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Abstract: A hemispherical resonator gyroscope (HRG) has been implemented by using a consumer
wineglass as the resonator and 3 × 3 optical interferometers as the detectors. The poorness of the
off-the-shelf wineglass as the resonator can be overcome by the high performance of the optical
interferometer. The effects of asymmetries in stiffness and absorption of the resonator are analyzed
theoretically and confirmed experimentally. We prove that the trace of the amplitude ratio of two
n = 2 fundamental resonant modes of the resonator follows a straight line in a complex plane. By
utilizing the straightness of the ratio and the high performance of the optical interferometer, we
extract four real constant parameters characterizing the HRG system. Experimentally, by using a
resonator having an average resonance frequency of 444 Hz and Q value of 1477.2, it was possible to
measure the Coriolis force at the level of industrial grade. The bias stability was measured as small
as 2.093◦/h.

Keywords: hemispherical resonator gyroscope; 3 × 3 optical interferometer; precision vibration
measurement; asymmetric hemispherical resonator

1. Introduction

A Hemispherical Resonator Gyroscope (HRG) detects the angular rotation rate by
measuring the resonant vibration of a hemispherical resonator. It has the advantages of
small size, low noise, high performance, and no wear-out [1]. When a rotation is applied to
the HRG, the Coriolis force induced by the rotation changes the vibration pattern of the
resonator. Inversely, the Coriolis force can be calculated by measuring the change in the
vibration pattern of the resonator. In order to improve the performance of HRG, many
studies have been actively performed, mainly with the resonator itself [2–6], the driving
method [7–12], and the signal processing [13–17]. However, the research on the vibration
measurement method has been relatively insufficient.

In order to measure the vibration of the resonator of an HRG system, a device capable
of measuring small displacements in a non-contact manner is required. Any contact on
the resonator disturbs the vibration of the resonator. In general, capacitive sensors [1,4,18],
Laser Doppler Vibrometers (LDV) [18], and optical interferometers [18–20] have been used.
Capacitive sensors have the advantages of being small, simple, and inexpensive so they
are usually used for industrial products [1]. In order to get a high-resolution sensing, the
capacitive sensor, with a large area and a narrow gap between electrodes, is needed in
general, but for getting a wide dynamic range the sensor having a small area and a wide
gap is necessary. There is a tradeoff between the resolution and the dynamic range of
the sensor. Although LDV has the highest accuracy, it has a high cost and a large size,
so it is widely used as the instrument in the laboratory. Optical interferometers have
the advantages of high accuracy and low electromagnetic interference compared to the
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capacitive sensors. In principle, they are basically simple, cheap, and small compared to
LDVs. Several efforts have been made to apply the interferometers to HRG. In particular,
the self-mixing interferometer (SMI) has been in the mainstream [18–20]. The light emitted
from a laser cavity and reflected from the object under measurement re-enters the laser
cavity and makes interference with the light within the laser cavity. The vibration of the
object can be monitored by measuring the intensity variation, caused by the self-mixing of
the laser output. With the SMI, vibration measurement of a sub-micrometer resolution is
possible. However, it has the disadvantage of being vulnerable to temperature change [19].

An optical fiber type 2 × 2 directional coupler has been widely utilized as an efficient
and simple optical interferometer. It is similar to a Michelson interferometer but has an
extended beam splitter, which is simply made by partially splicing two single mode fibers
side by side. However, it has a critical problem in practical usage. For small displacement
measurements, its sensitivity becomes dependent on the operating point, and is thus highly
sensitive to environmental changes, including temperature. Recently, a 3 × 3 optical inter-
ferometer has been utilized as a non-contact and high precision measurement device [21].
By adding one more waveguide channel to the conventional 2 × 2 interferometer, the
3 × 3 interferometer gets the signal in the IQ (in-phase and quadrature) mode, which
allows for a precision measurement independent of the operating point.

In this paper, the HRG system implemented with a real wineglass and 3 × 3 optical
interferometers are presented. For the proof of idea, a consumer wineglass is utilized as
a resonator. The resonator is actuated at a point without feedback control to activate the
n = 2 resonant vibration modes, which has the advantages of being simple to use and cost
effective [22]. The vibration pattern of the resonator is optically measured by using two
interferometers. By utilizing the ability of complex signal measurement of the 3 × 3 optical
interferometer, the complex amplitudes of the two vibration modes of the resonator are
measured at the same time. By taking the ratio of the two complex amplitudes, the rotating
rate applied on the HRG is calculated. It is well known that the ratio of the normal mode
amplitudes is changed with the rotating rate due to the Coriolis force. However, we prove
that the trajectory of the mode ratio forms a linear curve in a complex plane even with
asymmetries in the resonator structure and in the vibration absorption. By utilizing the high
precision measurement ability of the 3× 3 optical interferometer, the effects of asymmetries
in the resonator stiffness and the absorption are extracted first. Secondly, an algorithm that
can minimize or compensate for the unwanted effects of the resonator asymmetry on HRG
performance is proposed. Finally, we present the proof of the idea that the rotating rate
applied to the HRG can be calculated simply by locating the amplitude ratio along the
linear curve characterizing the resonator in the complex plane.

2. Methods
2.1. 3 × 3 Optical Interferometer

The 3 × 3 optical interferometer having 3 input ports and 3 output ports is a kind of
Michelson interferometer. It is simple and low-cost but can be utilized as a high-precision
and non-contact sensor device. Park et al. conducted an experiment to measure vibrations
of a maximum 1.5 nm displacement amplitude with a 3 × 3 optical interferometer and
achieved standard deviation (STDEV) of 0.4 nm without any filtering process [21]. Figure 1
is the schematic of a 3 × 3 optical interferometer configured for measuring a vibrational
motion at a point. It can measure both the amplitude and the phase of vibration by using
the inherent phase difference among the output return ports of the 3 × 3 coupler.

A laser beam incident to P1 is divided into P4, P5, and P6 by the coupler. The lights that
went to P4 and P5 are reflected from the sample arm and the reference arm, respectively,
and then make interference to each other at the coupler. The interference signal goes to P1,
P2, P3 with the inherent phase difference of the 3 × 3 coupler. The light that goes to P6 is
not used. The signal returned to P1 is also not used, but dumped out using a circulator.
The two interference signals going to P2 and P3 are measured by detectors 1 and 2 at the
same time.
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Figure 1. Schematic of a 3 × 3 optical interferometer system. The lights reflected at the sam-
ple and the reference arms make interference at the coupler, which is then measured by two
detectors simultaneously.

In general, the interference signal Ix, measured at P2 port, can be expressed as

Ix = h + a cos φ (1)

where, constant h corresponds to DC-offset and a to AC-amplitude. The phase φ is the
result of interference between the lights of reference and sample arms, and given by

φ = 2k0∆z + φ0 (2)

with the wave-vector magnitude k0 and the optical path-length difference ∆z between two
arms. The additional term φ0 is the initial phase of the interferometer including the inherent
phase shift caused by the coupler. For this interference signal Ix, the second interference
signal Iy, measured at P3 port, can be expressed simply as

Iy = g + b cos(φ + δ) (3)

where, constant g is the DC-offset and b the AC-amplitude, and δ corresponds to the
inherent phase difference between two output channels.

With some mathematical manipulations, we can have the phase of the interference sig-
nal with a function of the two port measurements, Ix, Iy, and the inherent phase difference
δ of the 3 × 3 optical interferometer as [21]

tan φ =
b(Ix − h) cos δ− a

(
Iy − g

)
b(Ix − h) sin δ

(4)

2.2. Analysis of Symmetry Problems in a Hemispherical Resonator

For a simple analysis, the hemispherical resonator is modeled with a pair of oscillators,
having lumped elements and coupled with the Coriolis force at Section 2.2.1. The equation
of motion of the symmetric resonator is analyzed at Section 2.2.2, and used to show that
the amplitude ratio of two fundamental modes is linear with the applied angular rate. The
same analysis is performed for an asymmetric resonator at Section 2.2.3, which shows that
the trace of the amplitude ratio is not linear with the angular rate any longer but still forms
a straight line in a complex plane. By utilizing the linear character of the ratio trace, how to
extract the angular rate with an asymmetric resonator is presented in Section 2.2.4.

2.2.1. Lumped Model of a Hemispherical Resonator

In order to measure the Coriolis force, thus the applied rotation, by using the hemi-
spherical resonator, the vibration of the resonator must be measured. However, the asym-
metry in the resonator changes the vibrating motion of the resonator. Therefore, it is
necessary to analyze and compensate the asymmetry of the resonator as fine as possible.
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The asymmetry originates mainly from the non-uniformity in the distribution of the shape,
density, and composition of the resonator [23]. There are two types of asymmetricity in the
hemispherical resonator, stiffness and damping in general. The stiffness asymmetry means
that the elasticity of a resonator depends on the position along the lip of the resonator.
Similarly, the damping asymmetry means that the degree of damping depends on the
vibrating direction.

A hemispherical resonator can be understood as two simple harmonic oscillators
coupled by the Coriolis force induced by the rotation. Each oscillator is modeled as having
lumped spring, damper, and oscillating mass [24] (p. 55). Figure 2a shows a model of
an ideal symmetric resonator. It is noted that the x-axis and y-axis in the lumped model
correspond to the two principal axes, having a relative angle of 45◦, of a real hemispherical
resonator. The main characteristic of the symmetric resonator is that the spring constant k
and the damping constant c are not dependent on the orientation of axis. Thus, the principal
axes are always collinear to the directions of the applied forces, Fx and Fy as shown in
Figure 2a.

Figure 2. Lumped element models of hemispherical resonators; (a) ideal symmetric resonator model,
and (b) general resonator model having asymmetry in stiffness and damping. M: mass, c: damping
constant, ∆c: damping constant difference, θτ : damping axis angle, k: spring constant, ∆k: spring
constant difference, θω : spring axis angle, Fx: driving force in x direction, Fy: driving force in
y direction.

Figure 2b shows a model of a general hemispherical resonator having both asymme-
tries in elasticity and damping. It is modeled as if the spring constants of the two spring
axes and the damping constants of the two damper axes are different, and the principal
axes are tilted by θω and θτ against the x-axis where the driving force Fx is applied.

2.2.2. Ideal Symmetric Resonator

For the symmetric ideal case as shown in Figure 2a, when the driving forces are
applied to x and y axes under a constant angular rotation of a rate Ωz, the motion of the
mass can be expressed with two coupled differential equations as [24] (p. 11)

M
d2x
dt2 − 2MΩz

dy
dt

+ c
dx
dt

+ kx = Fx (5)

M
d2y
dt2 + 2MΩz

dx
dt

+ c
dy
dt

+ ky = Fy (6)

To get the equations, we assumed that the angular rotation of the system was very
slow compared to the vibration frequency of the resonator (Ωz � ω), and the rotation rate
was constant without acceleration

( .
Ωz = 0

)
, so that the contribution of the higher order

inertial terms and the angular acceleration-related terms could be dropped.
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It is assumed that a driving force is applied only along the x axis and the force is
varying harmonically with a constant frequency ω and a constant amplitude F0. In a
steady state, the resonant-induced displacements of the resonator in both coordinate axes
are simply given with the harmonic signals having the same vibrating frequency as the
driving force,

x = x0ej(ωt+θx), y = y0ej(ωt+θy) (7)

with Fx = F0ejωt and Fy = 0. Where the amplitudes F0, x0 and y0 are real values. Substitut-
ing Equation (7) into Equations (5) and (6) and doing some arithmetic manipulations give
the complex amplitude along each axis as

x0ejθx =
−Mω2 + jcω + k

(−Mω2 + jcω + k)2 − 4M2Ωz2ω2
F0 (8)

y0ejθy = − j2Ωzω

(−Mω2 + jcω + k)2 − 4M2Ωz2ω2
F0 (9)

By taking the ratio of Equation (9) to Equation (8), we have the relationship of

y
x
=

y0

x0
ej(θy−θx) ≡ R0ejθ =

−j2Mω

−Mω2 + jcω + k
Ωz ≡ AΩz (10)

It says that the vibration ratio is proportional to the angular rate Ωz, regardless of
the amplitude of the driving force. The proportional constant A is a complex number
and determined by the resonator parameters only. Thus, with the resonator parameters,
obtained before the main measurements, the applied angular rate can be extracted by
measuring the complex amplitudes along both coordinate axes.

As was discussed with Equation (10), the amplitude ratio y/x corresponds to a point
along the line directed by the complex constant A in a complex plane. For the ideal
symmetric resonator case, the line is passing through the origin of the coordinates; the
ratio has a zero length, R0 = 0, at the zero angular rate, Ωz = 0. Experimentally, the
complex constant A, characterizing the resonator, can be obtained by measuring the ratio
of Equation (10) for at least two known Ωz’s.

2.2.3. General Asymmetric Resonator

Unlike the ideal symmetric resonator, a general hemispherical resonator has asym-
metries in stiffness and damping. The non-uniform stiffness, or elasticity, of the resonator
around the lip can be counted by introducing the offset angle θω between the driving force
direction x and the principal axis of the elasticity as shown in Figure 2b. Of course, the
net spring constants representing the two orthogonal normal modes of the resonator are
set differently by ∆k to each other. The same thing can be assumed with the asymmetric
damping of the resonator. For this more general resonator, the equation of motion of the
lumped model is given as [24] (p. 17)

M d2x
dt2 − 2MΩz

dy
dt + c dx

dt + ∆c
{

dx
dt cos(2θτ) +

dy
dt sin(2θτ)

}
+ kx

+∆k{x cos(2θω) + y sin(2θω)} = Fx
(11)

M d2y
dt2 + 2MΩz

dx
dt + c dy

dt + ∆c
{

dx
dt sin(2θτ)− dy

dt cos(2θτ)
}
+ ky

+∆k{x sin(2θω)− y cos(2θω)} = Fy
(12)
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With the single applied force, same as the ideal symmetric case of Fx = F0ejωt and
Fy = 0, the vibrations in a steady state are calculated as

x0ejθx =

−Mω2+j{c−∆c cos(2θτ)}ω+k−∆k cos(2θω)

(−Mω2+jcω+k)2−(j∆cω+∆k)2+2j∆cω∆k{1−cos (2θτ−2θω)}−4M2Ωz2ω2
F0

(13)

y0ejθy =

−j{2MΩz+∆c sin(2θτ)}ω−∆k sin(2θω)

(−Mω2+jcω+k)2−(j∆cω+∆k)2+2j∆cω∆k{1−cos (2θτ−2θω)}−4M2Ωz2ω2
F0

(14)

Taking the ratio between Equations (13) and (14) gives

y0

x0
ej(θy−θx) = − j{2MΩz + ∆c sin(2θτ)}ω + ∆k sin (2θω)

−Mω2 + j{c− ∆c cos(2θτ)}ω + k− ∆k cos (2θω)
(15)

Similar to the symmetric case, we can set this complex ratio as

y
x
=

y0

x0
ej(θy−θx) ≡ Bejθ{j(Ωz + a) + b} (16)

where the real constants B, θ, a, b are defined as;

Bejθ = − 2Mω

−Mω2 + j{c− ∆c cos(2θτ)}ω + k− ∆k cos (2θω)
(17)

a =
∆c sin(2θτ)

2M
(18)

b =
∆k sin (2θω)

2Mω
(19)

Interestingly, we can prove that the trace of the ratio y/x in Equation (16), plotted
in terms of Ωz, forms a straight line in a complex plane. In the equation, the factor
{j(Ωz + a) + b}means that the vertical line of Ωz in Figure 3a is shifted to the horizontal
direction by b and the point of Ωz = 0 moves along the vertical direction by a as shown
with Figure 3b. Furthermore, the shifted line is magnified by B, which shifts the line to the
horizontal direction and extends the mutual distance between two points on the line as
shown with Figure 3c. Finally, as in Figure 3d, the line is rotated by an angle θ with the
factor of ejθ . Since Equation (18) is related to the damping asymmetry and Equation (19)
with the stiffness asymmetry, it can be understood that the constants a and b represent the
effects of damping asymmetry and stiffness asymmetry on the vibration of the resonator,
respectively. Figure 3a is drawn with (B, θ, a, b) = (1, 0, 0, 0), Figure 3b with (1, 0, 10, 5),
and Figure 3c with (2, 0, 10, 5). Finally, Figure 3d drawn with (B, θ, a, b) = (2, 60◦, 10, 5)
shows a straight line inclined and not passing through the origin of the coordinates. In the
final figure, we can see that the Ωz = 0 point is not at the origin of the coordinates (due to
b 6= 0) and the distance along the line for a given ∆Ωz (for an example, between the points
of Ωz = 0 and Ωz = −10) is enlarged (due to B > 1).

2.2.4. Extracting the Applied Angular Rate with Asymmetric Resonator

In the symmetric resonator, the magnitude of the ratio in Equation (10) was linearly
proportional to the angular rate applied to the system. However, for the asymmetric
resonator case, the ratio in Equation (16) is not linearly proportional to Ωz any longer due
to the stiffness asymmetry and the damping asymmetry as shown in Figure 3. However,
the linear character of the ratio trace in a complex plane allows us to extract the applied
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angular rate even with the asymmetries in resonator. Mathematically, the angular rate can
be derived from Equation (16) as

Ωz = j
(

b− y/x
Bejθ

)
− a (20a)

or, by using the real character of Ωz, a, and b, it can be expressed as

Ωz = Im
{

y/x
Bejθ

}
− a (20b)

The equation says that, at least in principle, the applied angular rate Ωz can be
extracted from the complex ratio y/x. The four real constants (B, θ, a, b), characterizing
the resonator of an HRG system can be obtained by calibrating the system with several
known Ωz’s. For the best case, two complex measurements are enough to get the four real
constants to compose a straight line in a complex plane.

Figure 3. The trace of the ratio y/x in Equation (16) simulated with various resonator parameters and
drawn in a complex plane. The trace is plotted when B, θ, a, and b are (a) 1, 0◦, 0, and 0; (b) 1, 0◦, 10,
and 5; (c) 2, 0◦, 10, and 5; (d) 2, 60◦, 10, and 5, respectively. The trace is always on a straight line and
the line is determined by the four real constants B, θ, a, and b of Equation (16). The dotted line is the
trace made with just the previous conditions.

The principle for getting Equation (20) can be a little more deeply understood with
Figure 4, the same one as Figure 3d. For plotting the straight line in the figure, the first thing
is taking the best fitting linear curve with the complex ratios of Equation (16) measured at
various angular rates. Then, the distance from the origin of the coordinates to the nearest
point on the line is calculated as the value of Bb. The angular rate giving the nearest point
to the origin is interpolated as the value of −a. Furthermore, the distance from the nearest
point to the point obtained with Ωz = 0 is calculated as the value of Ba. The angle of
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the line against the vertical line is the angle θ in Equation (16). By utilizing this process,
all constants of Equation (16) or Equation (20) can be obtained. Even though it would
be tough in calculation, the vibration measurements made at any other two different but
known angular rates can be enough to determine the 4 constants for calibration. In order
to perform the calibration effectively, it is necessary to precisely measure the complex
amplitude of vibration. Not only the magnitude but also the phase of the interference
signal are necessary. Therefore, the high resolution of the 3 × 3 interferometer and its IQ
measurement ability increase the accuracy in the angular rate extraction with the HRG
having a rather poor resonator.

Figure 4. Analysis of the y/x trace for an asymmetric resonator. The y/x ratios collected with various
angular rates form a straight line in a complex plane. The plot shows that the distance from the origin
to the nearest point on the line is Bb, and the angular rate giving the nearest point is −a, and the
distance from the nearest point to the Ωz = 0 point, along the line, is Ba.

3. Experiments
3.1. Hemispherical Resonator

As the resonator of HRG, a general consumer wineglass was used as shown in Figure 5.
The frequencies of two resonant modes of the wineglass, off the shelf, were different by
as much as 4 Hz to each other. To match the resonant frequencies, and thus to increase
the coupling efficiency between the two resonant modes, a part of the wineglass lip was
mechanically grinded little by little. It allowed us to have the resonance frequency difference
as small as 0.3 Hz; 444.1 Hz for the primary mode and 443.8 Hz for the secondary mode. In
addition, in order to activate electrostatic force for vibrating the resonator, as an electrode,
a sheet of thin gold foil (Allgoldleaf, Sangjabio Co., Ltd., Daegu, Korea) was attached to
the resonator surface with gelatin. The resonator was activated in air without using a
vacuum chamber.

Even though it is well known, it is noted that the flexural vibration of the lip of a
wineglass is dominantly in a shape of an ellipse. The displacement of the lip from its
averaged circle line is sinusoidal and has two antinodes along a round trip, called the
n = 2 fundamental flexural resonant mode. There are two n = 2 fundamental modes, called
primary and secondary, and in general their principal axes are separated by 45◦ to each
other. By taking a linear combination of these two fundamental modes, any n = 2 vibrating
motion of the lip can be described. When the wineglass is under rotation, the node line of
the vibrating motion follows the rotation with a lag due to the Coriolis force. For the case
of ideal symmetric resonator, the fundamental modes are degenerated, so that the principal
axis of the primary mode can have any direction and the resonant frequencies are equal to
each other. However, for the elastically asymmetric case, the resonant frequency splits and
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depends on the direction of the node line. The mode having the higher frequency is called
the primary mode and the lower one the secondary mode.

Figure 5. The photographs of (a) the hemispherical resonator and (b) the rotating part of the
implemented HRG system. A general consumer wineglass was used as the resonator. A sheet of thin
gold foil was attached and used as the electrode for activating the resonator.

At a point on the wineglass, the resonant frequencies were searched by scanning
the deriving frequency, which gave maximum vibration amplitudes. While rotating the
glass and deriving the resonator at the maximum resonant frequency, the principal axis
of the primary mode was found as the one giving the minimum vibration amplitude of
the secondary mode. In experiments, the resonator was activated along the principal axis
of the primary mode with its resonant frequency, 444.1 Hz. The Q value of the resonator
was obtained by measuring the decay time of each resonant mode. For the primary and
secondary modes, the Q values were 1529.67 and 1424.76, respectively.

3.2. Experimental Setup

Figure 6 shows the schematic of the proposed system. For activating the resonator, the
non-feedback open-loop (NFOL) mode is used, in which the driving force is applied only
to the principal axis of the primary mode without feedback control. A uniform sinewave
of a 0~220 V magnitude is applied to the electrode to generate the electrostatic force. The
angular rate, to be measured by the system, is applied by rotating the optical table having
the components within the red box of Figure 6 with a motor.

To measure the vibrations of two fundamental resonant modes of the resonator, two
3 × 3 optical interferometers are used. Light comes out from a 1550 nm laser and splits in
two. One light enters the interferometer that measures the primary mode oscillating along
the driving axis, and the other light enters the other interferometer for the secondary mode.
Even though the node lines of two fundamental resonant modes are apart from each other
by 45◦, due to space limitations the first sensing probe is placed at the opposite side of the
force driving point.
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Figure 6. The HRG system implemented with 3 × 3 optical interferometers. The system operates in
the non-feedback open-loop (NFOL) mode. RM: reference mirror, SA: sample arm, PC: polarization
controller, HR: hemispherical resonator, E: electrode, FC: fiber coupler, OC: optical circulator, FG:
function generator, AMP: amplifier, C: collimator, L: lens.

4. Results
4.1. Measurements of Vibrations of Two Fundamental Resonant Modes

Figure 7 shows the displacements induced by the vibration of a hemispherical res-
onator, measured at the same time with two 3 × 3 optical interferometers along two
coordinate axes. In general, for the case of small coupling, the vibration amplitude (x0) in
the x direction along which the driving force is applied is larger than the amplitude (y0)
in the y direction. In the figure, we can see that one mode is very large and the other is
very small in amplitude. It shows that small amount of the primary mode energy was
coupled to the secondary mode due to the Coriolis force. The rotation rate applied for this
result was Ωz = −4.19◦/s. Furthermore, we can see that the two modes are not matched in
phase; there is a phase difference of 61.8◦ between them. As was discussed, the amplitudes
(x0, y0) and the phase difference

(
θy − θx

)
of two fundamental modes must be measured to

extract the applied angular rate. It is noted that as a displacement sensor, the 3 × 3 optical
interferometer measures the vibration of a hemispherical resonator in real time.

4.2. Angular Rotation Rate Extraction

The angular rotation rate was externally applied to the system for characterizing the
resonator by changing the rate step-by-step in a range of −9◦/s to 9◦/s, and the resulting
vibrations of both fundamental modes were measured by two 3 × 3 optical interferometers
at the same time. After calculating the ratio of amplitudes of two modes for each applied
angular rate, the ratio was located in a complex plane as in Figure 8a. For 25 different
rates, the complex ratios were plotted and fitted with a curve. We can see that the data
points are well aligned along a straight line. With the process mentioned with Figure 4,
the four real constants composing Equation (16) were calculated as B = 0.318, θ = −22.84◦,
a = 1.033◦/s, b = 3.944◦/s, and the resulted straight line was depicted in Figure 8b. With
these constants, the angular rate was extracted by using Equation (20) for each applied
rate. The rate extraction was tried with the method explained with Figure 4 also, and the
same result was obtained. The extracted angular rates were plotted in terms of the known
applied rates in Figure 9 and compared. We can see that the data points are well aligned
with the y = x line with the coefficient of R2 = 0.9994, which means that the measured
angular rate and the reference one (applied angular rate) are well matched to each other. In
other words, we can say that the asymmetries of the rather poor hemispherical resonator
have been well counted or compensated with the measurements made with the proposed
optical IQ interferometers.
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Figure 7. The displacements induced by the vibrations of two fundamental modes of a hemispherical
resonator derived by a single actuator. The system was rotated by a constant rate of Ωz = −4.19◦/s.
A phase difference of 61.8◦ between two modes was measured.

Figure 8. The experimental results: (a) the plot of amplitude ratios y/x of Equation (20) measured
with various angular rates, and (b) the fitted straight line characterizing the resonator. From the
fitting with a straight line, the 4 real constants characterizing the resonator are extracted as B = 0.318,
θ = −22.84◦, a = 1.033◦/s, and b = 3.944◦/s.

4.3. Bias Stability Measurement

As a part of evaluating the performance of the implemented HRG system, bias stability
was measured. It is known that the bias stability is related to the minimum detectable
angular rate of a gyroscope, which is generally measured by taking the minimum value of
the Allan deviation [24] (pp. 7–8). At zero applied angular rate, the rate Ωz of Equation (20)
has been measured for 2 h at every cycle of oscillation of the resonator. The measured
angular rate was integrated for an integration time or interval, and then divided by the
interval, and the difference between adjacent intervals was taken. By squaring the difference
and taking the ensemble average with respect to time, the Allan variance was obtained.
Finally, the Allan deviation was calculated by taking the square root of the Allan variance.
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Figure 9. The comparison of the applied angular rate and the measured angular rate. They are well
matched with the coefficient of determination of R2 = 0.9994.

Figure 10 is the Allan deviations of the implemented HRG system, which were mea-
sured as increasing the integration time interval rather constantly in a log scale. As the
bias stability of the system, the minimum value of the Allan deviation plot was taken.
The measurements were made at room temperature without temperature control. As a
result of the measurements, the bias stability was obtained as small as 2.093◦/h, which
corresponded to an industrial-grade gyroscope (which is in the range of 1 to 30◦/h [25]).

Figure 10. The plot of Allan deviations made with the implemented HRG. The measurements have
been made for 2 h at room temperature without temperature control. The bias stability was 2.093◦/h,
which corresponds to an industrial-grade gyroscope.
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5. Discussion

The bias stability of the implemented HRG was measured as 2.093◦/h, which corre-
sponded to the industrial grade. This high stability seems to be achieved because of the
high precision measurement of the 3 × 3 optical interferometer. It could give not only the
amplitude but also the phase of the vibration without being affected by the initial condition
of the interferometer.

Because a consumer wineglass was used as the resonator, it was not easy to directly
compare the performance of the implemented system with other reported high-end ded-
icated systems. Even though we have tried to balance the resonator by mechanically
grinding the wineglass, there was appreciable asymmetricity not only in stiffness but also
in damping. Due to the high volume of the wineglass, operating the system in a vacuum
circumstance was practically impossible, which increased the damping and thus hurt the Q
value of the resonator. However, with the help of the high precision of the optical interfer-
ometer, we could overcome the disadvantages of the asymmetricity of the non-dedicated
resonator and achieve the industrial grade performance. For upgrading the system to the
tactical grade or higher, it is necessary to operate the system in a vacuum and to use a
dedicated resonator having a good symmetry and high Q value. A cavity having high Q
value has a long response time in general. Thus, we need to think of feedback control in
deriving the resonator.

In Equation (10) for a symmetric resonator, the mass M appears at the denominator and
numerator at the same time. Thus, dividing both of them with M simplifies the equation as

y
x
=

−j2Mω

−Mω2 + jcω + k
Ωz =

−j2ω

−ω2 + jωc/M + k/M
Ωz (21)

Furthermore, by introducing the average resonant frequency ω0 ≡
√

k/M and the
decay constant τ ≡ M/c of the resonator, we have the equation in a more familiar form of

y
x
=

−j2ω(
ω2

0 −ω2
)
+ jω/τ

Ωz (22)

The similar simplification can be made with Equation (15) for the asymmetric case also.
With Equation (16), we know that the measured ratio y/x has a complex value. If we

take care of only the magnitude of the complex ratio, |y/x|, we encounter some problems
in extracting the angular rate. At first, the same ratio happens at two different angular
rates, as shown Figure 11a, thus we cannot distinguish the direction of rotation. Secondly,
at the zero angular rate the ratio does not have the minimum value. The ratio does not
reach zero for any rate. Even worse, the trace is not fitted with a linear curve, but varies
nonlinearly. By considering the phase variation of the ratio as shown with Figure 11b, the
direction of rotation can be determined by some means. However, the other problems, such
as reaching the minimum ratio at a non-zero rate and the nonlinear variation of the ratio
with the angular rate, cannot be treated effectively.

Even though the optical measurement is still bulky and expensive, with its high
precision and non-contact measurement abilities, it can be used for evaluating or analyzing
the resonator of an HRG system. From a technical point of view, we can say that the optical
interferometer can be supplied with a low cost and small photonic integrated chip (PIC) in
the near future. We can think of installing the optical pickup even in a commercial HRG
system. The light can be delivered even to a micro-shell resonator by utilizing micro scale
planar waveguides lithographically fabricated on the substrate of the resonator.

The resonant frequency of a high-end hemispherical resonator is in a range of tens of
kHz and the Q value is as high as 107 [26–28]. The stability of commercial products is as
fine as 0.015◦/h [1,29,30]. The optical sensing is expected to accelerate, achieving such a
high-end performance.
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Figure 11. The amplitude ratio y/x measured at several angular rates: (a) the magnitude and (b) the
phase of the ratio. The magnitude variation is not linear to the applied angular rate, and does not
vanish at any rate. The phase varies with the angular rate but the sign of the phase is not changed
exactly at the zero rate.

The attachment of the gold film on the wineglass might hurt the SNR of the system.
We have tried not to modulate the surface by using nanometer-thick film. However, for a
better performance as a resonator, printing the electrodes and connecting wires directly on
the glass surface will be better. The variation of the optical reflectance due to the filming
might hurt the optical pickup also. The system was configured so that the incident light
irradiated the surface perpendicularly. The signal-to-noise was measured as 69.1 dB.

6. Conclusions

A HRG (hemispherical resonator gyroscope) system has been implemented with a con-
sumer wineglass and optical interferometers. Even with the many disadvantages of using
a non-dedicated resonator, not using a vacuum circumstance and with no feedback control,
industrial grade performance could be achieved. It has been analyzed and measured that
the trace of the amplitude ratio between two fundamental modes of the resonator formed
a straight line in a complex plane even with the resonator’s asymmetries in stiffness and
absorption. Along the straight line, it was confirmed that the trace of the complex ratio
was linearly proportional to the applied angular rate. With the help of high resolution and
the IQ (in-phase and quadrature) measuring ability of a 3 × 3 optical interferometer, the
parameters characterizing the resonator could be effectively extracted and successfully
used to compensate for the disadvantages of a rather poor resonator.

By mechanically grinding a consumer wineglass, off-the-shelf, the frequency difference
between two fundamental resonant modes of the resonator could be made as small as
0.3 Hz; 444.1 Hz and 443.8 Hz. The Q value of each mode was measured as 1529.67 and
1424.76, respectively. The bias stability of the implemented HRG system was measured
as small as 2.09◦/h, corresponding to the industrial grade. Even though the 3 × 3 optical
interferometer is bulky to be directly installed in a practical system, it can be used to analyze
resonators and calibrate systems. In the near future, it is expected that a cost-effective
and small size interferometer, implemented in the form of photonic integrated chip (PIC),
would accelerate the development of a high-end HRG system.
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