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Abstract: Power inversion (PI) is a known adaptive beamforming algorithm that is widely used in
wireless communication systems for anti-jamming purposes. The PI algorithm is typically imple-
mented in a digital domain, which requires the radio-frequency signals to be down-converted into
base-band signals, and then sampled by ADCs. In practice, the down-conversion circuit will introduce
phase noises into the base-band signals, which may degrade the performance of the algorithm. At
present, the impacts of phase noise on the PI algorithm have not been studied, according to the open
literature, which is, however, important for practical design. Therefore, in this paper, we present a
theoretical analysis on the impacts, provide a new mathematical model of the PI algorithm, and offer
a closed-form formula of the interference cancellation ratio (ICR) to quantify the relations between
the algorithm performance and the phase noise level, as well as the number of auxiliary antennas.
We find that the ICR in decibel decreases logarithmically linearly with the phase noise variance. In
addition, the ICR improves with an increasing number of auxiliary antennas, but the increment is
upper-bounded. The above findings are verified with both simulated and measured phase noise data.

Keywords: adaptive beamforming; power inversion algorithm; anti-jamming; down-conversion;
phase noise

1. Introduction

Adaptive beamforming [1–3] is widely used for anti-jamming in wireless communi-
cations, which suppresses interferences by forming array beam nulls in the directions of
the interferers. The power inversion (PI) algorithm [4–6] is one of the known adaptive
beamforming algorithms that has been found to have abundant applications in wireless
communication and navigation systems. In practice, the performance of the PI algorithm
is affected by non-ideal factors of the hardware [7–10]. Typical hardware impairments
include channel mismatch, I/Q imbalance, array element perturbation, etc. Studying the
impacts of these factors contributes greatly to practical implementations, e.g., for proposing
specific requirements on the circuit design parameters, or analyzing the bottleneck factors
of the system.

At present, several non-ideal factors affecting the anti-jamming performance of the PI
algorithm have been analyzed [7–10]. In [7], the effects of channel mismatch, I/Q imbalance,
and antenna mutual coupling are studied. It is shown that the interference cancellation
ratio (ICR) is mainly related to the I/Q imbalance and amplitude-phase perturbations of the
channel, but is almost independent of antenna mutual coupling. In [8], the effects of channel
uniformity are analyzed. The simulation results show that the PI algorithm can combat
channel uniformity when the channel amplitude disturbance does not exceed 7 dB. In [9],
the effects of array element position perturbations on the PI algorithm in navigation systems
are analyzed. The results show that element position perturbations result in positioning
deviations. In [10], the effects of antenna phase center drift are analyzed. The results show
that the change in phase center will produce nulls in the non-interference directions, which
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leads to attenuation of the useful signals and, thus, degrades the signal-to-interference ratio
of the output signal. However, to the best of the authors’ knowledge, the impacts of phase
noise have not been studied yet, according to the open literature.

In wireless communication systems, the radio-frequency (RF) signals received by
the antenna array need to be down-converted into base-band signals, in order to apply
the digital PI algorithm [11,12]. The phase noise introduced in the down-conversion
process may affect the system performance. This is because the phase noise has a phase
modulation effect on the received signals [13], which reduces their correlation. As a
result, the multi-antenna signals cannot be added coherently, such that the algorithm
performance is degraded. The analysis of this effect includes aspects such as the data
rates of MIMO communication and the ICR of self-interference cancellation in full-duplex
systems [11–23]. For example, the transmitted and received phase noises degrade the EVM
(error vector magnitude) of the MIMO-OFDM system, as reported in [15,16]; the received
phase noise deteriorates the spectral efficiency of mmWave multi-user massive MIMO
up-link transmission [11], the network capacity of cell-free massive MIMO [17], and the
accuracy of the channel and location estimation of massive MIMO [18]. In addition, the
decorrelation effect of phase noise reduces the self-interference cancellation performance in
full-duplex systems, as reported in [12,19,20], and its joint effects with circuit nonlinearity,
carrier frequency offset, and I/Q imbalance are studied in [21,22], respectively. As in these
researches, there is also motivation to study the impacts of phase noise on the performance
of the PI algorithm in adaptive beamforming anti-jamming systems.

In adaptive beamforming systems, there are two main types of multi-channel down-
conversion circuit structures, i.e., common local oscillator and common reference clock [24–28],
which are illustrated in Figure 1, respectively. In the first type, a single LO signal, which is
generated by a phase lock loop (PLL), is fed to all the mixers. In the second type, a single
reference clock is fed to multiple PLLs that generate multiple LO signals, which are then
fed to multiple mixers. For the first type, the phase noises are the same for all the channels.
Therefore, the correlations between the array base-band signals are not affected, so a high
ICR can still be achieved. However, for the second type, the phase noises are uncorrelated,
due to the independent PLLs [13]. For this reason, the correlations between the signals are
deteriorated, which may degrade the algorithm performance. The reference clock has a low
frequency, e.g., 10 MHz; thus, it is easier to distribute in circuits than the high-frequency
LO signal, e.g., several GHz. Therefore, the common reference clock method is widely used
in practice, especially for large antenna arrays or distributed antenna systems [26,28].
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Figure 1. Typical down-conversion circuit structures: (a) with a common local oscillator; (b) with a
common reference clock.
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The aim of this paper is to establish a mathematical model to quantify the impact
of phase noise on the performance of the PI algorithm, when a common reference clock-
based multi-channel down-conversion circuit is employed. The main contributions are
listed below:

(1) We establish a new mathematical model of the PI algorithm by including the phase
noises of the common reference clock-based down-conversion circuits;

(2) We obtain a closed-form formula of ICR, which reveals the relation between the
anti-jamming performance and the phase noise level, as well as the number of auxiliary
antennas;

(3) We verify the theoretical results with both simulated and measured phase noise data.
The rest of the paper is organized as follows: Section 2 establishes the new mathemati-

cal model of the PI algorithm, considering phase noise. Section 3 analyzes the anti-jamming
performance of the PI algorithm. Section 4 presents the numerical results. The results are
discussed in Section 5. Conclusions are drawn in Section 6.

2. System Model

The block diagram of the digital beamforming anti-jamming system based on the PI
algorithm is shown in Figure 2. The antenna array is composed of N + 1 (N is the number
of auxiliary antennas) identical antenna elements, of which the first one is taken as the
main antenna and the rest are auxiliary antennas. For simplicity, we assume that all the
antenna elements are isotropic antennas. The signals received by the antenna array pass
through the LNAs, down-conversion blocks, and ADCs, and are then processed by the
PI algorithm before they are finally output to the receiver. The N + 1 down-conversion
blocks use different LO signals generated by N + 1 independent PLLs with a common
reference clock.
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Denote the signal received by the main antenna as x0(t) = a0(θ)(s(t) + u(t)), and the
signals received by the auxiliary antennas as x(t), which can be written as follows:

x(t) = [x1(t), x2(t), ..., xN(t)]
T

= [a1(θ), a2(θ), . . . , aN(θ)]
T(s(t) + u(t))

= a(θ)(s(t) + u(t))

(1)

where ai(θ), i = 0, . . . , N is the response of the i-th antenna element and a(θ) is the response
vector of the antenna array.

The received base-band signals of the main antenna and the auxiliary array are as follows:

x0(n) = a0(θ)(s(n) + u(n))ejϕ0(n)+jφ0 (2)

xi(n) = ai(θ)(s(n) + u(n))ejϕi(n)+jφi , i = 1, 2, ..., N (3)

where φi is the phase shift due to the circuit of the i-th channel; ϕi(n) is the phase noise of
the i-th LO signal; s(n) is the interference signal; u(n) is the useful signal. In order to focus
on the impacts of phase noise, we ignore the thermal noise of the receiver.

3. Anti-Jamming Performance Analysis

After being processed by the PI algorithm, the output signal e(n) can be expressed
as follows:

e(n) = x0(n)−wHx(n) (4)

where w = [w1, w2, . . . , wN ]
T is the beamforming weight vector. The optimal weight based

on the PI algorithm is obtained by the following equation [4]:

wopt = R−1p (5)

where R = E
{

x(n)x(n)H
}

is the autocorrelation matrix of the signals received by the
auxiliary antennas, and p = E{x(n)x0

∗(n)} is the cross-correlation vector of the signals
received by the main antenna and the auxiliary antennas.

Substituting the optimum weight wopt into Equation (4), we can obtain the minimum
power of e(n) as follows:

Pe = E
{
|e(n)|2

}
= P0 − pHR−1p (6)

where P0 = E
{
|x0(n)|2

}
is the power of the signals received by the main antenna. It can be

observed that the minimum power of the output signals is determined by R and p, which
are closely related to the number of auxiliary antennas and the phase noises of the LO
signals of the down-conversion circuit.

Suppose that the useful signal is independent from the interference signal, R can be
expressed as follows:

R = Rss + Ruu (7)

where Rss and Ruu represent the autocorrelation matrix of the interference signals and the
useful signals, respectively. The PI algorithm is mainly applicable to situations with strong
interference signals, but weak useful signals, such that R ≈ Rss [29].

The element of row i and column j of matrix R can be obtained as follows:

Rij = ai(θ)aj
∗(θ)E

{
ej[ϕi(n)−ϕj(n)+φi−φj ]

}
Ps (8)
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For i = j, we can obtain the following:

Rii =
∣∣∣ai

2(θ)
∣∣∣Ps (9)

For i 6= j, since the phase noises of different down-conversion blocks are independent,
we can obtain the following:

Rij = ai(θ)aj
∗(θ)ej(φi−φj)E

{
ejϕi(n)

}
E
{

e−jϕj(n)
}

Ps (10)

The k-th element of vector p is as follows:

pk = ak(θ)a0
∗(θ)E

{
ej[ϕk(n)−ϕ0(n)+φk−φ0]

}
Ps (11)

where Ps is the power of the interference signal s(n).
Similarly, pk can be expressed as follows:

pk = ak(θ)a0
∗(θ)ej(φk−φ0)E

{
ejϕk(n)

}
E
{

e−jϕ0(n)
}

Ps (12)

The phase noise of a PLL conforms to the stationary Gaussian colored noise model [13].
Therefore, the probability density function of the phase noise at any instant is as follows:

P(ϕ) =
1√

2πσ2
e−

ϕ2

2σ2 (13)

where σ2 is the variance.
We can then find the following:

E
{

ejϕ} =
∫ +∞
−∞ P(ϕ) · ejϕdϕ = 1√

2πσ2

∫ +∞
−∞ e−

(ϕ−jσ2)
2

2σ2 − σ2
2 dϕ

= e−
σ2
2 ·
∫ +∞
−∞

1√
2πσ2 · e

− (ϕ−jσ2)
2

2σ2 dϕ = e−
σ2
2

(14)

Similarly, E
{

e−jϕ} = e−
σ2
2 . Therefore, we can obtain the following:

Rij = ai(θ)aj
∗(θ)ej(φi−φj)e−

σi
2+σj

2

2 Ps, (i 6= j) (15)

pk = ak(θ)a0
∗(θ)ej(φk−φ0)e−

σk
2+σ0

2

2 Ps (16)

It can be observed from Equations (15) and (16) that R and p are related to the phase
noise variance σ2. According to [30], σ2 can be obtained as follows:

σ2 = 2
∫ B

0

Sϕ( f )
C

d f (17)

where Sϕ( f ) is the single side-band power spectral density of the phase noise; C is the
carrier power; B is the bandwidth of the phase noise.

In order to simplify the analysis and focus on the impact of phase noise, but without
affecting the conclusions of the paper, we make the following assumptions:

(1) The antenna array is a linear or planar array with isotropic elements; the angle of
the interference signal is 0 degrees; thus, the array response is a(θ) = 1N .

(2) The fixed phase shifts of all the channels are equal, i.e., φ0 = φ1 = . . . = φN .
According to the above assumptions, Rij can be simplified into the following:

Rij = Ps · e−
σi

2+σj
2

2 (18)
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pk can be simplified into the following:

pk = Ps · e−
σk

2+σ0
2

2 (19)

From Equations (18) and (19), it can be observed that each element of matrix R or
vector p is only related to the power of the interference signal and the variances of the
phase noises.

Suppose that the LO signals have the same phase noise level, then the variance of the
phase noises of the down-conversion blocks is equal, i.e., σ0

2 = σ1
2 = . . . = σN

2 = δ2.
Then, the matrix R can be written as follows:

R = Ps


1 e−δ2 · · · e−δ2

e−δ2
1 · · · e−δ2

...
... · · ·

...
e−δ2

e−δ2 · · · 1

 (20)

The vector p can be written as follows:

p = Ps


e−δ2

e−δ2

...
e−δ2

 (21)

Then, we turn to find the inverse matrix of R (see Appendix A for the detailed
derivation process), and obtain the following:

R−1 =
1
Ps


x y · · · y
y x · · · y
...

... · · ·
...

y y · · · x

 (22)

where, 
x = 2e−δ2−e−δ2

N−1
e−2δ2 (N−1)−e−δ2 (N−2)−1

y = e−δ2

e−2δ2 (N−1)−e−δ2 (N−2)−1

(23)

Then, the minimum power of the output signal can be derived as follows:

Pe = PI − pHR−1p = Ps
(e−δ2 − 1)(Ne−δ2

+ 1)
e−δ2 − Ne−δ2 − 1

(24)

In this paper, we use ICR to measure the anti-jamming performance of the PI algorithm,
which is defined as the ratio of the received signal power of the main antenna to the
beamformer output signal [7], i.e., the following:

ICR =
PI
Pe

=
e−δ2 − Ne−δ2 − 1

(e−δ2 − 1)(Ne−δ2 + 1)
(25)

From the above formula, it can be observed that ICR is determined by the variance
of the phase noises and the number of auxiliary antennas. Special cases are N = 1 and
N → ∞ , for which we obtain the following:

(1) For N = 1,

ICRN=1 =
1

1− e−2δ2 (26)
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(2) For N → ∞ ,

ICRN→∞ =
1

1− e−δ2 (27)

Therefore, as N increases from one to infinity, the increment in ICR (in decibel) is
upper-bounded to be the following:

∆ICR = 10 log10

(
1 + e−δ2

)
(28)

Since δ2 is small, we can further obtain that the maximum ∆ICR is around 3 dB.

4. Numerical Results

In this section, we present the simulation results to verify the theoretical derivations
obtained in Section 3. The analysis consists of the following three parts: (1) ICR versus
phase noise level for a given number of auxiliary antennas; (2) ICR versus the number of
auxiliary antennas for a given phase noise level; (3) verification based on the measured
phase noise data.

The simulation model is illustrated in Figure 3. A single-tone interference signal, with
a frequency of 100 Hz and a sampling rate of 2 MHz, first passes through a linear antenna
array; the array output is then fed into multiple phase noise blocks to capture the effect of
the multi-channel down-conversion circuit. After this, the output signals are processed by
the PI algorithm block to assess the ICR performance. The phase noise model in MATLAB
Communications toolbox is used therein, which takes the phase noise levels at different
frequency offsets as the input [31].
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We use the widely used phase noise model in [32] to simulate the power spectrum of
the phase noise, which can be expressed as follows:

Sϕ( f ) = 10−c +


10−a, | f | ≤ fl

10
−( f− fl)

b
fh− fl

−a
, fl < f < fh

10
( f+ fl)

b
fh− fl

−a
,− fh < f < − fl

(29)

where fl determines when the phase noise level begins to decline; fh is where the noise
floor becomes dominant; a determines the phase noise level near the carrier; b determines
the steepness of the linear slope of the curve; c determines the noise floor.

In the following simulation, we use the above model for analysis and set the parame-
ters as the following: fl = 1 kHz, fh = 1 MHz, b = 100, and c = 11. We vary the parameter
a to change the phase noise level near the carrier (0 < f ≤ fl). For example, when a = 6,
the phase noise level is −60 dBc/Hz@1 kHz, and the power spectrum is shown in Figure 4.
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4.1. ICR versus Phase Noise Level

In this section, we analyze the ICR performance of the PI algorithm versus the phase
noise level for different auxiliary array sizes.

Since the theoretical ICR performance is related to the phase noise variance δ2 (in
unit of rad2), we first analyze the phase noise variance using Equation (17). The result is
presented in Figure 5.
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Figure 5. Relation between the variance and power spectrum of phase noise.

The phase noise level varies from −90 dBc/Hz to −50 dBc/Hz at 1 kHz frequency
offset, which covers the typical phase noise level in practice. We can observe that when
the phase noise level is between −80 dBc/Hz@1 kHz and −50 dBc/Hz@1 kHz, the phase
noise variance increases logarithmically linearly with the phase noise level; when the phase
noise level is less than −80 dBc/Hz@1 kHz, which is close to the noise floor, the relation
between the two parameters no longer remains logarithmically linear.

Figure 6 shows the ICR versus phase noise variance when the auxiliary antenna num-
ber N equals 1, 10 and 100. As we can observe, the ICR (in decibel) decreases logarithmically
linearly with the phase noise variance. Specifically, when the phase noise variance increases
10 times, the ICR decreases by about 10 dB. The theoretical results are consistent with
the simulation results. However, due to the approximations made in the mathematical
derivations, the ICR equation slightly underestimates the performance by about 1 dB, as
compared to the simulation results. This underestimation is consistent for all auxiliary
array sizes.
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4.2. ICR versus Number of Auxiliary Antennas

In this section, we analyze the ICR performance versus the number of auxiliary
antennas for certain phase noise levels.

The considered phase noise levels are −80 dBc/Hz@1 kHz, −65 dBc/Hz@1 kHz, and
−50 dBc/Hz@1 kHz. The corresponding phase noise variances are 1.27× 10−4, 3.40 × 10−3,
and 1.07 × 10−1, respectively. The number of auxiliary antennas increases from 1 to 100.
The other simulation parameters are kept the same as those in the last subsection. The
results are shown in Figure 7.
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It can be observed that the theoretical results are consistent with the simulation results.
For a given phase noise level, the ICR increases with the number of auxiliary antennas,
but levels off at around N = 10. For the three cases herein, the maximum increments are
3.47 dB, 3.27 dB, and 3.25 dB, respectively. This is the same as the theoretical analysis, as
given in Equation (28), i.e., the ICR increment is upper-bounded to 3 dB.

4.3. Analysis Based on Measured Phase Noise Data

In this section, we use the measured phase noise data to evaluate the ICR performance.
Three types of down-conversion modules are considered, which are named type A, B,

and C, respectively. Type A is the Norsat 1008XHB Ku-Band LNB; type B is the NJR2936E
Ku-Band LNB; type C is our customized module (designed to improve the phase noise
performance). The phase noise spectrums are measured using a spectrum analyzer, and
then they are fed into the simulation model used in the former subsections to analyze the
ICRs. The measured power spectrums are shown in Figure 8, and the corresponding phase
noise variances are calculated using Equation (17). Due to the loss of low frequency [33],
the spectrum analyzer cannot accurately measure the phase noise level near the carrier.
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Therefore, we use the phase noise level at 100 Hz frequency offset in place of the real values
of 0~100 Hz frequency offsets. The computed phase noise variances are shown in Table 1.
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Table 1. The phase noise variance of the three types of down-conversion blocks.

Down-Conversion Block Type A Type B Type C

Phase noise variance (rad2) 7.46 × 10−4 6.62 × 10−4 2.77 × 10−4

Let the auxiliary array size be N = 1, 10, and 100, the theoretical and simulated ICRs
using three types of down-conversion blocks are shown in Table 2. Figure 9 presents the
results of ICR versus auxiliary array size.

Table 2. The values of ICR.

Auxiliary Array Size ICR Type A Type B Type C

N = 1
Theory 28.3 28.8 32.6

Simulation 29.2 30.8 33.1

N = 10
Theory 30.9 31.4 35.2

Simulation 31.7 33.3 35.7

N = 100
Theory 31.2 31.8 35.5

Simulation 32.2 33.8 36.1

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14 
 

 

   
(a) (b) (c) 

Figure 9. ICR versus the auxiliary array size: (a) type A; (b) type B; (c) type C. 

From these results, we can observe the following: 

(1) Different performances are achieved for the three types of down-conversion 

blocks. However, type C provides the best performance, due to its lower phase noise (see 

Figure 8), offering an improvement of around 3 dB; 

(2) Using the measured phase noise data, the theoretical results are consistent with 

the simulated results, which is the same as the above subsections, using the simulated 

phase noise data. Although our theory tends to underestimate the performance, the un-

derestimation errors are marginal. A particular case is the type B block, for which the per-

formance is underestimated by around 2 dB, greater than the other two types. This is 

mainly due to the spurious signals of the 100~1000 Hz frequency offsets (see Figure 8), 

which may violate the phase noise model. 

5. Discussion 

In practice, the phase noise power spectrum can be easily measured. Thus, the pro-

posed mathematical model can accurately predict the ICR performance using the meas-

ured data. Conversely, given a target ICR, the phase noise variance requirement can also 

be calculated directly. 

Since there is a straightforward relation between the phase noise variance and phase 

noise power spectrum (Equation (17)), the circuit designer can first simulate the phase 

noise power spectrum, then convert it to phase noise variance and compare it with the 

required value to validate the circuit design. For example, to achieve a typical ICR of 40 

dB, by using three auxiliary antennas, the required phase noise variance is 7.5 × 10−5 rad2. 

According to traditional models, increasing the number of auxiliary antennas can in-

crease the array gain, and, therefore, can improve the ICR performance. However, accord-

ing to our theory and simulation results (see Equation (28) and Table 2), the ICR increases 

by, at most, 3 dB, regardless of the phase noise level. From the simulation results in Fig-

ures 8 and 9, the ICR closely approaches the upper bound when the number of auxiliary 

antennas increases to 10. Therefore, if phase noise is the bottleneck factor, it is of little help 

to further increase the number of auxiliary antennas. 

6. Conclusions 

In this paper, the impacts of phase noise on the anti-jamming performance of the PI 

algorithm in an adaptive beamforming system are analyzed, which employs a common 

reference clock-based down-conversion circuit. First, by introducing the phase noises of 

the local oscillator signals of the down-conversion circuit, a new mathematical model of 

the PI algorithm is established. Second, a closed-form formula of ICR is derived, which 

shows the quantitative relation between the anti-jamming performance and the phase 

noise level, as well as the number of auxiliary antennas. Third, the theoretical analysis is 

verified by the simulations using simulated and measured phase noise data. The proposed 

Figure 9. ICR versus the auxiliary array size: (a) type A; (b) type B; (c) type C.

From these results, we can observe the following:
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(1) Different performances are achieved for the three types of down-conversion blocks.
However, type C provides the best performance, due to its lower phase noise (see Figure 8),
offering an improvement of around 3 dB;

(2) Using the measured phase noise data, the theoretical results are consistent with
the simulated results, which is the same as the above subsections, using the simulated
phase noise data. Although our theory tends to underestimate the performance, the
underestimation errors are marginal. A particular case is the type B block, for which the
performance is underestimated by around 2 dB, greater than the other two types. This is
mainly due to the spurious signals of the 100~1000 Hz frequency offsets (see Figure 8),
which may violate the phase noise model.

5. Discussion

In practice, the phase noise power spectrum can be easily measured. Thus, the
proposed mathematical model can accurately predict the ICR performance using the
measured data. Conversely, given a target ICR, the phase noise variance requirement can
also be calculated directly.

Since there is a straightforward relation between the phase noise variance and phase
noise power spectrum (Equation (17)), the circuit designer can first simulate the phase noise
power spectrum, then convert it to phase noise variance and compare it with the required
value to validate the circuit design. For example, to achieve a typical ICR of 40 dB, by using
three auxiliary antennas, the required phase noise variance is 7.5 × 10−5 rad2.

According to traditional models, increasing the number of auxiliary antennas can
increase the array gain, and, therefore, can improve the ICR performance. However,
according to our theory and simulation results (see Equation (28) and Table 2), the ICR
increases by, at most, 3 dB, regardless of the phase noise level. From the simulation results
in Figures 8 and 9, the ICR closely approaches the upper bound when the number of
auxiliary antennas increases to 10. Therefore, if phase noise is the bottleneck factor, it is of
little help to further increase the number of auxiliary antennas.

6. Conclusions

In this paper, the impacts of phase noise on the anti-jamming performance of the PI
algorithm in an adaptive beamforming system are analyzed, which employs a common
reference clock-based down-conversion circuit. First, by introducing the phase noises of the
local oscillator signals of the down-conversion circuit, a new mathematical model of the PI
algorithm is established. Second, a closed-form formula of ICR is derived, which shows the
quantitative relation between the anti-jamming performance and the phase noise level, as
well as the number of auxiliary antennas. Third, the theoretical analysis is verified by the
simulations using simulated and measured phase noise data. The proposed mathematical
model slightly underestimates the ICR performance by about 1 dB, in comparison with the
simulation results. The main conclusions are as follows:

(1) The ICR in decibel decreases logarithmically linearly with the phase noise variance
of the local oscillator, which is applicable to all array sizes. In other words, when the phase
noise variance increases ten times, the ICR decreases by 10 dB.

(2) For a given phase noise level, the ICR increases with the number of auxiliary
antennas, but the increment is upper-bounded by around 3 dB.
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Appendix A

It can be observed that the matrix R is a symmetric matrix with identical diagonal
elements and identical off-diagonal elements. According to the inverse matrix formula
R−1 = R∗/|R|, we can find that R−1 has the same form as R. Therefore, R−1 can be
expressed as follows:

R−1 =
1
Ps


x y · · · y
y x · · · y
...

... · · ·
...

y y · · · x

 (A1)

According to the definition of inverse matrix, R−1R = IN×N , where I is an identity
matrix. We can obtain the following:{

x + (n− 1)ye−δ2
= 1

y + xe−δ2
+ (n− 2)ye−δ2

= 0
(A2)

By solving the above equations, we can obtain the following:
x = 2e−δ2−e−δ2

N−1
e−2δ2 (N−1)−e−δ2 (N−2)−1

y = e−δ2

e−2δ2 (N−1)−e−δ2 (N−2)−1

(A3)

Substituting Equation (A3) into Equation (A1), we can obtain the inverse matrix of R.
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