic, diverse, and public benchmarks. To avoid estimating body weight from
volume, the benchmark and the training dataset should contain measured weights. For the
evaluation of future methods, we propose the 15 body measurements as a basic set of
measurements for mesh comparison. The body measurements are intuitive and simple
to obtain from template mesh, such as SMPL. The evaluation of the 15 measurements
can be used in addition to the previously used per-vertex error (PVE) metric, which is
used to compare between the mesh regression methods [12,61,77]. For more standardized
body measurement comparison, we specify the exact vertices used to obtain each body
measurement from the SMPL mesh.

Measurement Standards. When creating anthropometric datasets, special attention
must be paid to body measurement standards [33] and body postures [34]. Even though
manual expert measurements are considered to be the golden standard, they will never
be perfect, because the human body is not rigid [78]. There are many proposed methods
for body measurement error analysis [79–82], but the conclusion is that no statistical
procedure is optimal for manual anthropometry in general. [83]. The most common, simple
to calculate, and easily interpretable approach, proposed by Gordon et al. [30], includes
the allowable or “expert” errors [30], which we mentioned earlier and compare against
in Tables 5 and 6. The authors took into account many factors that potentially affect
measurement accuracy, such as posture, time of the day (morning, evening), measurement
technique and instrument, etc. The allowable errors are the inter-observer values obtained
by the expert measurers based on the mean of absolute differences. Those values have been
incorporated into the international standards [33,34].

Synthetic Data. Finally, the advantage of using synthetic data and 3D template meshes
is that the body measurements can be extracted in a standardized way, which guarantees a
standardized measurement. Another advantage is that synthetic data avoid privacy issues
and approvals. Therefore, the promising future direction is the creation of large, more
realistic, and more diverse synthetic anthropometric benchmarks. The statistical models
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such as SMPL are currently the best approximation of the overall population and are likely
to be used as a tool for generating the body measurement benchmarks in the coming years.

5.6. Implementation Details

We implement the model and the experiments in Python 3.8. For linear regression and
other models in Section 5, we use the scikit-learn package [84]. For creating mesh objects,
calculating volume, slicing with planes, and visualization, we use the trimesh package [85].
For processing 3D meshes as SMPL template meshes and calculating body measurements,
we use part of the public SMPL-X source code [11]. For other efficient computations,
we use NumPy [86] and SciPy [87]. The seed for generating random numbers is set to
(seed = 2021). All experiments are done on a single desktop computer, with an Intel Core i7-
9700 CPU (3GHz, 8-core), 16GB RAM, and NVidia GeForce RTX 2080 Super, under Ubuntu
20.04 LTS. The source code, demos, and instructions are attached as Supplementary Files.

6. Conclusions

The presented regression method is a simple but significantly accurate tool for the
convenient and automatic estimation of body measurements, without the need to remove
clothes or capture images. Our work demonstrates that the self-reported height and body
weight predict body dimensions as good as the state-of-the-art deep learning methods,
or even better. The linear regression based on self-reported height and weight should be
used as the baseline for future methods; i.e., any body measurement estimation method
should never perform worse. The results reported in this paper mostly serve to show
the approximate relative performances between the baseline and the competing methods
on the currently available public benchmarks, but for the future reference and datasets,
we recommend fitting the model to more diverse and realistic data, if applicable. The
baseline is perfectly suitable for but not limited to the applications such as virtual try-on,
VR, or ergonomics. The next step is to create more realistic, statistical model-based, public
benchmarks to further evaluate the relationship between height and weight as well as other
anthropometric measurements.
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