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Abstract: To investigate the effects of the pixel sizes and the electrode structures on the performance
of Ge-based terahertz (THz) photoconductive detectors, vertical structure Ge:Ga detectors with
different structure parameters were fabricated. The characteristics of the detectors were investigated
at 4.2 K, including the spectral response, blackbody response (Rbb), dark current density-voltage
characters, and noise equivalent power (NEP). The detector with the pixel radius of 400 µm and the
top electrode of the ring structure showed the best performance. The spectral response band of this
detector was about 20–180 µm. The Rbb of this detector reached as high as 0.92 A/W, and the NEP
reached 5.4 × 10−13 W/

√
Hz at 0.5 V. Compared with the detector with a pixel radius of 1000 µm

and the top electrode of the spot structure, the Rbb increased nearly six times, and the NEP decreased
nearly 12 times. This is due to the fact that the optimized parameters increased the equivalent electric
field of the detector. This work provides a route for future research into large-scale array Ge-based
THz detectors.

Keywords: Ge-based terahertz photoconductive detector; pixel size; electrode structure; spectral response

1. Introduction

Terahertz (THz) detection is useful for many practical applications, such as astronom-
ical observations, nondestructive testing, and biomedical treatment [1–3]. The impurity
band detector as a typical extrinsic photoconductive THz detector is widely studied for its
high sensitivity, wide spectrum, and fast response, which realizes detection by constructing
an impurity band in a semiconductor energy gap and causing electrons to transition be-
tween the impurity band and the conduction band or valence band [4–6]. The Ge-based
impurity detector is a promising candidate, in that the available impurity band in Ge is
shallow enough to just absorb THz radiation (e.g., P in Ge at 0.013 eV and Ga in Ge at
0.014 eV) [7–10]. It has been developed widely with a cutoff wavelength of nearly 200 µm,
and it has already been used in astronomical observations such as the ASTRO-F project
and the Spitzer Space Telescope [11–13]. However, although the Ge-based impurity de-
tector has been developed for many years, there is still a large gap compared with other
terahertz detectors in terms of array scale, performance, and maturity [14,15], due to many
fabrication difficulties and problems. For example, the typical pixel sizes of the reported
Ge-based THz detectors are almost over 1 mm [16,17], which are too large to be arrayed
on a large scale and lead to a complex refrigeration and optical system [18]. Therefore, the
ground-based popularization and application of Ge-based THz detectors are limited and
not even reported. Moreover, the performance of the detectors, such as responsivity, also
needs to be optimized.
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The structural parameters of the detectors play a significant role in improving the
performance of the THz detector, such as pixel size, shape, electrode structure, and so
on [19–22]. Unfortunately, little attention has been paid to the relationship between the
structural parameters and the performance of Ge-based THz detectors. In this research,
several measurements were made on the performance of the vertical structure Ge-based
THz conductive detector with different structural parameters.

Herein, vertical Ge-based photoconductive THz detectors with different structural
parameters were fabricated, where the absorbing layer (Ga-doped Ge layer) was epitaxial
grown on a highly conductive Ge substrate by PECVD (Plasma Enhanced Chemical Vapor
Deposition). The characteristics of the detectors were investigated at 4.2 K, including the
spectral response, blackbody responsivity (Rbb), dark current density-voltage characters,
and noise equivalent power (NEP). The Ge:Ga detectors showed a significantly broad spec-
tral response band of about 20–180 µm (i.e., 1.6–15 THz). The detector with a pixel radius
of 400 µm and the top electrode of the ring structure showed the best performance. The Rbb
of this detector reached as high as 0.92 A/W, and the NEP reached 5.4 × 10−13 W/

√
Hz

at 0.5 V. Compared with the detector with a pixel radius of 1000 µm and the top electrode
of the spot structure, the Rbb increased nearly six times, and the NEP decreased nearly 12
times. This is due to the fact that the optimized parameters increased the equivalent electric
field of the detector.

2. Design and Fabrication

The vertical structure of the Ge:Ga THz photoconductive detector is shown in Figure 1a.
In order to avoid the edge effect of electric field, the detector was designed to be circular.
From top to bottom, each detector consisted of six parts, including an anode, an anode
contact layer, a Ga-doped Ge absorption layer, a highly conductive Ge substrate, a cathode
contact layer, and a cathode.
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Figure 1. (a) Vertical structure of the Ge:Ga THz photoconductive detectors. (b) The SIMS result of
the Ge epitaxial layer. (c) Top schematic of the detectors. (d) A photo of the detectors after packaging.

The absorption layer was fabricated by growing a 100 µm-thick Ge:Ga epitaxial
layer on a highly conductive Ge substrate, with a Ga concentration of 1 × 1015 cm3.
Figure 1b shows the secondary ion mass spectroscopy (SIMS) result of the Ge epitaxial
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layer. The doping concentration reached the expectation, and the doping Ga elements were
uniformly distributed.

After the absorption layer was prepared, a 20 nm SiO2 was sputter deposited on the
absorption layer as a protective layer for ion implantation by PECVD. Both anode and
cathode contact areas were fabricated by implanting B ions at a density of 2× 1014 ions/cm2

at 40 keV. The wafer was then annealed at 400 ◦C for 2 min in an atmosphere of N2 by rapid
thermal annealing, to recover the crystallinity and activate the B ions. Then the chip was
soaked in 10% HF for 10 s to remove the SiO2 layer on the surface. The anode, consisting of
200 Å-thick Cr and 1800 Å-thick Au layers, was formed by thermal evaporation to optically
separate the detector elements and to increase the conductance on the surface by electron
beam evaporation. The 200 Å-thick Cr and 1800 Å-thick Au layers were also deposited on
the backside of the Ge substrate as a cathode. Finally, the devices were annealed at 350 ◦C
for 1 min in an atmosphere of N2 by rapid thermal annealing to form the metallic ohmic
electrodes of the photoconductors.

As shown in Figure 1c, detectors with different structural parameters were fabricated
to investigate the effects of the pixel sizes and the electrode structures on the performance
of the Ge:Ga THz photoconductive detector. Considering the diffraction limitation and
the whole device size, four different sizes of the detector with a radius of about 1000,
800, 600, and 400 µm were fabricated and labeled as 1, 2, 3, 4, respectively. To avoid the
tip discharge of the electrode edge, the blocking of incident light, the electric field loss
of asymmetrical electrode structure, and so on, the detector with the ring and the spot
electrode structures were fabricated and labeled as A and B, respectively. The detector
number and corresponding parameters are shown in Table 1.

Table 1. Detector number and the corresponding parameters.

Detector Number Pixel Radius (µm) Electrode Structure

A1 1000

Ring electrodeA2 800
A3 600
A4 400

B1 1000

Spot electrodeB2 800
B3 600
B4 400

The prepared detectors were packaged on the designed PCB board and connected
with the external circuit through gold wires, as shown in Figure 1d. Then the packaged
detectors were placed in the vacuum low-temperature Dewar system for performance
testing at 4.2 K.

3. Results and Discussion

The dark current density-voltage characteristics of the Ge:Ga photoconductive detec-
tors are shown in Figure 2. The current density is obtained by dividing the current by the
pixel area. In Figure 2a,b, the dark current density-voltage curves under positive and nega-
tive electric fields are symmetrical, which is independent from the electrode structures (spot
electrode or ring electrode). This indicates that the electrode and the device are well ohmic
contacted. Meanwhile, the current density of A1 and B1 increased dramatically at 0.4 V due
to the appearance of the avalanche breakdown effect. In addition, the current density of the
detector increased as the pixel size decreased. This is because the ion implantation layer
was thin and nonideal, and, thus, the electric field distribution was nonuniform, and there
was electric field loss [23–25]. The electric field loss of large size detectors is greater than
that of small detectors, so the equivalent electric field intensity of large detectors is smaller
than that of small detectors. For the same reason, the equivalent electric field intensity of
the spot electrode is smaller than that of the ring electrode. Therefore, the current density of
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the detector with a ring electrode was greater than that of the detector with a spot electrode,
as shown in Figure 2c. Figure 2d shows the dark current density of the detectors with
different structural parameters at 0.1 V and 0.3 V, and the phenomenon discussed above
can be clearly seen from it.
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Figure 2. The dark current density-voltage characteristics of (a) A detectors and (b) B detectors.
(c) Comparison of the dark current density-voltage of the A4 and B4 detectors. (d) The dark current
density-voltage of the different detectors at 0.3 V and 0.5 V.

The blackbody response current density-voltage characteristics of the Ge:Ga photocon-
ductive detectors are shown in Figure 3. As shown in Figure 3a,b, the blackbody response
current density-voltage curves under positive and negative electric fields were approximate
symmetrical, and the current density of the detector increased as the pixel size decreased,
as with the dark current density-voltage characteristic. As shown in Figure 3c, the current
density of the detector with the ring electrode was greater than that of the detector with the
spot electrode. Figure 3d shows the response current density of the detectors with different
structural parameters at 0.3 V and 0.5 V, and the variation trend was the same as the dark
current density.

The schematic diagrams of the energy band structure and detection mechanism of
the Ge:Ga photoconductive detector under negative and positive bias voltage are shown
in Figure 4a,b, respectively. Under blackbody irradiation, electrons in the valence band
were excited to the Ga-doped impurity band, thereby generating holes in the valence band.
When a negative bias voltage was applied, the generated holes in the valence band were
collected by the anode under the action of a negative electric field, thus forming a response
current, as shown in Figure 4a. When a positive bias voltage was applied, the holes entered
the highly conductive substrate under the positive electric field and then were collected
by the cathode forming current, as shown in Figure 4b. The approximately symmetric
blackbody response current density-voltage curves under positive and negative electric
fields, shown in Figure 3, indicate that the doping impurity band of the highly conductive
Ge substrate degenerated; that is, the doping concentration of the substrate was high
enough that it had an extremely small resistance value and worked as a conductor, and the
electrodes were well ohmic contacted.
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(b) B detectors. (c) Comparison of the response current density of the A4 and B4 detectors. (d) The
response current density of the different detectors at 0.3 V and 0.5 V.
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Figure 4. Schematic diagram of the energy band structure and detection mechanism of the Ge:Ga
photoconductive detector under negative bias voltage (a) and positive bias voltage (b).

The Rbb of the detector can be calculated by the formula [26–28]:

Rbb =
IPC
PB

=
IPC

σ · (T4
2 − T4

1 ) · Ab · Ad/2
√

2πL2
=

iPC

σ · (T4
2 − T4

1 ) · Ab/2
√

2πL2
(1)

where Ipc is the measured photocurrent, which is the blackbody response current, PB is
the black-body radiation power received by the detector, T2 = 800 K is the blackbody
temperature, T1 = 300 K is the background temperature, σ = 5.67 × 10–12 W/(cm2·K4) is
the Stefan-Boltzmann constant, Ab = 20 mm2 is set as the blackbody exit aperture area,
Ad is the effective photosensitive area, which is equal to the pixel size, L = 10 cm is the
distance from the detector to the blackbody, and ipc is the blackbody response current
density of the detector. Theoretically, detectors with different pixel radii should have the
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same responsivity, but the electric field loss induced by the actual process deviation will
somehow affect the responsivity.

The Rbb of the Ge photoconductive detectors with various pixel sizes and electrode
structures are shown in Figure 5. Figure 5a,b shows that the Rbb increases with the increase
in bias voltage, and it increases with the decrease in detector size. The responsivity of the
A4 detector with the pixel radius of 400 µm and the top electrode of the ring structure
reached its maximum, that is, 0.92 A/W at 0.5 V and 4.2 K. Compared with the detector with
the pixel radius of 1000 µm and the top electrode of the spot structure, the Rbb increased
nearly six times. Figure 5c shows the Rbb of the A4 and B4 detectors at different voltages.
For the same pixel size, the Rbb of the detector with the ring electrode was larger than that
of the detector with the spot electrode at the same voltage. This is due to the fact that the
equivalent electric field intensity of the detector with the spot electrode is smaller than that
of the detector with the ring electrode. Figure 5d intuitively shows the Rbb of detectors with
different structural parameters at 0.3 V and 0.5 V.
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Figure 5. The blackbody responsivity of (a) A detectors and (b) B detectors. (c) Comparison of
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detectors at 0.3 V and 0.5 V.

The spectral response intensity of the Ge-based photoconductive detector A4 at 0.1,
0.3, and 0.5 V are displayed in Figure 6a. The spectral response intensity of the detector
increased exponentially as the electric field increased, which is consistent with the Rbb of
the detector.

The normalized response spectra are displayed in Figure 6b, which were obtained by
dividing each response spectrum by the corresponding spectral peak value. The response
peaks were located at 82, 88, and 94 µm, respectively. The peak wavelength, λC, of the
impurity band photoconductive detector can be calculated by the formula,

λC =
hc
EA

=
1.24
EA

(µm) (2)

where h is the Planck constant, c is the velocity of light, and EA (eV) is the activation energy
of the impurity band. It can be calculated that the activation energy of the impurity band in



Sensors 2022, 22, 1916 7 of 9

Ge was about 0.013–0.015 eV, which corresponds to the activation energy of the Ga impurity
band in Ge [29]. With the increasing bias, the response wavelength range of the detector
was widened. This is because the higher bias produced more photo-generated current,
resulting in the temperature rise of the detector, the lattice movement acceleration, and
the impurity energy band broadening. As the temperature increases, the lattice movement
becomes more intense, and the impurity energy band is widened.
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Figure 6. (a) The response spectra of the Ge:Ga THz photoconductive detectors. (b) The normalized
response spectra of the Ge:Ga THz photoconductive detectors.

In addition, a shoulder peak was observed between 30 µm and 40 µm, corresponding
to the energy of 0.3–0.4 eV. After etching the electrode of the detector, it was found that the
Au element of the electrode diffused into the absorption layer, and the energy of 0.3–0.4 eV
corresponds to the activation energy of the Au impurity band in Ge [30–32]. Therefore, it
can be inferred that the shoulder peak was caused by the electrons transition between the
Au impurity band and the valence band of Ge, thereby broadening the detection band of
the Ge-based THz photoconductive detector.

According to the NEP formula [33,34],

NEP = NDET
G

Rbb
(3)

where Rbb is the blackbody responsivity, NDET is the detector noise, and G = 0.17 is the
ratio of the peak response to the total response. Table 2 shows the NDET and NEP of each
detector at 0.5 V and 4.2 K. It can be seen that the NDET and NEP of the detector decreased
with the reduction in pixel size. In addition, for detectors with the same pixel size, the
NDET of the different electrode detectors was almost the same, while the NEP of the ring
electrode detector was smaller than that of the spot electrode detector, and the Rbb of the
ring electrode detector was larger than that of the spot electrode detector. The NEP of the
A4 detector reached 5.4 × 10−13 W/

√
Hz at 0.5 V. Compared with the detector with the

pixel radius of 1000 µm and the top electrode of the spot structure, the NEP decreased
nearly 12 times. This indicates that the detector with the smallest pixel size and the top
electrode of the ring structure showed the best performance. Based on the results in this
work, a high-quality, small-pixel-size, and large-scale-array Ge-based photo-conductive
detector will be fabricated in the future.
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Table 2. NEPs of the detectors.

Detector Number NDET (A/
√

Hz) NEP (W/
√

Hz)

A1 6.5 × 10−12 2.9 × 10−12

A2 5.3 × 10−12 1.7 × 10−12

A3 4.4 × 10−12 1.1 × 10−12

A4 2.9 × 10−12 5.4 × 10−13

B1 6.2 × 10−12 6.3 × 10−12

B2 5.0 × 10−12 3.0 × 10−12

B3 4.1 × 10−12 1.3 × 10−12

B4 2.8 × 10−12 6.3 × 10−13

4. Conclusions

The vertical structural Ge THz photoconductive detectors were reported. The per-
formance of detectors with various pixel sizes and electrode structures were investigated.
The detector with the pixel radius of 400 µm and the top electrode of the ring structure
showed a 20–180 µm spectral response band, 0.92 A/W responsivity, and the noise equiv-
alent power of 5.4 × 10−13 W/

√
Hz at 0.5 V. Compared with the detector with the pixel

radius of 1000 µm and the top electrode of the spot structure, the Rbb increased nearly six
times, and the NEP decreased nearly 12 times. This is due to the fact that the optimized
parameters increased the equivalent electric field of the detector. It was verified that the
optimization of the structural parameters plays a pivotal role in improving the sensitivity
of THz photoconductive detector.
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