
����������
�������

Citation: Al-Dawsari, A.;

Al-Turaiki, I.; Kurdi, H. Incremental

Ant-Miner Classifier for Online Big

Data Analytics. Sensors 2022, 22, 2223.

https://doi.org/10.3390/s22062223

Academic Editors: Shah Nazir and

Iván García-Magariño

Received: 7 February 2022

Accepted: 10 March 2022

Published: 13 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Incremental Ant-Miner Classifier for Online Big Data Analytics
Amal Al-Dawsari 1, Isra Al-Turaiki 2 and Heba Kurdi 1,3,*

1 Computer Science Department, College of Computer and Information Sciences, King Saud University,
Riyadh 11451, Saudi Arabia; 437203624@student.ksu.edu.sa

2 Information Technology Department, College of Computer and Information Sciences, King Saud University,
Riyadh 11451, Saudi Arabia; ialturaiki@ksu.edu.sa

3 Mechanical Engineering Department, Massachusetts Institute of Technology (MIT),
Cambridge, MA 02142-1308, USA

* Correspondence: hkurdi@ksu.edu.sa

Abstract: Internet of Things (IoT) environments produce large amounts of data that are challenging
to analyze. The most challenging aspect is reducing the quantity of consumed resources and time
required to retrain a machine learning model as new data records arrive. Therefore, for big data
analytics in IoT environments where datasets are highly dynamic, evolving over time, it is highly
advised to adopt an online (also called incremental) machine learning model that can analyze
incoming data instantaneously, rather than an offline model (also called static), that should be
retrained on the entire dataset as new records arrive. The main contribution of this paper is to
introduce the Incremental Ant-Miner (IAM), a machine learning algorithm for online prediction based
on one of the most well-established machine learning algorithms, Ant-Miner. IAM classifier tackles
the challenge of reducing the time and space overheads associated with the classic offline classifiers,
when used for online prediction. IAM can be exploited in managing dynamic environments to ensure
timely and space-efficient prediction, achieving high accuracy, precision, recall, and F-measure scores.
To show its effectiveness, the proposed IAM was run on six different datasets from different domains,
namely horse colic, credit cards, flags, ionosphere, and two breast cancer datasets. The performance of
the proposed model was compared to ten state-of-the-art classifiers: naive Bayes, logistic regression,
multilayer perceptron, support vector machine, K*, adaptive boosting (AdaBoost), bagging, Projective
Adaptive Resonance Theory (PART), decision tree (C4.5), and random forest. The experimental results
illustrate the superiority of IAM as it outperformed all the benchmarks in nearly all performance
measures. Additionally, IAM only needs to be rerun on the new data increment rather than the
entire big dataset on the arrival of new data records, which makes IAM better in time- and resource-
saving. These results demonstrate the strong potential and efficiency of the IAM classifier for big
data analytics in various areas.

Keywords: machine learning; association rule mining; ant colony optimization; incremental classifier;
big data analytics; IoT

1. Introduction

An online (also called incremental) machine learning model is one of the most effective
approaches in machine learning [1,2], where the model is continuously adapted based
on arriving data [3–7]. It can be used for various objectives such as clustering, dimen-
sionality reduction, feature selection, reinforcement learning, mining, inference, and data
representation [5]. Unlike traditional off-line (also called static) machine learning, and
emerging distributed and federated learning models [8], a complete set of training exam-
ples does not have to be available before starting the training process of an incremental
learning model [9]. Hence, online learning is becoming increasingly essential in the big data
analytics domain where datasets evolve over time, such as precision agriculture [10,11],
flood prediction [12,13], and business activities [6,14,15].

Sensors 2022, 22, 2223. https://doi.org/10.3390/s22062223 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0550-5115
https://orcid.org/0000-0001-6110-9657
https://doi.org/10.3390/s22062223
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062223?type=check_update&version=2

Sensors 2022, 22, 2223 2 of 17

Due to their success, a growing body of literature has been proposed for developing
incremental machine learning models. The complex process of incremental learning usually
makes it difficult to find an efficient solution. Therefore, soft computing techniques, such
as ant colony optimization (ACO), genetic algorithms (GA) and evolutionary algorithms
(EA), are increasingly gaining attention in this field. Soft computing, in contrast to hard
(conventional) computing, refers to approximate solutions based on artificial intelligence
(AI) that are tolerant of imprecision, uncertainty and partial truth. It provides cost-effective
solutions to complex real-life problems in different fields, e.g., [16–18].

However, none of the proposed soft computing approaches have considered the Ant-
Miner algorithm [19], which is known for its effectiveness in approaching challenging
machine learning problems and association rule mining [12,19–25]. Ant-Miner, which is
based on the ant colony optimization algorithm (ACO) [26], is usually exploited in learning
classification rules [14,23,27]. In Ant-Miner, each rule has three phases: rule construction,
rule pruning, and pheromone updating. In the rule construction phase, the probability
of adding a term to the current rule is based on a heuristic function and the pheromone
associated with the term. The value of the heuristic function corresponds to the quality of
the term. A rule is then pruned in the pruning phase by repeatedly removing irrelevant
terms that do not improve the quality of the rule. Finally, in the pheromone updating
phase, the pheromone quantities associated with terms appearing in the discovered rule are
increased in proportion to the quality of the rule. Additionally, the pheromone associated
with terms that do not appear in the rule is decreased. The process of rule building repeats
until reaching a user-specified number of rules, or the current constructed rule is the same
as the previously constructed rules [11,20].

In this paper, we propose an incremental rule-based machine learning algorithm,
Incremental Ant-Miner (IAM), for online prediction, based on Ant-Miner. The system starts
with feature extraction and initial classification rules generation from the existing training
dataset. Once a new increment to the dataset arrives, the IAM classifier runs only on the
new increment to enhance the learning process and optimize the classification rules. IAM
was applied to binary and multi-class classification datasets, such as horse colic, breast
cancer, credit card, flags, and ionosphere, to evaluate its performance in terms of accuracy,
precision, recall, and F-measure. When benchmarking IAM performance against ten rival
classifiers, naive Bayes, logistic regression, multilayer perceptron, support vector machine,
K*, adaptive boosting (AdaBoost), Bagging, Projective Adaptive Resonance Theory (PART),
decision tree (C4.5), and random forest, the results revealed the superiority of IAM in
almost all performance measures.

The rest of this paper is structured as follows: Section 2 reviews the related works on
applying Ant-Miner-based classifiers and incremental machine learning models in different
application areas. The proposed system design and evaluation methodology are presented
in Sections 3 and 4 respectively. Section 5 illustrates and discusses the experimental results.
Finally, the conclusions are presented in Section 6.

2. Literature Review

In this section we divide the related work into two sets: the first includes the literature
that introduced machine learning models based on Ant-Miner while the second includes
the works which propose incremental models.

2.1. Ant-Miner Models

Parpinelli et al. [19] proposed the Ant-Miner algorithm for data mining. They used six
public-domain datasets available in the University of California at Irvine (UCI) repository.
The performance of the algorithm was evaluated according to the predictive accuracy.
The accuracy was in the range from 59.67% to 96.04%. The developers compared the
performances of the proposed Ant-Miner and the learning algorithm for rule induction
(CN2) algorithm, on the six datasets. According to the predictive accuracy, the result
showed that Ant-Miner is competitive with the CN2 algorithm. Ant-Miner achieved better

Sensors 2022, 22, 2223 3 of 17

results in four datasets, whereas CN2 achieved better accuracy in one dataset, and both
algorithms obtained similar predictive accuracy in the remaining dataset. Additionally, the
Ant-Miner uncovered simpler (smaller) rules than those uncovered by CN2.

Liu et al. [28] used the ant colony optimization (ACO) algorithm for classification
rule discovery. They presented a modified version of the Ant-Miner. The presented
ACO algorithm used different pheromone levels, updating strategy, and state transition
rules. It was applied to two datasets: the Wisconsin breast cancer database and the Tic
Tac Toe endgame database, both obtained from the UCI repository. They evaluated the
performances of the proposed method using 10-fold cross-validation. The result was
compared with the original Ant-Miner. The proposed version uncovered more rules than
the original Ant-Miner and achieved greater accuracy values in both the datasets: 94.32%
for the breast cancer dataset, and 76.58% for the Tic Tac Toe endgame dataset.

Martens et al. [14] developed a system for credit card prediction based on the Ant-
Miner algorithm. The experiment was conducted using different types of datasets: a
German credit card dataset from the UCI repository, small- and medium-sized enterprises
(SME) dataset, and a banks dataset from the Bankscope database. The accuracy was calcu-
lated using the Ant-Miner algorithm based on the three datasets and compared with other
classifiers: SVM, C4.5, and majority vote. The accuracy results of the Ant-Miner ranged
from 71.9% to 86.2%. The result showed that Ant-Miner and C4.5 had an average accuracy
of 80.8%. However, in terms of the number of rules, Ant-Miner performed better.

Nimmy Cleetus et al. [29] used the Ant-Miner algorithm to obtain rules for analyzing
different forms of network attacks. They used a dataset with five types of attacks as class
values. They used Weka to generate rules for the attacks. By measuring its classification
accuracy, the rules created by Weka were not optimal. Therefore, they developed a rule
synthesis parser to eliminate the redundant rules, which used the Ant-Miner rule-based
classification algorithm. The accuracy results ranged from 90.82% to 100%. Thus, the Ant-
Miner algorithm obtained optimal results in this study and had better accuracy compared
with the rules that were not synthesized.

Lai et al. [13] proposed a study that used the Ant-Miner algorithm to analyze and
zone a flood risk at grid scale. The study was applied in the Dongjiang River Basin in
Southern China. The dataset was obtained from previous research in the same region.
The researchers applied the Ant-Miner algorithm to two versions of the dataset with
or without the socio-economic indices. The proposed model was developed using the
MYRA project, which is an Ant-Miner program that was developed using Java languages.
The performance accuracy of the proposed Ant-Miner algorithm was compared with the
decision tree method in both cases. The Ant-Miner algorithm achieved accuracy of 92.5%
and 94.9% in the two cases, with or without the socio-economic indices, respectively. Thus,
it was more accurate than the decision tree method.

Durgadevi et al. [24] presented a study that used the Ant-Miner algorithm to extract
classification rules for medical distress prediction. They used three benchmark datasets:
a heart disease dataset from Cleveland, a diabetes dataset from Pima, India, and a breast
cancer dataset from Wisconsin, all from the UCI repository. Preprocessing and feature
evaluation methods were applied to the three datasets. Mean selection, half selection,
and threshold selection were the three feature evaluation methods applied to reduce the
number of features in the datasets. The performance of the proposed Ant-Miner algorithm
was evaluated by measuring the accuracy values for the three datasets with different
feature evaluation methods. The accuracy of the Ant-Miner was compared with other
classifiers, RPF (reverse-path forwarding) network, CN2, AdaBoost, and bagging. The
accuracy results of Ant-Miner ranged from 96.57% to 99.85%. The results showed that the
Ant-Miner algorithm achieved the best accuracy result among other algorithms in eight
cases out of 12.

Sabri et al. [12] used the Ant-Miner algorithm to develop a classification prediction
model to predict flooding. The rainfall dataset used to develop the model was obtained from
three rainfall gauging stations in Perlis, Malaysia. The dataset was discretized and clustered

Sensors 2022, 22, 2223 4 of 17

in the preprocessing step. Discretization was performed using a symbolic aggregate
approximation (SAA) technique that was used to convert time-series data to discrete
data. Then, the data produced by SAA were clustered using a k-mean algorithm. The
classification prediction model was developed using the Ant-Miner algorithm with different
values for the number of ants. The lowest accuracy was about 80.60% for 25 ants. The
highest accuracy result was 84.29% with 30 ants, which was higher compared to the decision
tree (C4.5) accuracy result of 77.27% for the same dataset.

Ramalingam et al. [15] developed an Ant-Miner algorithm-based model for accurately
predicting stock prices. The Ant-Miner algorithm was applied to a Dow Jones Index dataset
and three other finance datasets from Yahoo. The performance of the proposed Ant-Miner
was evaluated using accuracy, F-measure, area under curve (AUC), discriminant power,
and Youden’s index. A study was presented to compare the performance of the Ant-Miner
on the Dow Jones Index dataset for stock price prediction with other classifiers, namely
naïve Bayes, a traditional machine learning (ML)-based classifier, radial basis function
kernel (RBF), C4.5, random forest (RF), classification and regression tree (CART), and Olex-
GA, a GA-based approach for the induction of rule-based text classifiers. The Ant-Miner
algorithm achieved an accuracy of 96%, which was the best result among the classifiers.
Moreover, the Ant-Miner was applied to Yahoo finance datasets and achieved accuracies
ranging from 56.16% to 84.61%.

To summarize, based on these studies, we can conclude that the Ant-Miner has
been used in prediction tasks for constructing offline classification models. In various
applications, the Ant-Miner algorithm has achieved good performance and has even
outperformed some other data mining techniques. However, based on the above, exploiting
the Ant-Miner power in constructing online incremental machine learning models has not
been explored yet.

2.2. Incremental Models

Zhang and Zhao [30] proposed an online fault prediction model for a nonlinear system.
The model was developed by combining sliding autoregressive moving average (ARMA)
modeling with online least squares support vector regression (LS-SVR) compensation. It
could accurately predict the fault of a nonlinear system, and the result demonstrated the
efficiency of the proposed online prediction model.

Gao et al. [31] proposed an incremental model to predict disk failure using the density
metric of edge samples. Many features are used by the model that increase the system
complexity. Therefore, the researchers identified these features through an incremental
structure. The proposed incremental prediction model was evaluated using recall rate
and public disk datasets. It outperformed several other algorithms, such as Isolation
using Nearest Neighbour Ensemble (iNNE), Isolation forest (iForest), and Local outlier
factor (LOF).

Tantisripreecha and Nuanwan [6] developed an online learning model for stock
movement prediction based on Linear Discriminant Analysis (LDA). The experiments
were applied to National Association of Securities Dealers Automated Quotations stocks
(APPLE, FACEBOOK, GOOGLE, and AMAZON). The results were compared with the
artificial neural network (ANN), K-Nearest Neighbour (KNN), and decision tree in both
batch and online learning approaches and demonstrated that the proposed LDA online
model reaches the highest performance among other algorithms in both batch learning and
online learning.

Jiang et al. [32] proposed an online prediction model based on matrix factorization
to predict retweeting behavior. The traditional models cannot adapt to the increase in
messages, which may decrease the prediction accuracy, so the online matrix factorization
model was developed. The proposed model was evaluated according to precision, recall,
F-measure, and accuracy. The results outperform baselines with higher accuracy and
shorter running time.

Sensors 2022, 22, 2223 5 of 17

Bin et al. [2] proposed a new incremental learning SVM algorithm. The proposed
method was based on the path following technique in the framework of Difference of
Convex (DC) programming. The experiment was conducted on a variety of benchmark
datasets, and the results proved the IL-SVM is faster than existing other batch and incre-
mental learning algorithms.

Rojas et al. [7] proposed a performance comparison of traditional and incremental
learning algorithms for the consumption behavior of Over the Top (OTT) applications. The
results demonstrated that incremental learning is a suitable approach for the changes that
the users make in the OTT over time. Additionally, the result analysis revealed that the
model combining Ozal bagging and the KNN algorithm was the best classifier using the
incremental approach.

Zou and Jun [33] proposed an online early warning prediction system for web server
failure based on running time. They obtained the key nodes on the server running path and
analyzed the running status data, then they used a combined Long Short-Term Memory-
Support vector machine (LSTM-SVM) algorithm to predict the occurrence of failure. The
resulting accuracy of the early crash warning was high compared with existing methods.

Tan et al. [34] proposed an online prediction model for video popularity in online
videos services (OVSs). The model was built through a video age-sensitive function based
on the relation between the average watched percentage and the future views of videos.
The performance results demonstrated the effectiveness of the proposed model through a
series of experiments.

Lv et al. [35] presented an online prediction model to predict ladle furnace tempera-
tures based on an extreme learning machine (ELM). The ELM model was first constructed,
then the online sequential learning was adopted to correct the ELM-based prediction model.
The experimental results revealed that the proposed ELM prediction model achieved
high accuracy, and the online sequential learning is extremely fast, making it suitable for
practical application.

The reviewed literature demonstrates the effectiveness of the incremental learning
model for online prediction objectives in various areas. However, to the best of our
knowledge, none of the previous work utilized Ant-Miner for online prediction, although
it has the potential to result in higher prediction accuracy and a smaller rule list. Therefore,
this study aimed to bridge this gap.

3. Proposed IAM Classifier Design

Machine learning algorithms, whether offline or online, need to be rerun upon the
arrival of a new dataset increment. The difference between the two approaches is that
offline classifiers should always be rerun on the entire dataset (the original dataset and the
new increment). On the other hand, online classifiers need only to be rerun on the newly
arrived increment. Accordingly, they are more time and space efficient for this particular
type of dataset. The proposed online classifier, IAM, is not different in this respect. It
simply utilizes a well-established rule mining algorithm for online learning, Ant-Miner,
which is usually used for offline learning, by enhancing its learning ability each time a new
increment to the dataset arrives. In a similar approach to [11], we divided each dataset into
three increments to mimic the dynamic arrival of data.

As shown in Figure 1, the process starts by training Ant-Miner on an existing dataset,
DS1. First, feature evaluation methods are applied, including correlation and information
gain; then, initial classification rules are generated. As a new increment to the dataset
arrives, DS2, the incremental classifier, IAM, analyzes the new dataset and updates the
previous knowledge base dynamically. On arrival of a new data increment, IAM runs only
on the new increment to enhance the learning process and optimize the classification rules.
Then, IAM is evaluated on a test dataset, DS3.

Sensors 2022, 22, 2223 6 of 17

Figure 1. Proposed IAM prediction model.

3.1. Initial Classifier Generation

The initial set of classification rules is generated by running Ant-Miner on an ex-
isting dataset, DS1. Every classification rule is comprised of two parts: antecedent and
consequence. The classification rules will have the following format:

IF antecedent THEN consequence
IF <term1> AND <term2> AND THEN <class>
Antecedent represents the conditional features and their values, whereas consequence

represents the decision feature with the corresponding decision value or class label. Each
term in the rule antecedent consists of a feature, operator, and value. The same applies
to the rule consequent, which has a class feature, operator, and class label or value. The
value belongs to the domain of the feature, whereas the operator element is a relational
feature [11,19,36,37]. The current version of Ant-Miner deals with both categorical and con-
tinuous features so that the operator element in the triple is always “=” since the continuous
(real-valued) features have been discretized by the model before use by the algorithm.

The goal of the Ant-Miner algorithm is to extract classification rules from a dataset by
providing a set of rules for each class of objects separately.

3.1.1. Pheromone Initialization

The initial pheromone values are equally distributed. These values are inversely
proportional to the number of all feature values [19,27,29,37,38]. It is defined by:

τij(t = 0) =
1

∑a
t=1 bi

(1)

Sensors 2022, 22, 2223 7 of 17

where:
a is the total number of features.
bi is the number of possible values for feature i.

3.1.2. Rule Creation

The rule of the Ant-Miner algorithm has two parts: the antecedent, which has the
conditional features, and the consequence, which has the predicted class. Initially, the list
of discovered rules is empty. The ant starts with an empty rule that does not have a term
in the antecedent part, and the training set contains all the training cases in the dataset.
The current partial path followed by the ant is represented by a current partial rule created
by that ant and the term chosen by the ant corresponding to the direction that extends to
that path. The ant starts adding one term at a time to its current partial rule. The quantity
of pheromones and the problem-dependent heuristic function associated with each term
determine whether that term should be added or not to the current partial rule of the ant.
Let us assume a rule conditional part such as termij is Ai = Vij, where Ai is the ith attribute
and Vij is its jth value. The probability that termij will be included in the current partial rule
is displayed by:

Pij (t) =
τij(t)× Nij

∑a
i=1 ∑bi

j=1 τij(t)× Nij, ∀ i ∈ I
(2)

where:
Nij is a problem dependent heuristic value for termij.
τij is the quantity of pheromone associated with termij at iteration t.
The ant continues adding one term at a time to its current partial rule until using all

features or meeting the user-specified threshold (minimum cases by a rule) [19,27,29,37,38].

3.1.3. Heuristic Function

In the Ant-Miner algorithm, the heuristic value is an information-theoretic value
measured for analyzing the quality of a rule, which means measuring the excellence
of the term to be added to the rule in terms of the ability of the term to improve the
predictive accuracy of that rule. The value of the heuristic function is based on a measure
of the quantity of information or entropy associated with the term. The value of the
heuristic function is normalized in Equation (3) to facilitate its use in measuring the
entropy [19,27,37,38]. The proposed normalized information-theoretic heuristic function
and the entropy is given by the following equations:

Nij =
log2(k)− In f oTij

∑a
i ∑bi

j log2(k)− In f oTij
(3)

In f oTij =

[
f req Tw

ij∣∣Tij
∣∣
]
× log2

[
f req Tw

ij∣∣Tij
∣∣
]

(4)

where:
k is the number of classes,
|Tij| is the total number of cases in partition Tij (the partition containing cases where

feature Ai has value Vij),
freq Tij w is the number of cases in partition Tij with class w.
The higher the value of InfoTij, the more uniformly distributed the classes are, and

so, the lower the probability that the current ant will prefer termij and add it to its current
partial rule.

3.1.4. Rule Pruning

Rule pruning is a common technique usually used in machine learning. It is used to
remove one term at a time from the rule if that term has been unduly added in the rule and

Sensors 2022, 22, 2223 8 of 17

removing it will improve the quality of the rule. The quality of the rule is measured using
the following equation:

Q =
TP

TP + FN
× TN

FP + TN
(5)

where:
TP is the number of cases covered by the rule and has the same class that is predicted

by the rule,
FP is the number of cases covered by the rule and having a class that was not predicted

by the rule,
FN is the number of cases that are not covered by the rule while having the class that

is predicted by the rule,
TN is the number of cases not covered by the rule and having a different class from

the class predicted by the rule.
Once the rule is constructed by the ant, it is pruned to remove irrelevant terms from

the rule antecedent. Then, the consequence of the rule is chosen to be the most frequent
class value among the set of training examples covered by the rule. The rule pruning
process increases the predictive accuracy of the rule, which helps in avoiding overfitting
problems to the training data. Additionally, rule pruning improves the simplicity of the
rule, as the shorter rule is easier to be understood by the user than the longer one. The
process of rule pruning is repeated until one of the following criteria is met:

1. The rule has just one term, or
2. There is no term whose removal will improve the quality of the rule.

3.1.5. Pheromone-Changing Rule

In the rule discovery context, the pheromone-changing rule means updating the
probability of the termij to be chosen by another ant in the future, whether by increasing or
decreasing that probability. After each ant constructs its rule and that rule is pruned, the
quantity of pheromones in all terms will be updated as follows:

Tij(t + 1) = Tij(t) + Tij(t)×Q ∀ i, j ∈ R (6)

where:
R is the set of terms that occur in the rule constructed by an ant at iteration,
Q is the quality of the rule.
For simulating the phenomenon of evaporation in the ACO system, the quantity of

pheromones associated with each termij that do not take place in the constructed rule will
be decreased. The pheromone reduction of an unused term is performed by dividing the
value of each Tij by the summation of all Tij.

3.2. Dynamic Classifier Generation

In this step, the classifier is trained whenever a new dataset DS2 arrives. Initially,
DS2 generates a rule set by following the same steps as in the initial classifier generation.
Then, the new rule set is upgraded using the previously extracted rule set of the initial
classifier to develop the dynamic classifier. In this step, the system computes the similarity
between each rule in the new ruleset with each rule in the old ruleset if they have the same
class value.

Definition 1. The similarity value of new rule j with the existing ruleset Rold is reflected in
Equation (7).

S =
1

Rj
new

max
(

Ri
old ∩ Rj

new

)
(7)

where:
1 ≤ t < n, for all j = 1,2,3, m

Sensors 2022, 22, 2223 9 of 17

Rj
new is the rule number j in the new rule list.

Ri
old is the rule number i in the old rule list.

max
(

Ri
old ∩ Rj

new

)
is the maximum intersection terms between Rj

new and each rule in
the old rule list.

If the similarity between the new rule and the old rule is 1, and the new rule has the
same length as the old rule, then the new rule is added to the dynamic rule set, and its
quality is upgraded using the fitness function, based on Definition 2. Otherwise, if the
similarity between the new rule and the old rule is 1, and the old rule has more terms in the
antecedent than the new rule, the old rule is added to the dynamic ruleset. Subsequently, if
the similarity between the new rule and the old rule is zero or greater than 0 and less than
1, the new rule is added to the dynamic ruleset without changing the quality.

Definition 2. The fitness function is calculated in Equation (8) by taking the weighted sum of the
quality of the rule given in Equation (5) and the similarity measure value computed in Equation (7).

Fitness = w×QRnew + (1− w)S (8)

where:
w is a weight factor set experimentally for each dataset.
QRnew is the quality of the rule in the new list.
Table 1 lists the main parameters of Ant-Miner and IAM and their assigned values.

We based the pheromone value on the number of attributes in the dataset and the number
of values for each attribute, whereas we used the entropy associated with the term as the
base for the heuristic value and the heuristic as the base for the probability value of each
term. The pheromone values associated with the term and the quality value of a rule were
calculated using TP, FP, TN, and FN. The decision to change the pheromone was made
according to the values of the pheromone on the pervious iteration and the quality of
the rule.

Table 1. List of IAM parameters and their settings.

Parameter Value Foundation

Colony size 120 Empirically
Max iterations 3000 Empirically

Minimum cases 10 Default value in Myra
Rule pruner method backtrack Default value in Myra
Uncovered examples 10 Default value in Myra

No. of convergence test iterations 10 Default value in Myra
weight value 0.5 Empirically

4. Methodology
4.1. Dataset Selection

The proposed IAM classifier was applied to six different datasets available in the
University of California at Irvine (UCI) repository [39]. For simplicity, the selected datasets
are relatively small in size due to the limited computational capability of the hardware used
to run the models. The main objective is to prove the concept rather than comprehensively
evaluate the proposed model. To ensure generality, datasets were selected from different
domains, namely horse colic, credit cards, flags, ionosphere, and two breast cancer datasets.
The dataset’s descriptions are provided in the corresponding sub-sections of Section 5. The
main features of each dataset are summarized in Table 2.

The proposed model deals with discrete-valued datasets and continuous datasets, as
datasets are discretized before using the algorithm. The datasets were treated as incremental
datasets. Thus, each dataset was divided randomly into three parts: 40% for DS1 as an old
dataset, 30% for DS2 as an increment to the dataset, and 30% for DS3 as a test dataset.

Sensors 2022, 22, 2223 10 of 17

Table 2. Summary of selected datasets.

Dataset Name No. Records No. Feature No. Classes

Breast cancer (Ljubljana) 286 9 2
Breast cancer (Wisconsin) 699 10 2

Horse colic 368 22 2
Credit card 690 15 2

Flags 194 30 8
Ionosphere 351 35 2

4.2. Dataset Preparation

For developing the incremental prediction model, we need each dataset to be parti-
tioned into at least three parts to mimic an evolving dataset:

1. The first part is called the old dataset, denoted by DS1. It represents the initial existing
dataset and is used to generate the initial rules using the Ant-Miner algorithm.

2. The second part, denoted by DS2, mimics a new increment to the dataset. This dataset
is used to generate the new rules using the Ant-Miner algorithm. These new rules are
used along with the initial rules to find out the final incremental rule list and update
the rule quality before adding it to the incremental rule list.

3. The third part, denoted by DS3, is the test dataset. It is used to evaluate the proposed
system based on the incremental rule list.

4.3. Benchmark Algorithms

To evaluate IAM performance, we used ten state-of-the-art machine learning algo-
rithms, in a similar approach to [11]: naïve Bayes [40], K* [41], Ada-Boost, bagging [40],
PART [42], decision tree (C4.5), multilayer perceptron (MLP), SVM, random forest, and
logistic regression [40].

4.4. Performance Measures

We used four performance measures to evaluate the proposed IAM and the benchmark al-
gorithms: accuracy, precision, recall, and F-measure. The evaluation measures were computed
based on the average of the classes. Those are denoted by Formulas (9)–(12), respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Fmeasure =
2(

1
precision + 1

recall

) (12)

where:
TP (true positives) is the total number of samples that are correctly classified as “infested”,
FP (false positive) represents the total number of samples that are incorrectly classified

as “infested”,
FN (false negatives) represents the total number of samples that are incorrectly classi-

fied as “healthy”, and
TN (true negative) represents the total number of samples that are correctly classified

as “healthy”.

Sensors 2022, 22, 2223 11 of 17

5. Results and Discussion

All experiments were run on the same hardware, i.e., a laptop with the following
specifications: MacBook Pro 9.2; Operating System: OS Mojave 10.14.2; Processor: Intel
Core 17; Speed: 2.9 GHz; Memory: 8 GB 1600 MHz DDR3. Java was used for the imple-
mentation of the proposed IAM, and Weka tools [43] were used for benchmarking IAM
with the state-of-the-art machine learning algorithms and dataset pre-processing.

The proposed IAM model was applied to six different datasets: breast cancer (Ljubl-
jana), horse colic, credit card, flags, ionosphere, and breast cancer (Wisconsin) datasets.
This section presents the results of applying the proposed IAM model to these datasets and
the benchmark algorithms.

5.1. The Results of the Breast Cancer (Ljubljana) Dataset

The breast cancer (Ljubljana) dataset has nine features and 286 records that are clas-
sified into two classes. We applied the IAM to this dataset by trying different splitting
parameters to obtain the best split that provides the highest performance result, as pre-
sented in Table 3. The highest values are bolded for each performance measure.

Table 3. Classifiers’ performances on the breast cancer (Ljubljana) dataset. (The bold numbers are the
highest value of each measure).

Algorithm Accuracy Precision Recall F-Measure

Naïve Bayes 71.68% 77.80% 83.60% 80.60%
Logistic 68.88% 75.20% 83.10% 79.00%

MLP 64.68% 75.00% 74.60% 74.80%
SVM 69.58% 75.00% 85.10% 79.70%
KStar 73.43% 76.80% 89.10% 82.50%

AdaBoost 70.28% 77.10% 82.10% 79.50%
Bagging 69.23% 72.20% 91.50% 80.70%

PART 71.33% 74.50% 90.00% 81.50%
C4.5 75.52% 75.70% 96.00% 84.60%

Random forest 69.58% 74.20% 87.10% 80.10%
IAM 78.18% 89.47% 80.95% 85.00%

The above results display the highest performance values obtained by the IAM algo-
rithm with 78.18% for accuracy, 89.47% for precision, and 85% for F-measure. Conversely,
the highest accuracy of the benchmark algorithms was 75.52%, whereas the highest recall
was 96% achieved by C4.5, the highest F-measure was 84.60%, and the highest precision
value was 77.8%. These results show that the IAM algorithms outperformed all the state-
of-the-art algorithms when applied to the breast cancer (Ljubljana) dataset regarding the
accuracy, precision, and F-measure.

5.2. The Results of the Breast Cancer (Wisconsin) Dataset

The breast cancer (Wisconsin) dataset has 10 features and 699 records classified into
two classes. We applied the IAM to this dataset by trying different splitting parameters to
obtain the best split that provided the highest performance result, as presented in Table 4.
The highest values are bolded for each performance measure.

The above results reveal that the highest performance values obtained from applying
IAM classifier on the breast cancer (Wisconsin) dataset were 98.65% for accuracy, 94.4%
for precision, 100% for recall, and 97.1% for F-measure. Conversely, the highest accuracy
of the benchmark classifiers was 96.85% achieved by random forest, while the highest
precision was 94.7%, achieved by SVM, differing slightly from IAM. The highest recall value
was 97.5%, achieved by naïve Bayes, and the highest F-measure was 95.5%, also achieved
by random forest. These results demonstrate that the IAM algorithms outperformed all the
state-of-the-art algorithms regarding accuracy, precision, and F-measure.

Sensors 2022, 22, 2223 12 of 17

Table 4. Classifiers’ performances on the breast cancer (Wisconsin) dataset. (The bold numbers are
the highest value of each measure).

Algorithm Accuracy Precision Recall F-Measure

Naïve Bayes 95.99% 91.4% 97.5% 94.4%
Logistic 96.56% 95% 95% 95%

MLP 95.85% 93.1% 95% 94%
SVM 96.71% 94.7% 95.9% 95.3%
KStar 81.25% 84.8% 55.6% 67.2%

AdaBoost 94.85% 92.9% 92.1% 94.8%
Bagging 95.85% 92.7% 95.4% 94.1%

PART 94.42% 92.4% 91.3% 91.9%
C4.5 94.56% 91.8% 92.5% 92.1%

Random forest 96.85% 94% 97.1% 95.5%
IAM 98.65% 94.4% 100% 97.1%

5.3. The Results of the Horse Colic Dataset

The horse colic dataset has 22 features and 368 records that are classified into two
classes. We applied the IAM on this dataset using different splitting parameters to get
the best performance result. Moreover, the benchmark algorithms were applied using
10 cross-validation folds. The results are presented in Table 5. The highest values are
bolded for each performance measure.

Table 5. Classifiers’ performances on the horse colic dataset. (The bold numbers are the highest value
of each measure).

Algorithm Accuracy Precision Recall F-Measure

Naïve Bayes 77.99% 85.10% 78.90% 81.90%
Logistic 80.99% 86.20% 83.20% 84.60%

MLP 80.43% 85.10% 83.60% 84.30%
SVM 82.61% 85.30% 87.50% 86.40%
KStar 76.63% 83.20% 78.90% 81.00%

AdaBoost 81.25% 84.40% 86.20% 85.30%
Bagging 86.41% 86.40% 93.10% 89.60%

PART 84.78% 84.90% 92.20% 88.40%
C4.5 85.32% 84.80% 85.30% 88.90%

Random forest 86.41% 87.00% 92.20% 89.50%
IAM 86.11% 95.24% 83.33% 89.88%

The highest performance values obtained from applying the IAM algorithm on the
horse colic dataset were 86.11% for accuracy, 95.24% for precision, 83.33% for recall, and
88.89% for F-measure. However, the performance accuracy of the benchmark algorithms
ranged from 76.63% to 86.41%, whereas the highest values for the other measures were 87%
for precision, 93.1% for recall, and 89.6% for F-measure. The above results demonstrate
that the IAM, bagging, and random forest classifiers outperformed all the other state-of-
the-art classifiers.

5.4. The Results of the Credit Card Dataset

The credit card dataset has 15 features and 690 records that are classified into two
classes. We applied the IAM to this dataset using different splitting parameters to obtain
the best performance result. Additionally, the benchmark algorithms were applied using
10-fold cross-validation. The results are presented in Table 6. The highest values are bolded
for each performance measure.

Sensors 2022, 22, 2223 13 of 17

Table 6. Classifiers’ performances on the credit card dataset. (The bold numbers are the highest value
of each measure).

Algorithm Accuracy Precision Recall F-Measure

Naïve Bayes 77.68% 85.90% 59.60% 70.40%
Logistic 85.21% 81.50% 86.30% 83.90%

MLP 83.62% 81.70% 81.40% 81.60%
SVM 84.93% 78.00% 92.20% 84.50%
KStar 78.98% 82.40% 67.10% 74.00%

AdaBoost 84.64% 82.30% 83.40% 82.80%
Bagging 85.65% 81.30% 87.90% 84.50%

PART 85.36% 83.20% 84.00% 83.60%
C4.5 86.09% 84.80% 83.70% 84.30%

Random forest 86.96% 85.80% 84.70% 85.20%
IAM 92.75% 93.75% 86.54% 90.00%

The above results reveal that the highest performance values obtained from applying
IAM classifier on the credit card dataset were 92.75% for accuracy, 93.75% for precision,
86.54% for recall, and 90% for F-measure. Conversely, the highest accuracy of the benchmark
classifiers was 86.96% achieved by random forest, whereas the highest precision was 85.9%,
achieved by naïve Bayes. The highest recall value was 92.2% achieved by SVM, and the
highest F-measure was 85.2%, also achieved by random forest. These results show that
the IAM algorithms outperformed all the state-of-the-art algorithms regarding accuracy,
precision, and F-measure.

5.5. The Results of the Flags Dataset

The flags dataset has 30 features and 194 records that are classified into eight classes.
We applied the IAM to this dataset using different splitting parameters to obtain the best
performance result. Additionally, we applied the benchmark algorithms using 10-fold
cross-validation. The results are presented in Table 7. The highest values are bolded for
each performance measure.

Table 7. Classifiers’ performances on the flags dataset. (The bold numbers are the highest value of
each measure).

Algorithm Accuracy Precision Recall F-Measure

Naïve Bayes 82.62% 84.2% 82.6% 82.9%
Logistic 88.89% 88.9% 88.9% 88.7%

MLP 91.16% 91.8% 91.2% 90.9%
SVM 88.6% 89.1% 88.6% 88.3%
KStar 84.61% 86.6% 84.6% 83.5%

AdaBoost 90.88% 91.5% 90.9% 90.6%
Bagging 91.16% 91.1% 91.2% 91.1%

PART 91.73% 91.8% 91.7% 91.6%
C4.5 91.45% 91.5% 91.5% 91.3%

Random forest 92.87% 92.9% 92.9% 92.8%
IAM 98.08% 98.9% 98% 98.2%

Table 5 shows that IAM outperformed all the state-of-the-art algorithms regarding
all the utilized performance measures. The IAM classifier received 98.08% for accuracy,
98.9% for precision, 98% for recall, and 98.2% for F-measure values. However, the highest
results obtained from the other classifiers were 92.87% for accuracy, 92.9% for precision
and recall, and 08.8% for F-measure. These results demonstrate the efficiency of IAM for
flags prediction.

Sensors 2022, 22, 2223 14 of 17

5.6. The Results of the Ionosphere Dataset

The ionosphere dataset has 35 features and 351 records that are classified into two
classes. We applied the IAM to this dataset using different splitting parameters to obtain
the best performance result. Additionally, we applied the benchmark algorithms using
10-fold cross-validation. The results are presented in Table 8. The highest values are bolded
for each performance measure.

Table 8. Classifiers’ performances on the ionosphere dataset. (The bold numbers are the highest
value of each measure).

Algorithm Accuracy Precision Recall F-Measure

Naïve Bayes 40.72% N/A 40.7% N/A
Logistic 47.93% N/A 47.9% N/A

MLP 60.31% N/A 60.3% N/A
SVM 58.76% N/A 58.8% N/A
KStar 50% N/A 50% N/A

AdaBoost 51.03% N/A 51% N/A
Bagging 35.56% N/A 35.6% N/A

PART 56.18% N/A 56.2% N/A
C4.5 57.73% N/A 57.7% N/A

Random forest 62.37% N/A 62.4% N/A
IAM 64.58% N/A N/A N/A

The above results of applying IAM and the state-of-the-art classifiers to the ionosphere
dataset were relatively low. There are several unknown values for precision, recall, and
F-measure due to the division by zero not being computed. However, regarding the
accuracy measure, the IAM classifier had the highest value (64.58%), whereas the other
classifier’s accuracy values were in the range of 35–62%. These results show that IAM
outperformed the other classifiers for ionosphere prediction.

5.7. Discussion

To summarize, we proposed the IAM prediction model to avoid running the classifier
repeatedly on the entire dataset as it evolves. The model ran on six datasets having a
different number of records, features, and classes. All the features of the breast cancer
(Ljubljana) dataset are nominal, whereas all the features of the ionosphere and breast cancer
(Wisconsin) datasets are numeric. The other datasets, i.e., horse colic, credit card, and
flags, have both nominal and numeric features. The number of records in these datasets
is in the range from 194 to 699 records. Additionally, these datasets are all binary, as
they have two classes, except flags, which has eight different classes. The performance
results from running the IAM algorithm and ten state-of-the-art benchmark algorithms on
these datasets demonstrated that the IAM classifier outperformed all of the benchmark
classifiers, except the bagging and random forest classifiers, where they approximately
achieved comparable accuracy for the horse colic dataset. The achieved high accuracy of
the proposed model can be attributed to the fact that previously mined classification rules
by IAM are fed back to the system, with the newly arrived dataset increment, for pruning
and enhancements, which results in an optimized rule set. It is important here to stress that,
as IAM runs only on newly arriving increments, it grants better time- and resource-saving.
These results demonstrated the strong potential and efficiency of the IAM classifier for
prediction objectives in various areas.

6. Conclusions

In this paper, we propose IAM, an incremental classifier based on one of the most
effective rule mining algorithms, Ant-Miner, to ensure an optimal number of classification
rules. IAM dynamically generates optimized classification rules for an evolving dataset
using association rule mining and the Ant-Miner algorithm by improving the existing

Sensors 2022, 22, 2223 15 of 17

knowledge base on the arrival of new data records. IAM was applied to six datasets
having varying number of features, records, and classes. We considered four performance
measures: accuracy, precision, recall, and F-measure. To evaluate the performance of the
proposed IAM, we compared its performance with 10 rival big data analytics algorithms,
namely, naive Bayes, logistic regression, K*, Ada-Boost, bagging, PART, C4.5, multilayer
perceptron, support vector machine, and random forest, all of which have previously
demonstrated their effectiveness in different areas. These algorithms were run using a 10-
fold cross-validation method. According to the experimental results, IAM achieved superior
results, which demonstrates its effectiveness. The time efficiency of IAM is undeniable
given that it does not require training on the entire dataset as it evolves.

For future work, we aim to improve the proposed IAM classifier and enhance its
performance in multi-class datasets. Additionally, the classification rules extracted from
the Ant-Miner can be used with other classifiers, such as C4.5, to implement hybridization,
which can provide better results. Furthermore, IAM parameters were experimentally
set, and the system may benefit more from a self-adapted parameter setting scheme. In
additions, the mini batch approach should be tested where each dataset is partitioned into
a larger number of increments of smaller sizes.

Author Contributions: Conceptualization, I.A.-T. and H.K.; Formal analysis, A.A.-D. and I.A.-T.;
Funding acquisition, H.K.; Investigation, I.A.-T. and H.K.; Methodology, A.A.-D. and I.A.-T.; Software,
A.A.-D.; Supervision, I.A.-T. and H.K.; Validation, A.A.-D.; Visualization, A.A.-D.; Writing—original
draft, A.A.-D., I.A.-T. and H.K.; Writing—review and editing, A.A.-D. and H.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from Researchers Supporting Unit, Project number
(RSP-2021/204), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ade, R.P.; Deshmukh, P.R. Methods for incremental learning: A survey. Int. J. Data Min. Knowl. Manag. Process 2013, 3, 119.
2. Bin, G.; Yuan, X.T.; Chen, S.; Huang, H. New incremental learning algorithm for semi-supervised support vector machine.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK,
19–23 August 2018; pp. 1475–1484.

3. Silver, D.L. Machine lifelong learning: Challenges and benefits for artificial general intelligence. In Artificial General Intelligence—
4th International Conference; Springer: Berlin/Heidelberg, Germany, 2011; pp. 370–375. [CrossRef]

4. Silver, D.L.; Yang, Q.; March, L.L. Lifelong machine learning systems: Beyond learning algorithms. In Proceedings of the 2013
AAAI Spring Symposium, Palo Alto, CA, USA, 25–27 March 2013.

5. Gepperth, A.; Barbara, H. Incremental learning algorithms and applications. In Proceedings of the European Symposium on
Artificial Neural Networks (ESANN), Bruges, Belgium, 2–4 October 2016.

6. TTantisripreecha, T.; Nuanwan, S. Stock market movement prediction using LDA-online learning model. In Proceedings of
the 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), Busan, Korea, 27–29 June 2018; pp. 135–139.

7. Rojas, J.S.; Rendon, A.; Corrales, J.C. Consumption behavior analysis of over the top services: Incremental learning or traditional
methods? IEEE Access 2019, 7, 136581–136591. [CrossRef]

8. Hu, K.; Li, Y.; Xia, M.; Wu, J.; Lu, M.; Zhang, S.; Weng, L. Federated Learning: A Distributed Shared Machine Learning Method.
Complexity 2021, 2021, 8261663. [CrossRef]

9. Rico-Juan, J.R.; Iñesta, J.M. Adaptive training set reduction for nearest neighbor classification. Neurocomputing 2014, 138, 316–324.
[CrossRef]

10. Mucherino, A.; Papajorgji, P.; Pardalos, P.M. A survey of data mining techniques applied to agriculture. Oper. Res. 2009, 9,
121–140. [CrossRef]

http://doi.org/10.1007/978-3-642-22887-2_45
http://doi.org/10.1109/ACCESS.2019.2942782
http://doi.org/10.1155/2021/8261663
http://doi.org/10.1016/j.neucom.2014.01.033
http://doi.org/10.1007/s12351-009-0054-6

Sensors 2022, 22, 2223 16 of 17

11. Sengupta, S.; Das, A.K. Particle Swarm Optimization based incremental classifier design for rice disease prediction. Comput.
Electron. Agric. 2017, 140, 443–451. [CrossRef]

12. Sabri, S.N.; Saian, R. Predicting Flood in Perlis Using Ant Colony Optimization. J. Phys. Conf. Ser. 2017, 855, 012040. [CrossRef]
13. Lai, C.; Shao, Q.; Chen, X.; Wang, Z.; Zhou, X.; Yang, B.; Zhang, L. Flood risk zoning using a rule mining based on ant colony

algorithm. J. Hydrol. 2016, 542, 268–280. [CrossRef]
14. Martens, D.; Van Gestel, T.; De Backer, M.; Haesen, R.; Vanthienen, J.; Baesens, B. Credit rating prediction using Ant Colony

Optimization. J. Oper. Res. Soc. 2010, 61, 561–573. [CrossRef]
15. Ramalingam, S.; Sujatha, P.; Univeristy, P. An extensive work on stock price prediction using Ant Colony Optimization Algorithm

(ACO-SPP). Int. J. Intell. Eng. Syst. 2018, 11, 85–94. [CrossRef]
16. Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep learning-based appearance features extraction for automated carp species

identification. Aquac. Eng. 2020, 89, 102053. [CrossRef]
17. Shamshirband, S.; Rabczuk, T.; Chau, K.-W. A survey of deep learning techniques: Application in wind and solar energy resources.

IEEE Access 2019, 7, 164650–164666. [CrossRef]
18. Fan, Y.; Xu, K.; Wu, H.; Zheng, Y.; Tao, B. Spatiotemporal Modeling for Nonlinear Distributed Thermal Processes Based on KL

Decomposition, MLP and LSTM Network. IEEE Access 2020, 8, 25111–25121. [CrossRef]
19. Parpinelli, R.S.; Lopes, H.; Freitas, A. Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 2002, 6,

321–332. [CrossRef]
20. Rafael, P.; Heitor, L.; Alex, F. Classification-rule discovery with an ant colony algorithm. In Encyclopedia of Information Science and

Technology, 1st ed.; IGI Global: Hershey, PA, USA, 2005; pp. 420–424.
21. Cleary, J.G.; Trigg, L.E. K*: An Instance-based Learner Using an Entropic Distance Measure. In Machine Learning Proceedings,

Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; Morgan Kaufmann:
Waltham, MA, USA, 1995; pp. 108–114.

22. Nicholas, H.; Alex, F. A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J. Artif. Evol. Appl. 2008,
2008, 316145.

23. Majety, B.; Srinivasa, J. Rule discovery based classification on biological dataset using ant colony optimization. Int. J. Res. Comput.
Commun. Technol. 2015, 4, 530–534.

24. Durgadevi, M.; Kalpana, R. Medical distress prediction based on Classification Rule Discovery using ant-miner algorithm.
In Proceedings of the 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India,
5–6 January 2017.

25. Sheoran, K.; Tomar, P.; Mishra, R. A novel quality prediction model for component based software system using ACO–NM
optimized extreme learning machine. Cogn. Neurodyn. 2020, 14, 509–522. [CrossRef]

26. Dorigo, M. Ant Colony Optimization. Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 1991.
27. Rajpiplawala, S.; Singh, D.K. Review on ant miners: Algorithms for classification rules extraction using ant colony approach.

Int. J. Comput. Appl. 2014, 86, 34–38. [CrossRef]
28. Liu, B.; Abbass, H.A.; McKay, B. Classification rule discovery with ant colony optimization. In Proceedings of the IEEE/WIC

International Conference on Intelligent Agent Technology, Halifax, NS, Canada, 13–17 October 2003; pp. 83–88.
29. Cleetus, N.; Dhanya, K.A. Rule induction using ant-miner algorithm. Int. J. Sci. Eng. Res. 2014, 5, 6–11.
30. Su, S.; Zhang, W.; Zhao, S. Fault prediction for nonlinear system using sliding ARMA combined with online LS-SVR. Math. Probl.

Eng. 2014, 2014, 692848. [CrossRef]
31. Gao, X.; Zha, S.; Li, X.; Yan, B.; Jing, X.; Li, J.; Xu, J. Incremental prediction model of disk failures based on the density metric of

edge samples. IEEE Access 2019, 7, 114285–114296. [CrossRef]
32. Jiang, L.; Gao, X.; Chen, G. Online matrix factorization model for retweeting behavior prediction. In Proceedings of the 2018 IEEE

International Conference on Progress in Informatics and Computing (PIC), Suzhou, China, 14–16 December 2018; pp. 21–25.
33. Zou, Z.; Jun, A. Online prediction of server crash based on running data. In Proceedings of the 2020 IEEE 20th International

Conference on Software Quality, Reliability and Security Companion (QRS-C), Macau, China, 11–14 December 2020; pp. 7–14.
34. Tan, Z.; Zhang, Y.; Hu, W. Online prediction of video popularity in OVSs: A video age-sensitive model with beyond views

features. IEEE Trans. Broadcast. 2020, 66, 241–250. [CrossRef]
35. Lv, W.; Mao, Z.; Jia, M. ELM based LF temperature prediction model and its online sequential learning. In Proceedings of the

2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 23–25 May 2012; pp. 2362–2365.
36. Palaniappan, S.; Awang, R. Intelligent heart disease prediction system using techniques. In Proceedings of the 2008 IEEE/ACS

International Conference on Computer Systems and Applications, Doha, Qatar, 31 March–4 April 2008; pp. 108–115.
37. Czibula, G.; Marian, Z.; Czibula, I.G. Software defect prediction using relational association rule mining. Inf. Sci. 2014, 264,

260–278. [CrossRef]
38. Nasira, G.M.; Hemageetha, N. Vegetable price prediction using data mining classification technique. In Proceedings of the Inter-

national Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012), Salem, India, 21–23 March 2012;
pp. 99–102. [CrossRef]

39. Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine,
CA, USA, 2019. Available online: http://archive.ics.uci.edu/ml (accessed on 10 January 2022).

http://doi.org/10.1016/j.compag.2017.06.024
http://doi.org/10.1088/1742-6596/855/1/012040
http://doi.org/10.1016/j.jhydrol.2016.09.003
http://doi.org/10.1057/jors.2008.164
http://doi.org/10.22266/ijies2018.1231.09
http://doi.org/10.1016/j.aquaeng.2020.102053
http://doi.org/10.1109/ACCESS.2019.2951750
http://doi.org/10.1109/ACCESS.2020.2970836
http://doi.org/10.1109/TEVC.2002.802452
http://doi.org/10.1007/s11571-020-09585-7
http://doi.org/10.5120/15040-3386
http://doi.org/10.1155/2014/692848
http://doi.org/10.1109/ACCESS.2019.2935628
http://doi.org/10.1109/TBC.2019.2954060
http://doi.org/10.1016/j.ins.2013.12.031
http://doi.org/10.1109/icprime.2012.6208294
http://archive.ics.uci.edu/ml

Sensors 2022, 22, 2223 17 of 17

40. Han, J.; Pei, J.; Kamber, M. Data Mining; Morgan Kaufmann: Waltham, MA, USA, 2011.
41. Madhusudana, C.; Kumar, H.; Narendranath, S. Condition monitoring of face milling tool using K-star algorithm and histogram

features of vibration signal. Eng. Sci. Technol. Int. J. 2016, 19, 1543–1551. [CrossRef]
42. Ali, A.B.M.S.; Smith-Miles, K. On learning algorithm selection for classification. Appl. Soft Comput. 2006, 6, 119–138. [CrossRef]
43. Frank, E.; Hall, M.A.; Witten, L.H. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann:

Burlington, MA, USA, 2016.

http://doi.org/10.1016/j.jestch.2016.05.009
http://doi.org/10.1016/j.asoc.2004.12.002

	Introduction
	Literature Review
	Ant-Miner Models
	Incremental Models

	Proposed IAM Classifier Design
	Initial Classifier Generation
	Pheromone Initialization
	Rule Creation
	Heuristic Function
	Rule Pruning
	Pheromone-Changing Rule

	Dynamic Classifier Generation

	Methodology
	Dataset Selection
	Dataset Preparation
	Benchmark Algorithms
	Performance Measures

	Results and Discussion
	The Results of the Breast Cancer (Ljubljana) Dataset
	The Results of the Breast Cancer (Wisconsin) Dataset
	The Results of the Horse Colic Dataset
	The Results of the Credit Card Dataset
	The Results of the Flags Dataset
	The Results of the Ionosphere Dataset
	Discussion

	Conclusions
	References

