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Abstract: Monitoring surface quality during machining has considerable practical significance for
the performance of high-value products, particularly for their assembly interfaces. Surface roughness
is the most important metric of surface quality. Currently, the research on online surface roughness
prediction has several limitations. The effect of tool wear variation on surface roughness is seldom
considered in machining. In addition, the deterioration trend of surface roughness and tool wear
differs under variable cutting parameters. The prediction models trained under one set of cutting
parameters fail when cutting parameters change. Accordingly, to timely monitor the surface quality
of assembly interfaces of high-value products, this paper proposes a surface roughness prediction
method that considers the tool wear variation under variable cutting parameters. In this method,
a stacked autoencoder and long short-term memory network (SAE–LSTM) is designed as the fun-
damental surface roughness prediction model using tool wear conditions and sensor signals as
inputs. The transfer learning strategy is applied to the SAE–LSTM such that the surface roughness
online prediction under variable cutting parameters can be realized. Machining experiments for
the assembly interface (using Ti6Al4V as material) of an aircraft’s vertical tail are conducted, and
monitoring data are used to validate the proposed method. Ablation studies are implemented to
evaluate the key modules of the proposed model. The experimental results show that the proposed
method outperforms other models and is capable of tracking the true surface roughness with time.
Specifically, the minimum values of the root mean square error and mean absolute percentage error
of the prediction results after transfer learning are 0.027 µm and 1.56%, respectively.

Keywords: assembly interfaces; surface roughness prediction; varying tool wear; SAE–LSTM; transfer
learning; variable cutting parameters

1. Introduction

Surface quality has a critical impact on the reliability and lifetime of high-value prod-
ucts [1–3], such as rockets, spacecraft, and aircraft. In particular, the surface quality of the
assembly interfaces of these products directly affects the final product quality. For example,
the assembly interfaces of an aircraft connect adjacent large-scale aircraft components (e.g.,
wings, tails, and fuselages). The assembly interfaces of an aircraft’s vertical tail are shown
in Figure 1. The vertical tail assembly interfaces consist of eight sub-assembly interfaces.
The machining process mainly includes milling the assembly interface plane and drilling
the connecting holes. Assembly interfaces are characterized by a wide distribution distance,
difficult-to-cut materials, and an uneven machining allowance distribution, leading to
severe tool wear during the machining process. Consequently, surface quality is difficult
to control and directly measure [4]. In aircraft assembly, ensuring the surface quality of
assembly interfaces is critical to the final quality of the aircraft. There are many parame-
ters affecting surface quality, such as surface roughness (2-D and 3-D surface roughness),
surface waviness, surface form, etc. [5,6], among which, surface roughness parameters
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and the associated functionality are very important for the evaluation of surface integrity
and machining quality [7,8] since surface roughness significantly influences the assembly
accuracy, fatigue strength, corrosion resistance, and contact stiffness of the parts [9,10].
Consequently, surface roughness becomes an important parameter of concern for engineers
during aviation manufacturing [11,12], for instance, in the manufacturing of the assembly
interface of an aircraft vertical tail, as shown in Figure 1. However, the machining of assem-
bly interfaces depends considerably on the experience of workers who assess the tool wear
and surface quality as well as adjust the machining parameters. To optimize the machining
process and implement the online adjustment of parameters, the online monitoring of
machined surface roughness, Ra, has practical significance. Accordingly, the motivation of
this study is to explore the online monitoring method of surface roughness, Ra, through
cutting experiments to achieve the online monitoring of assembly interface machining.
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Surface roughness is typically monitored either offline or online. The offline approach
involves the use of contact measurement equipment [13,14] and optical measurement
equipment [15–17]. The offline approach has drawbacks, such as long measurement time,
specific requirements of the working environment, complexity to set up, etc. In contrast,
online methods are not hindered by the aforementioned disadvantages. In light of this,
they have attracted increasing research interest [18–20]. Online methods aim to establish a
mapping model (prediction model) between surface roughness and online monitoring data,
such as cutting parameters and sensor signals [21]. In addition, there are also studies on
surface roughness estimation through the numerical method, which is difficult to integrate
the real-time sensor data of the machining site to adaptively adjust to the roughness
prediction online. Given the cons of offline and numerical methods, this paper uses a
scheme for surface roughness online prediction based on real-time sensor data.

Currently, research on online monitoring has several deficiencies. In practical ma-
chining, surface roughness varies. The factors affecting surface roughness include the
machine tool, workpiece, tool characteristics, dynamic parameters, etc., among them, the
tool that is used to form workpiece surface in machining, which directly affects the sur-
face roughness [22]. For example, as the tool wears, the contact angle between the tool
and workpiece changes, which deteriorates the surface roughness of the workpiece [23].
However, the effect of tool wear on surface roughness has rarely been considered in current
research [23,24]. In addition, the deterioration trend of surface roughness and tool wear
differs with variable cutting parameters. Consequently, a prediction model trained with
the monitoring data collected under one group of cutting parameters can fail to accurately
predict roughness when the cutting parameter changes. Evidently, it is unrealistic to train
prediction models with all possible cutting parameters. Therefore, to develop a practical
surface roughness prediction model, the inclusion of tool wear as one of the variable cutting
parameters is necessary. Note that previous work [25] introduced, in detail, a method and
process for tool condition monitoring. This current study focuses on the surface roughness
prediction method. In this paper, the formulation and training of the surface roughness
prediction model and its prediction process integrating tool wear are described in detail.



Sensors 2022, 22, 1991 3 of 23

With the above motivation, an online surface roughness prediction method considering
tool wear under variable cutting parameters is proposed. In this method, first, a framework
of surface roughness prediction for assembly interface is proposed. Subsequently, a surface
roughness prediction model based on transfer learning is established. Finally, the model
input considering tool wear and the prediction process of surface roughness are designed.
This proposed method realizes the online prediction of surface roughness considering
the influence of tool wear under variable cutting parameters, which is more accurate and
practical than the existing methods using sensor data alone.

The remainder of the paper is organized as follows: Section 2 reviews related work. In
Section 3, the framework of surface roughness prediction is proposed. Subsequently, this
same section details the structure of the surface roughness prediction model, its training
strategy based on transfer learning, and the integration of tool wear prediction into surface
roughness prediction. The experimental settings and the performance of the proposed
method under variable cutting parameters are presented in Section 4. The conclusion and
future work are discussed in Section 5.

2. Related Work

In this section, first, surface roughness online prediction methods are reviewed as
indirect and direct sensor-based techniques depending on whether or not surface roughness
is directly measured. Next, the advantages and disadvantages of the current online surface
roughness prediction methods are summarized. Finally, the problems solved in this paper
and specific contributions are given.

2.1. Surface Roughness Prediction with Indirect Sensors

This class of methods attempts to establish the mapping between the surface roughness
and indirect sensor signals (e.g., vibration, cutting force, current, and sound pressure)
monitored during the machining process. Commonly used prediction methods include
polynomial regression models and artificial intelligence models.

2.1.1. Polynomial Regression Model

Wang et al. established a polynomial regression model for surface roughness predic-
tion considering tool geometry and cutting force as factors for Ti6A14V. The model has
high applicability and accuracy for predicting milling surface roughness [26]. However, it
only considers the combination of several groups of discrete cutting parameters and does
not account for predicting surface roughness at different times during machining. The use
of sensor data can reflect the surface roughness changes caused by time-varying factors in
machining. To realize surface roughness prediction during the cutting process through a
polynomial regression analysis, some researchers considered cutting force, vibration, and
cutting energy consumption [27–29]. In the turning process of the alloy material Inconel
718, Deshpande used the polynomial regression analysis to combine cutting parameter
data and sensor data (e.g., cutting force, vibration, etc.) in the cutting process to predict
surface roughness [30].

The abovementioned research adopted regression models to accurately reflect the
surface roughness trend under certain conditions. However, the studies only considered
the sensor data during cutting and neglected the time-varying factors, such as tool wear,
which will affect the accuracy of roughness prediction.

2.1.2. Artificial Intelligence Model

The following studies on surface roughness prediction are based on the information
obtained by a single sensor. Guo and Wu employed the specified time–frequency domain
features of the vibration signal of the cutting process as input and then utilized the long
short-term memory network (LSTM), convolutional neural network (CNN), and other
neural network technologies to predict surface roughness [31,32]. Huang proposed an
online modeling and surface roughness monitoring system based on gray theory and a bi-
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lateral best-fitting method by monitoring the cutting force signal in the cutting process [33].
Gerardo used a combination of incremental modeling and simulated annealing to model
cutting forces and parameters to predict the surface roughness in milling machining [34]. In
addition, particle swarm optimization–support vector machine [35], differential evolution
algorithm [36], singular spectrum analysis, and related principal component analysis [37]
are used to predict surface roughness based on the vibration signals in the cutting process.

The following studies on surface roughness prediction are based on multi-sensor
information. Sun et al. designed a surface roughness prediction model that includes an
embedded neural network and an output neural network, which is able to obtain superior
prediction accuracy than a single neural network [38]. Kumar considered the cutting
parameters and sensor signals as control variables and predicted surface roughness by
response surface methodology and an artificial neural network. The results showed that
the prediction accuracy of utilizing sensor signals is better than merely considering cutting
parameters [39].

The aforementioned research on surface roughness prediction based on sensor data
and intelligent algorithms has enabled online prediction. Although the variations in tool
wear and cutting parameters directly influence the prediction of surface roughness, these
are rarely considered by current research.

2.2. Surface Roughness Prediction with Direct Sensors

The direct-sensor-based surface roughness prediction method predicts roughness
through the visual image of a machined surface.

The research method mainly involves predicting surface roughness according to
the reconstructed surface topography or image feature of the machined surface. Liu
proposed a new surface roughness measurement method based on a color distribution
statistical matrix [40]. Prabhakar proposed a hybrid transform method that combines
fast Fourier transform, discrete wavelet transform, and discrete shearlet transform to
achieve surface roughness prediction [41]. Tootooni used the algebraic graph theory image
processing method to convert surface images into unweighted, undirected network graphs
and estimated the graph theory invariant Fiedler number (λ2) as a surface roughness
discriminator [42]. Chiou proposed a surface texture model based on visual data for real-
time, remote, automatic detection of surface quality [43]. Jeyapoovan used charge-coupled
device cameras and multi-color light sources to capture the images of machined surfaces
with different surface roughness values [44]. Shahabi proposed a method for surface
roughness measurement using a two-dimensional profile extracted from an edge image of
the workpiece surface [45].

Surface roughness prediction using direct sensors can directly obtain surface roughness
through workpiece surface images. However, illumination, cutting fluid, and dust in
the actual cutting environment can interfere with image processing, thereby affecting
the prediction.

2.3. Summary and Analysis

In contrast with the prediction techniques based on the indirect use of sensors, direct
sensor-based surface roughness prediction methods are considerably affected by illumina-
tion, cutting fluid, and dust. The proposed method belongs to the category of an artificial
intelligence model, which can make full use of real-time sensor data to drive the model to
predict surface roughness online. There are still several limitations in the current research.
In variable cutting parameter machining, the deteriorating trend of tool wear with time is
different and has a deteriorating effect on surface roughness. However, there is no mature
solution for online surface roughness prediction that considers both tool wear and variable
cutting parameters. To resolve these problems, this paper proposes a surface roughness
prediction model that considers the tool wear variation with variable cutting parameters.
The contributions of this study are as follows: (1) The time-varying characteristics of sensor
data and tool wear are considered to predict the surface roughness of assembly interfaces,
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rendering surface roughness predictions more suitable for practical machining; (2) the
multi-time step input stacked autoencoder (SAE) is designed to extract the time series
features of raw input data and, combined with the LSTM, to predict the surface roughness
degradation value in assembly interface machining; and (3) an SAE and LSTM (SAE–LSTM)
surface roughness prediction model based on transfer learning is proposed that resolves
the problem of surface roughness online prediction for vertical tail assembly interfaces by
considering variable cutting parameters.

3. Proposed Surface Roughness Prediction Method Considering Tool Wear

The framework and working mechanism of the surface roughness prediction for
assembly interfaces are presented in Section 3.1. Next, the structure of the fundamental
roughness prediction model, SAE–LSTM, is described in Section 3.2. The training strategy
based on transfer learning for resolving the problem of the variable cutting parameters
is elaborated on in Section 3.3, and the integration of tool wear prediction into surface
roughness prediction is discussed in Section 3.4.

3.1. Framework and Working Mechanism of Surface Roughness Prediction for the
Assembly Interface

Before elaborating on the proposed framework of surface roughness prediction, some
specific terminologies used are introduced, as summarized in Table 1. As shown in Figure 2,
the framework has three parts: pre-training of the surface roughness prediction model in
the source domain, transfer learning for the modules of the source domain model, and
predicting the surface roughness in the target domain. The effects of surface roughness
prediction are shown in Figure 2d. The prediction of surface roughness for the assembly
interface considering variable cutting parameters can be achieved via transfer learning.

As shown in Figure 2a, a fundamental surface roughness prediction model (known
as the source domain model) is first trained on the labeled source domain data. The
input training data are sensor data, such as vibration and current signals, and the output
data are ground truth labels (i.e., the surface roughness values of assembly interfaces
measured offline by a contact device under the source domain). Subsequently, the basic
surface roughness prediction model gains the ability to predict the surface roughness of
the assembly interface in real time using the online monitoring data.

Table 1. Definition of terms.

NO. Term Explanation

1 Source domain Machining conditions with complete data (e.g., sensor data, tool
wear data, surface roughness data, and cutting parameters)

2 Target domain
Machining conditions that differ from the cutting parameters of the

source domain and have incomplete data (e.g., lack of tool wear
data and surface roughness data)

3 Source domain data Data collected under the source domain (e.g., data of tool wear,
sound pressure sensor, accelerometer, and current sensor)

4 Target domain data Data collected under the target domain (e.g., data of tool wear,
sound pressure sensor, accelerometer, and current sensor)

5 Source domain model Surface roughness prediction model trained with source domain
data

6 Target domain model Surface roughness prediction model trained with transfer learning

7 Variable cutting
parameters

Different cutting parameters of machining assembly interface in the
source and target domains

8 Ground truth labels Surface roughness values of assembly interface that are measured
offline by a contact device under the source or target domain
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Next, the transfer learning strategy is applied to the modules of the source domain
model, as shown in Figure 2b and detailed in Section 3.3. After applying transfer learning,
a surface roughness prediction model (known as target domain model) is derived. This
model is capable of predicting the surface roughness value of the assembly interface under
the target domain.

The integration of tool wear prediction into surface roughness prediction under the
target domain is shown in Figure 2c. The predicted tool wear value and collected sensor
data are integrated to form the target domain data. Next, the target domain model obtained
in Figure 2b is used to predict the surface roughness in the scenario that accounts for
tool wear. The surface roughness and tool wear of the assembly interface show different,
increasing trends under the source and target domains, proving the necessity of using
transfer learning, as shown in Figure 2a,c.

The prediction results of the surface roughness of the assembly interface obtained
with and without the use of transfer learning are shown in Figure 2d. The source domain
model has a satisfactory prediction performance under the source domain; however, it fails
to predict the surface roughness value under the target domain, exhibiting a considerable
deviation from the true surface roughness values. After undergoing transfer learning, the
surface roughness prediction model became capable of more accurately predicting the
surface roughness value under the target domain.

3.2. Fundamental Surface Roughness Prediction Model Based on SAE–LSTM

Before establishing the model, it is necessary to discuss the consideration of the model
input data in this paper. The research shows that in machining dynamics, tool wear has an
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impact on the surface morphology generation [46], cutting force [47], contact stress, chatter,
temperature [48–50], etc. Therefore, it is essential to comprehensively consider the sensor
data that reflect the actual machining situation and the tool wear data.

The fundamental surface roughness prediction model is based on SAE–LSTM; its
structure is shown in Figure 3b. This prediction model includes four components: input
data, a feature extraction module, a prediction module, and an output module.
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The SAE is an unsupervised, deep learning network widely used for data dimensional
reduction and feature extraction. Research indicates that it has satisfactory performance for
extracting time series features [51]. The SAE structure is shown in Figure 3a. The “Encoder”
consists of three convolutional layers (Conv) and three max-pooling layers (MP); the
“Decoder” includes three convolutional layers and three upsampling layers (US). To extract
the time series features of raw input data, the input of SAE is designed as a multi-time step
input (input data are elaborated in Section 3.4.2), and the SAE structure is designed by a
one-dimensional CNN. Note that the SAE is first trained and then only the “Encoder” of
this trained SAE is used as the feature extraction module. In this way, the ability of SAE to
extract features from the raw input data can be used to reduce the dimension of the data
and improve the training efficiency of the model. In addition, due to the excellent time
series prediction capability of the LSTM, the three-layer LSTM is employed to predict the
surface roughness of the assembly interface in the prediction module, and the “Flatten”
and “Repeat Vector” layers are utilized to adjust the data dimension to fit the LSTM layer.
Finally, the dense layer is used to output the predicted value.

The training data of the SAE–LSTM are as follows. The input data are composed of
four types of sensor data, i.e., tool wear (VB), sound pressure (Pa), vibration signal (V),
and spindle current (C), which are acquired during machining. The surface roughness
prediction model is trained with the time sequences of tool wear data and sensor data, i.e.,
([VBS

t , PaS
t , VS

t , CS
t ], . . . , [VBS

t+n, PaS
t+n, VS

t+n, CS
t+n]), where VBS

t is the tool wear value at
time t in the source domain; PaS

t , VS
t , and CS

t denote the sound pressure, vibration, and
spindle current signals, respectively. The surface roughness predicted at different times
under the source domain is denoted as [R̂aS

t , R̂aS
t+1, . . . , R̂aS

t+n].

3.3. Surface Roughness Prediction Model Training Using Transfer Learning
3.3.1. Transfer Learning Strategy Based on a Multi-Stage Model Training Process

To realize surface roughness prediction considering variable cutting parameters,
a transfer learning strategy based on a four-stage model training process is proposed.
Through transfer learning, the model trained with source domain data can be easily used
to predict surface roughness with the target domain data, thus improving the application
scope of the surface roughness prediction model. As shown in Figure 4, the first two stages
are pre-training stages, and the latter two are fine-tuning stages.
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Figure 4. Transfer learning strategy based on a multi-stage model training process.

In the first stage, the SAE is trained with a part of the source domain data such that it
gains the ability to extract features from the source domain data. In the second stage, the
weight of the “Encoder” of the trained SAE is loaded; it serves as the feature extraction
module of the SAE–LSTM. Next, a part of the source domain data and corresponding labels
are used as the input–output pairs to pre-train the SAE–LSTM such that the source domain
model (pre-trained SAE–LSTM) gains the ability to predict the surface roughness in the
source domain.

In the fine-tuning stage, this paper needs to fine-tune the feature extraction module
and prediction module based on the source domain model. In the third stage, a double-
input structure model based on the source domain model is designed. The source and target
domain data are used as inputs of the double-input model. The feature extraction module
extracts features from the two domains. It should be noted that the target domain data here
does not need label data. The distribution difference of features extracted from the two
domains is computed in a customized layer, which quantifies the distribution difference
between the source and target domain data using the maximum mean discrepancy (MMD).
Next, the error between the distribution difference and zero is back-propagated to optimize
the parameters of the SAE–LSTM model. Accordingly, the source domain model can adapt
to the target domain. However, due to the huge difference between the source domain
and the target domain, only using the unlabeled target domain data to train the feature
extraction module cannot obtain a high-precision prediction effect. The strategy of using
a small number of target domain label data to adjust the prediction module has been
proven to improve the efficiency and accuracy of model training in the transfer learning
method [52], and a small amount of label data in the target domain is usually easy to obtain.
Therefore, in the fourth stage, the model is adjusted to a single input, and the weight
of the fine-tuned feature extraction module is frozen so that the prediction module only
participates in the fine-tuning. In this way, it can obtain high prediction accuracy without
retraining the model with a large number of label data in the target domain.

3.3.2. Optimization Objective of Multi-Stage Transfer Learning

The pre-training and fine-tuning processes include two loss functions, L1 and L2.
These two loss functions are based on the mean absolute error (MAE). When the model has
a single-input structure, such as that shown in Figures 5 and 6b, the loss is L1; when the
model has a double-input structure (Figure 6a), the loss is L1 + L2.
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The SAE and SAE–LSTM are the basis of the surface roughness prediction model, and
their precision resulting from the two-domain data training determines the final prediction
accuracy. The loss function, L1, is used to train the SAE and the single-input SAE–LSTM,
as shown in Equation (1), where n is the number of training samples, and yi and ŷi are the
ground truth and predicted values of surface roughness, respectively.

L1 =
1
n

n

∑
i=1
|yi − ŷi| (1)

The role of L2 is to reduce the distribution difference between the source and target
domain data through the maximum mean discrepancy (MMD). The MMD was first pro-
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posed by Gretton et al. to test whether the two distributions, p and q, differ by extracting
samples from each of them [53]. In terms of transfer learning, the MMD is used as a metric
to measure the difference between the source and target domain data. Under different
machining conditions (e.g., variable cutting parameters), the source domain data (XS) and
target domain data (Xt) are assumed to be two random variables following two different
distributions; xs

i and xt
i are observations of XS and Xt, respectively.

The square of the MMD between the two distributions, denoted as D̂2, is computed
by Equation (2), where the Gaussian kernel function is used; σ is the kernel bandwidth; N
is the number of samples.

D̂2[Xs, Xt] = 1
N(N−1)

N
∑
i 6=j

exp(−||xs
i − xs

j ||2/2σ2)

− 2
N2

N
∑

i=1

N
∑

j=1
exp(−||xs

i − xt
j ||2/2σ2)

+ 1
N(N−1)

N
∑
i 6=j

exp(−||xt
i − xt

j ||2/2σ2)

(2)

Loss L2 is obtained by calculating the MAE between D̂2 and the zero-valued label.

L2 =
1
n

n

∑
i=1
|D̂2

i − 0| = |D̂2[Xs, Xt]− 0| = D̂2[Xs, Xt] (3)

The multi-stage transfer learning is detailed below. The schematic of each stage is
given, as shown in Figures 5 and 6. The schematic of SAE pre-training is shown in Figure 5.
The source domain data are used as the SAE input. The purpose is to train the SAE by
utilizing source domain data such that the encoder gains the ability to extract features
from the input data. The SAE is optimized by minimizing loss L1 in which “Os” and
“Is” are the output and input of SAE in the source domain, respectively (recall that the
SAE is an unsupervised model). The schematic of SAE–LSTM pre-training is shown in
Figure 5b; the source domain data are utilized to train this surface roughness prediction
model. The SAE–LSTM is optimized by minimizing the loss, L1, in which “Os” and “Ls”
are the outputs of SAE–LSTM in the source domain and ground truth (i.e., the label data of
source domain), respectively.

After the pre-training process shown in Figure 5, the SAE–LSTM becomes capable of
predicting the surface roughness of the source domain. As shown in Figure 6, the source
domain model is transferred to predict the surface roughness of the target domain by
fine-tuning the feature extraction and prediction modules.

To fine-tune the feature extraction module, the SAE–LSTM is first redesigned as a
double-input model, and the weights of the source domain model are loaded. Second, the
SAE–LSTM prediction module is frozen, the source and target domain data are used as
double inputs, and the source domain label data and zero-value label are used as double
outputs. The double-input SAE–LSTM is optimized by minimizing the loss L1 + L2. The
output of SAE–LSTM in the source domain and the source domain label data are denoted
as “Os” and “Ls,” respectively; “Lz” is the zero-value label. After fine-tuning the feature
extraction module, the feature extraction capabilities of the SAE–LSTM in the source
domain data are transferred to the target domain data.

However, due to the considerable difference in surface roughness under different
cutting parameters, the SAE–LSTM prediction module still carries the risk of prediction
error. Therefore, as shown in Figure 6b, an extremely small amount of target domain label
data is used to fine-tune the prediction module, thereby improving the predictive ability of
the SAE–LSTM in the target domain. The SAE–LSTM is optimized by minimizing loss L1,
in which the SAE–LSTM output under the target domain and the target domain label data
are represented by “Ot” and “Lt”, respectively.
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3.4. Integration of Tool Wear Prediction into Surface Roughness Prediction
3.4.1. Surface Roughness Prediction Integrating Tool Wear

As presented, considering the tool wear in surface roughness prediction is necessary.
Two consecutive steps are involved. First, the time series of tool wear values and sensor
data prior to timestamp t is used to predict the tool wear value at time t, V̂Bt. Subsequently,
the time series of sensor data, along with V̂Bt, is used to predict the surface roughness at
time t, R̂at; details are provided by Equations (4)–(7). The mapping between the input and
output for tool wear prediction is given by Equation (4), where FVB denotes the tool wear
prediction model, X_VBt−k, X_VBt−k+1, . . . , X_VBt−1 are the input time series, and k is an
important parameter representing the length of historical data prior to the current time that
is used as the model input to predict the future. The input, X_Ra, is a vector containing
11 physical quantities, as given in Equation (7), including the tool wear prediction value
(V̂B) and sensor data of ten channels: sound pressure (Pa) signal, vibration signals in
three-axis on the spindle and spindle box (V1x, V1y, V1z, V2x, V2y, and V2z), and the
three-phase current signal of the spindle controller (Cu, Cv, and Cw). The unit of tool wear
(VB) and surface roughness (Ra) is microns (µm), the unit of the sound pressure signal is
Pascal (Pa), the unit of vibration signal is gravity acceleration 9.8 m/s2 (g), and the unit of
the current signal is Ampere (A). The values of VB and Ra are actual measured or predicted
values, and the measured values of the sensor signal are given in Section 4.1. The mapping
between the input and output for surface roughness prediction is given by Equation (5),
where R̂at, R̂at+1, . . . , R̂at+m−1 represents the predicted surface roughness value sequence
at time t; m represents the number of predicted surface roughness values.(

V̂Bt, V̂Bt+1, . . . , V̂Bt+m−1
)
= FVB(X_VBt−k, X_VBt−k+1, . . . , X_VBt−1) (4)(

R̂at, R̂at+1, . . . , R̂at+m−1
)
= FRa(X_Rat−k+1, X_Rat−k+2, . . . , X_Rat) (5)

X_VB = [Pa, V1x, V1y, V1z, V2x, V2y, V2z, Cu, Cv, Cw] (6)

X_Ra =
[
V̂B, Pa, V1x, V1y, V1z, V2x, V2y, V2z, Cu, Cv, Cw

]
(7)

The two consecutive steps mentioned above, considering k = 1 and m = 1, for instance,
are illustrated in Figure 7. At time t, the tool wear value of target domain V̂BT

t is predicted
by the tool wear prediction model, FVB, using the data acquired at t−1. Next, V̂BT

t , along
with the sensor signal collected at time t, is used as the input of the surface roughness
prediction model, FRa, to predict the surface roughness at time t, R̂aT

t . The above process
iterates with time such that the surface roughness integrating tool wear is predicted. The
effect of the surface roughness prediction scheme is evaluated by the root mean square error
(RMSE) and mean absolute percentage error (MAPE) calculated by Equations (8) and (9),
respectively; n is the number of samples, yt is the surface roughness value measured offline
by a contact instrument (which is regarded as the ground truth), and ŷt is the predicted
surface roughness value.

RMSE =

√
∑n

t=1 (ŷt − yt)
2

n
(8)

MAPE =
1
n

n

∑
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣× 100% (9)

3.4.2. Data Preparation for Surface Roughness Prediction

The data preparation of the two consecutive steps and surface roughness prediction
process in the target domain are shown in Figure 8. In Figure 8a, k = 5 and m = 1. For
the input, X_VB, of the tool wear prediction model, the standard deviation and root
mean square (RMS) features extracted from raw signals are found to have satisfactory
monotonicity and can well predict the tool wear based on previous research [25]. The tool
wear (VB), surface roughness (Ra), and the RMS of sensor data are shown in Figure 9. The
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monotonicity of most feature data is similar to VB; therefore, the two features above are
selected for the sensor data features (Pa, V, and C). The data format of X_VB is shown in
Figure 8a; the data dimension is (5,20).
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Figure 8. Data preparation for surface roughness prediction: (a) Tool wear prediction process in
the target domain; (b) data generation process for roughness prediction integrating tool wear in the
target domain.

The data generation process for surface roughness prediction integrating tool wear in
the target domain is shown in Figure 8b; the surface roughness prediction model is given
by Equation (5). The time lap steps are k = 5 and m = 1. The raw sensor data points obtained
at 1-s intervals are selected as input data of the surface roughness prediction model. In
addition, the tool wear prediction value is copied in sensor data form to combine it with
the sensor data. As shown in Figure 8b, the input data dimension of the target domain is
(50,000,11) based on the sampling frequency (Section 4.1).
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Figure 9. VB, Ra, and features of sensor data: (a) Tool wear; (b) surface roughness; (c) RMS of sound
pressure signal; (d) RMS of vibration signals in x-axis on the spindle; (e) RMS of vibration signals
in y-axis on the spindle; (f) RMS of vibration signals in z-axis on the spindle; (g) RMS of vibration
signals in x-axis on the spindle box; (h) RMS of vibration signals in y-axis on the spindle box; (i) RMS
of vibration signals in z-axis on the spindle box; (g) RMS of u-phase current signal of the spindle
controller; (k) RMS of v-phase current signal of the spindle controller; (l) RMS of w-phase current
signal of the spindle controller.

4. Experiment and Analysis
4.1. Experimental Setup

The vertical tail of the aircraft and its assembly interfaces are shown in Figures 1 and 10a.
The assembly interfaces consist of eight sub-assembly interfaces; the material is Ti6Al4V. The
finish machining operation for assembly interfaces is typically implemented to guarantee
the final assembly quality. According to previous studies and the experience of workers in
machining the assembly interfaces of the vertical tail, the typical machining parameters under
dry cutting conditions are as follows: spindle speed, 150–500 r/min; axial cutting depth,
0.1–0.7 mm; and feed rate, 90–250 mm/min [54,55]. Due to the strict management of the
machining process of the aircraft assembly interface, it is difficult to collect sensor data during
the machining process of the real assembly interface. However, the material of the assembly
interface, machining parameter range, tool type, surface quality requirements, geometric
dimensions, and other information of the vertical tail assembly interface are available. This
information is enough for us to design and fabricate a highly similar sample workpiece of
the assembly interface, simulate the machining process of the real assembly interface in the
experimental environment, and design a complex experimental data acquisition scheme.
Therefore, the milling experiment of the sample workpiece is adequately capable of simulating
the real assembly interface, and the proposed method can be validated by collecting the data
during machining.
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It should be pointed out that the research problem of this paper comes from the
machining of a certain type of vertical tail assembly interface, which is made of Ti6Al4V.
In addition, the machining experiment process is costly in terms of complexity and time.
Therefore, this paper uses the material Ti6Al4V to carry out the machining experiments
and verify the proposed prediction model. The experimental setup is shown in Figure 10.
The milling machine used in the experiment for machining the sample workpiece was a
DTX850 CNC (Figure 10b). The cut tool is a face milling cutter with a diameter of 50 mm,
and the milling insert model is APMT1604R0.8, as detailed in Table 2. The machining
experiments are conducted under three groups of cutting parameters, as listed in Table 3.
For each group of cutting parameters, three cutting tools are used for machining. Each
tool is considered unusable after machining 168 cutting segments, and the tool wear value
exceeds 0.3 mm. Thus, 168 cutting times are used in the run-to-fail experiment of a new tool.
A one-cut segment represents the machining length along the short side of the assembly
interface. During machining, the three-axis vibration signal of the accelerometer on the
spindle and spindle box, the current signal of spindle controller, and the sound pressure
signal are collected by a data acquisition instrument at 10 kHz.

Based on prior knowledge, the following signals, vibration, noise, and spindle load,
are sensitive to tool wear (i.e., the amplitude of the signals increases with tool wear) and are,
thus, good indicators for tool wear and, further, for surface roughness. On the other hand,
vibration, noise, and current signals are cheap to collect since the sensors are economical
and convenient to install. Therefore, this paper chooses these physical quantities to develop
the surface roughness prediction model. It should be noted that cutting force is most directly
related to tool wear and surface roughness and is used by many researchers. However, a
cutting force sensor has many restrictions and is impractical in real applications, such as the
very inconvenient installation for the large workpiece and high cost, and, thus, this paper
abandoned the cutting force signal acquisition. After each cutting segment is machined, a
portable microscope, Dino-Lite AM7115MZT, is used to measure the tool wear value (VB),
and another instrument, ISR-C300, is used to measure the surface roughness (Ra). The VB
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value of the cutting tool’s flank wear is measured by the ruler of the measurement software
provided by the portable microscope, Dino-Lite AM7115MZT as shown in Figure 10b. The
Ra value is obtained by calculating the average of the surface roughness values of three
points in the z-axis cutting direction of the spindle in each cutting segment, as shown in
Figure 10c. The time-domain waveform of the sensor data is shown in Figure 11. It can be
found that with the increase of the cutting number, the amplitude of the sensor value, such
as sound pressure, vibration, and current, is gradually increased.

Table 2. Cutting tool parameters.

Cutter
Material

Cutter Diameter,
D, mm

The Number of
Inserts, Nz

Cutting Edge
Radius, r, mm Back Angle, α, ◦

Carbide 50 4 0.8 11

Table 3. Three groups of cutting parameters used in assembly interface machining experiment.

Group No. of Cutting
Parameters

Feed Rate, f
(mm/min)

Axial Depth of
Cut, ap (mm)

Spindle Speed,
n (r/min)

No. of Tested
Cutting Tools

P1 210 0.5 450 CT1-1–CT1-3
P2 290 0.5 500 CT2-1–CT2-3
P3 250 0.5 380 CT3-1–CT3-3
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signal of the spindle controller.

4.2. Experimental Data Preparation

To verify the proposed framework for surface roughness prediction integrating tool
wear under variable cutting parameters, six transfer tasks, T1–T6, are designed, as summa-
rized in Table 3. Under the column “Direction of transfer task,” “P1→P2” means that the
model trained under the cutting parameter of group P1 (source domain) is transferred to
predict the surface roughness under the cutting parameters of group P2 (target domain).
As listed in Table 4, the data of corresponding tool numbers are given in the training
and test data. “Tool-A” and “Tool-B” represent the first and second tools during the test
stage, respectively.

According to the transfer learning strategy detailed in Section 3.3.1, the number of
samples used in the four stages during the training is summarized in Table 5. The first stage
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uses the source domain samples to train the feature extraction module, SAE. The second
stage also employs the source domain samples to pre-train the basic prediction model, SAE–
LSTM. The third stage utilizes some source domain samples and a proportion of unlabeled
target domain samples to fine-tune the feature extraction module. The fourth stage uses a
small amount of label data from the target domain (10 samples, accounting for 2% of the
total target domain samples) to fine-tune the prediction module of the SAE–LSTM. Note
that the source domain samples are all labeled, and the samples of the surface roughness
prediction model at t are X_Rat−4, X_Rat−3, X_Rat−2, X_Rat−1, and X_Rat. Finally, the rest
of the unlabeled samples of the target domain are used to test the prediction model.

Table 4. Training and test data settings under different transfer tasks.

Transfer
Task No.

Direction of Transfer Task (Source
Domain→Target Domain) Training Data

Test Data

Tool-A Tool-B

T1 P1→P2 CT1-1–CT1-3, CT2-1 CT2-2 CT2-3
T2 P1→P3 CT1-1–CT1-3, CT3-1 CT3-2 CT3-3
T3 P2→P1 CT2-1–CT2-3, CT1-1 CT1-2 CT1-3
T4 P2→P3 CT2-1–CT2-3, CT3-1 CT3-2 CT3-3
T5 P3→P1 CT3-1–CT3-3, CT1-1 CT1-2 CT1-3
T6 P3→P2 CT3-1–CT3-3, CT2-1 CT2-2 CT2-3

Table 5. Data sample size at each stage.

Task

Training Testing

Stage 1
(Number of Source
Domain Samples)

Stage 2
(Number of Source
Domain Samples)

Stage 3
(Number of Source Domain/Number of

Unlabeled Target Domain Samples)

Stage 4
(Labeled Target

Domain Samples)

Test Stage
Samples

T1 164 samples of CT1-1 164 samples of CT1-2 164 samples of CT1-3/164 samples of CT2-1 10 samples of CT2-1 328

T2 164 samples of CT1-1 164 samples of CT1-2 164 samples of CT1-3/164 samples of CT3-1 10 samples of CT3-1 328

T3 164 samples of CT2-1 164 samples of CT2-2 164 samples of CT2-3/164 samples of CT1-1 10 samples of CT1-1 328

T4 164 samples of CT2-1 164 samples of CT2-2 164 samples of CT2-3/164 samples of CT3-1 10 samples of CT3-1 328

T5 164 samples of CT3-1 164 samples of CT3-2 164 samples of CT3-3/164 samples of CT1-1 10 samples of CT1-1 328

T6 164 samples of CT3-1 164 samples of CT3-2 164 samples of CT3-3/164 samples of CT2-1 10 samples of CT2-1 328

4.3. Results and Discussion
4.3.1. Model Parameter Setting

The hyper-parameter settings, as well as the output shape of each layer of the tool
wear prediction model and surface roughness prediction model, are as shown in Table 6.

Table 6. The hyper-parameter settings of the tool wear prediction model and surface roughness
prediction model.

Tool Wear Prediction Model Surface Roughness Prediction Model

Layer Symbol Activation
Function

Output
Shape Layer Symbol Activation

Function
Output
Shape Layer Symbol Activation

Function
Output
Shape

1 Input / (5,20) 1 Input / (50,000,11) 10 LSTM ReLU (1,64)
2 LSTM ReLU (5,32) 2 Conv1D ReLU (50,000,16) 11 LSTM ReLU (1,32)
3 LSTM ReLU (5,128) 3 MaxPooling1D / (2500,16) 12 LSTM ReLU (1,16)
4 Flatten / (640) 4 Conv1D ReLU (2500,8) 13 Dense / (1,1)

5 Repeat
Vector / (1,640) 5 MaxPooling1D / (250,8)

6 LSTM ReLU (1,128) 6 Conv1D ReLU (250,4)
7 LSTM ReLU (1,64) 7 MaxPooling1D / (25,4)
8 LSTM ReLU (1,32) 8 Flatten / (100)
9 Dense / (1,1) 9 Repeat Vector / (1,100)
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4.3.2. Optimal Parameter Selection for the Surface Roughness Prediction Model

During the training process, the following two parameters are found to have a consid-
erable effect on the performance of the surface roughness prediction model: (1) the number
of labeled samples of the target domain used for fine-tuning at the 4th stage of transfer
learning; and (2) the k, in Equations (4) and (5) (i.e., the length of historical data used as the
input of the prediction model). Therefore, analyzing these two parameters and selecting
the optimal values are necessary.

(1) Prediction effect using different numbers of fine-tuning samples

Consider transfer task T1 as an example. The prediction performance is investigated
by adjusting the number of fine-tuning samples to observe the RMSE of the prediction
results, as shown in Figure 12. The RMSE is observed to significantly decrease with the
increase in the number of fine-tuning samples. When the number of fine-tuning samples
reaches 10, any further increase in this number only has a slight effect on reducing the
RMSE. Similar conclusions are reached in transfer tasks T2–T6. Given that collecting labeled
data from the target domain is difficult in practice, 10 samples are used to fine-tune the
surface roughness prediction model.
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(2) Effect of using different lengths of historical data (k) on prediction

The resulting variations of RMSE with k (k vs. RMSE curve) and training time with k
(k vs. training time curve) when transfer task T1 is considered and the number of fine-tuning
samples is fixed to 10 are shown in Figure 13. The blue and orange lines are the k vs. RMSE
curves of CT2-2 and CT2-3, respectively. The green line is the k vs. training time curve of
each epoch in the training process. The RMSE is observed to distinctly decrease with the
increase in k until k = 5. Beyond this, any further increase in k has an extremely slight effect
on reducing the RMSE, causing RMSE to fluctuate; in addition, the training time rapidly
rises with k. By considering the RMSE and training time, the selected k value is 5.
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4.3.3. Results of Surface Roughness Prediction with Variable Cutting Parameters

To explore the advantages of some key training stages and modules of the proposed
method, ablation studies were implemented. Different training stages and modules of the
proposed models are combined to form new prediction models; next, their performance is
evaluated. The following four models have been designed for comparison: (1) proposed
model; (2) model without LSTM module; (3) model without transfer learning (without TL);
and (4) model disregarding tool wear (without VB). In addition, this paper uses RMSE
and MAPE as the metrics to compare the performance of the proposed surface roughness
prediction model with the ones in [32,56–58]. The offline measured value is considered
as the real ground truth, which serves as the benchmark of the online prediction values.
Moreover, the measurement data are susceptible to the random factors of the machined
surface texture, causing the surface roughness to fluctuate rather than monotonically
increase. However, the overall trend of measured roughness values is observed to increase
with the number of cuts.

The comparison of the four models in all six transfer tasks is quantified by computing
the RMSE, as summarized in Table 7 and visualized in Figure 14. The proposed method
outperforms the three other models, especially the “Without TL” model in all of the six
transfer tasks. This indicates that adopting transfer learning effectively resolves the problem
of surface roughness prediction under variable cutting parameters.

Table 7. Comparison results of different prediction models.

Task
Tool-A (RMSE) Tool-B (RMSE)

Proposed Without LSTM Without VB Without TL Proposed Without LSTM Without VB Without TL

T1 0.039 0.047 0.070 0.394 0.042 0.055 0.083 0.364
T2 0.066 0.073 0.159 0.230 0.089 0.103 0.171 0.280
T3 0.065 0.082 0.176 0.319 0.068 0.089 0.189 0.335
T4 0.065 0.073 0.128 0.113 0.069 0.075 0.144 0.148
T5 0.062 0.069 0.139 0.149 0.070 0.091 0.144 0.161
T6 0.027 0.035 0.067 0.197 0.035 0.047 0.073 0.202
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In addition, in the six transfer tasks, the maximum RMSE of the proposed method is
0.089 µm, while the RMSE of the best model reported in the literature [56] is 0.2652 µm.
The maximum RMSE of this paper is 33.6% of the RMSE in literature [56]. Furthermore,
as summarized in Table 8, the MAPE of the proposed method in the six transfer tasks is
less than the minimum MAPE reported in the literature [32,57,58]. In the literature [32],
the features of the first class in the input layer of the surface roughness prediction model
include the cutting parameters, which are feed per tooth, cutting depth, clamping torque
of vise, and the removed volume accumulation per cutter. The features extracted from
the vibration signals were selected in the second class if their correlation coefficients to
Ra values have absolute values higher than 0.4. The third class consists of the features of
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the cutting parameters as well as the selected features of the second class. Literature [58]
analyzed MAPE of the models of novel adaptive neuro-fuzzy inference system (NANFIS),
standard ANFIS (SANFIS), complex ANFIS (CANFIS), and standard ANFIS trained by
improved particle swarm optimization (IANFIS).

Table 8. MAPE of all six transfer tasks and MAPE of [32,57,58].

Proposed
[32] [57] [58]

Task Tool-A Tool-B

T1 1.82% 2.76%
Features of first class 29% 1-D CNN 8.92%

NANFIS 6.2%
T2 4.04% 5.13% IANFIS 6.2%

T3 4.65% 5.17%
Features of second class 25% FFT-DNN 8.35%

SANFIS 19.9%
T4 4.94% 4.90% CANFIS 25.6%

T5 4.71% 4.89%
Features of third class 18% FFT-LSTM 6.57%T6 1.56% 2.0%

The prediction results of the four models on CT2-2 of task T1 and on CT3-2 of task
T2 are illustrated in Figures 15 and 16, respectively. These results show that the proposed
model outperforms the other models in both T1 and T2 tasks and tracks the true surface
roughness with time well. The prediction result of the “Without VB” model indicates the
trend and considerable fluctuation of surface roughness. In contrast, because the “Without
TL” model accounts for the tool wear, the fluctuations are considerably smaller. However,
without transfer learning, the predicted roughness values by the “Without TL” model
significantly deviate from the ground truth roughness values once the cutting parameters
change. Therefore, the proposed model can integrate tool wear and sensor data to achieve
an accurate online surface roughness prediction.
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According to the results in Figures 15 and 16 and Tables 7 and 8, the proposed method
can better predict the surface roughness than the other methods and can be applied to a
relatively large parameter range of assembly interface machining. Although the proposed
method requires experimental data collection and processing, it can provide a reference
solution for the online surface quality monitoring of the assembly interface machining
process to avoid offline measurement and relying on worker experience.

5. Conclusions and Future Work

The machined surface quality of assembly interfaces is critical to the final quality of
an aircraft. Therefore, the online monitoring of the quality of the assembly interfaces of
machined surfaces can ensure that the appropriate machining parameters are adjusted,
and machining quality is achieved. This paper proposes a transfer-learning-based surface
roughness prediction method for assembly interfaces considering tool wear variation. The
proposed method can solve the surface roughness online prediction problem under variable
cutting parameters. The proposed method is validated by a machining experiment on the
assembly interface of the vertical tail of a large passenger aircraft. The contributions of this
study are as follows:

(1) The surface roughness of an assembly interface is predicted by integrating the time-
varying characteristics of sensor data and tool wear. This enables the prediction
of surface roughness to more accurately reflect the influence of the time-varying
machining process on surface roughness;

(2) The multi-time-step input SAE is designed to extract the time-series features of raw
input data. It is combined with the LSTM to predict the surface roughness degradation
in assembly interface machining;

(3) The proposed SAE–LSTM prediction model adopts transfer learning, which can solve
the problem encountered in the online prediction of surface roughness for assembly
interfaces under variable cutting parameters;

(4) Ablation studies are implemented by conducting a machining experiment on the
assembly interfaces of a titanium alloy vertical tail. The proposed method can predict
the surface roughness of assembly interfaces under variable cutting parameters and
achieve high prediction accuracy. It provides supporting data and theory for the online
monitoring of surface roughness and adjustment of cutting parameters in assembly in-
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terface machining. This method can also serve as a reference for the online monitoring
of assembly interface machining of spacecraft, wind power equipment, etc.

Currently, the proposed method still requires a small amount of label data to fine-tune
the target domain model. In the future, the complexity of modeling can be reduced by
automatic labeling. The proposed method is validated on only one part of the assembly
interface of a vertical tail. In practice, the machining process involves multiple assembly
interfaces, and the experimental conditions may be different; hence, this method will be
applied and verified in practical scenarios in the future. There are many other surface
texture parameters for evaluating surface quality, such as 3-D surface roughness, surface
waviness, surface form, etc. In the future, online monitoring of more parameters should
be studied to comprehensively evaluate surface quality. Further, the means for solving
the problem of surface roughness prediction considering different tools and machining
materials will be investigated. Finally, the method of predicting surface roughness by a
hybrid model that combines the strong interpretable model (numerical method, cutting
dynamics method, etc.) and artificial intelligence model is worthy of in-depth study.
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