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Abstract: Intent sensing—the ability to sense what a user wants to happen—has many potential
technological applications. Assistive medical devices, such as prosthetic limbs, could benefit from
intent-based control systems, allowing for faster and more intuitive control. The accuracy of intent
sensing could be improved by using multiple sensors sensing multiple environments. As users will
typically pass through different sensing environments throughout the day, the system should be
dynamic, with sensors dropping in and out as required. An intent-sensing algorithm that allows
for this cannot rely on training from only a particular combination of sensors. It should allow any
(dynamic) combination of sensors to be used. Therefore, the objective of this study is to develop and
test a dynamic intent-sensing system under changing conditions. A method has been proposed that
treats each sensor individually and combines them using Bayesian sensor fusion. This approach was
tested on laboratory data obtained from subjects wearing Inertial Measurement Units and surface
electromyography electrodes. The proposed algorithm was then used to classify functional reach
activities and compare the performance to an established classifier (k-nearest-neighbours) in cases
of simulated sensor dropouts. Results showed that the Bayesian sensor fusion algorithm was less
affected as more sensors dropped out, supporting this intent-sensing approach as viable in dynamic
real-world scenarios.

Keywords: bionic prostheses; intent sensing; Bayesian sensor fusion; body sensing; wearable technology;
sensor networks

1. Introduction
1.1. Intent Sensing

The idea of measuring a person’s “intent”—broadly, what they want to volitionally
make happen in the physical world at a given moment—has great potential for the develop-
ment of technology involving human–system interaction. Most currently available devices,
from personal computers or mobile phones to home virtual assistants, require direct cues
from the user for control. This might be through a touch interface, a voice command, or
even a gesture, but all require a conscious input from the user to operate the device [1].

Conversely, a device controlled through intent sensing would not need a direct in-
put from the user. Instead, with networked (non-invasive) sensors, the user’s needs
could be passively measured or even anticipated, and the device of interest could be
activated automatically.

An example of this could be by using a person’s body language, such as the fact that
they are sitting on a sofa or the inclination of their head towards the television, combined
with contextual information such as the time of day and the user’s usual routine, to infer
that the person would like to watch their favourite programme. An intent-sensing smart
television could then turn on and even select the programme without the need to operate a
remote control.
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A less trivial benefit of this kind of technology, however, would be for use in medical
devices, where the accurate understanding of the user’s intent could help improve their
quality of life. The potential applications are wide-ranging, including assistive robotics for
stroke patients [2] and detecting physical activity for personalised drug delivery in those
with diabetes [3]. One application of particular interest is prosthetics.

As of 2017, there are estimated to be 57.7 million people worldwide living with limb
amputation due to traumatic causes [4], many of whom use or are in need of a prosthetic
device. One of the principle causes of device abandonment is reported to be difficulty of
use [5], and as such, an intent-sensing system that could improve the intuitiveness and user
experience of a prosthetic device has the potential to be extremely valuable.

According to Lee et al. [6], intent sensing is composed of three aspects: (i) the recogni-
tion and identification of activity transitions, (ii) the inference of task goals, and (iii) the
prediction of future activities. See Figure 1 for an illustration of this.
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Figure 1. Framework representing the three aspects of intent sensing. Adapted from [1]. Grey regions
indicate stages not utilised in this study. Environmental Stimulus indicates change in the user’s
surroundings (such as sound or the arrival of another person) that may trigger a response. Contextual
Stimulus includes wider factors such as the time of day, typical routine, previous actions etc. The
Inception of the Idea to Act represents the user’s conscious decision to take action and predominantly
concerns the brain and nervous system. The Planning phase includes any preparation that may take
place before the activity begins (such as a visual inspection of the path ahead when about to start
walking or the pre-tensing of muscles before attempting a timed grasp). The Action phase covers
the real-time execution of the activity, including any changes observable while the activity is being
performed. The Maintenance or Change of Task Goal phase looks ahead to the objective of the activity,
considering why it is being performed and whether this objective alters over the course of the activity.

Current intent-sensing literature contains a well-established body of work related to
activity transition recognition, with less research on task goals and predictions [1]. This
paper will predominantly focus on transition recognition, followed by an inference of the
task goal. While attempts will be made to perform classification as early on as possible in an
activity, outright prediction before an activity begins is not within the scope of this study.

1.2. Sensor Networks for Intent

The accuracy of input detection is particularly essential in assistive medical devices
such as prosthetics, where errors could lead to both frustration and injury. Provided
effective sensor fusion algorithms are used, accuracy can be improved by combining
information from multiple sensors. To produce the highest possible accuracy, the intent-
sensing system should take advantage of all sensors available at any time.

A range of embedded sensors might be available in a typical prosthetic device. These
can often include surface electromyography (sEMG) sensors integrated into the socket,
measuring electrical activity in the residuum of the user’s superficial muscles [7]. Kinematic
sensors are also often available, providing measurements of the device’s orientation and ac-
celeration through Inertial Measurement Units (IMUs) and combining together information
from accelerometers, gyroscopes and magnetometers [8].
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Multiple sensors could be added to a prosthetic to increase accuracy. However, there
are potential disadvantages to adding more and more sensors, such as increases in cost,
weight, power consumption and difficulty donning/doffing the device. To further improve
the accuracy of the system without introducing these issues, information from external
sources could also be included.

Smart phones and smart watches, for instance, include a whole range of sensors,
such as audio and GPS sensors and are commonly used throughout the day. When these
devices are in use, they provide additional sensory information largely independent from
the sensors that are embedded in the medical device [9].

Smart home technology is also becoming increasingly prevalent [10], including smart
doorbells, speakers, home assistants and more. In-home monitoring of patients using (both
wearable and contactless) sensors for medical purposes is also an increasingly common
practice. Smart environments are also being developed in workplaces, on public transport
and within private vehicles, each providing a range of sensory information that could be
used to provide predictions of intent.

These are examples of how device users pass through varying sensor-rich environ-
ments, with sensors becoming available or unavailable throughout the day. To take advan-
tage of these uncertain information sources, an intent-sensing system should be dynamic,
following a “drop-in/drop-out” structure, incorporating information from sensors only
when they are available and weighting their contribution according to their accuracy,
which would have to be pre-learned on a sensor-by-sensor basis rather than as a com-
plete, fixed network. This approach would allow for any set of sensors to be combined
for intent sensing.

This would not only enhance the performance of the system by utilising all available
resources whenever possible, but would also improve system robustness in case of the
failure of some of the sensors. A system that is still able to run (albeit with reduced accuracy)
with only a subset of its sensors will have a huge advantage over systems that require all
their sensors to work in unison to function.

This study therefore proposes to investigate the use of a new, modular approach to
networked intent sensing that is not trained on any particular combination of sensors, but
instead is able to freely add in or remove sensors to produce robust intent predictions.

1.3. Probabilistic Sensor Networks

One approach to creating the proposed robust, drop-in/drop-out system is to model
the process as a Probabilistic Sensor Network (PSN) [11]. This method breaks the process
of detection down into four stages, each with their own independent probability of the
signal correctly passing through them: Environment, Sensing, Conditioning and Processing
(See Figure 2). Assuming independence between the stages, the total probability of correctly
detecting an event is the product of these four probabilities.

Since the probability associated with each stage is naturally less than or equal to 1,
the total probability of correctly detecting an event (in this case, a particular user intent)
will never be greater than the highest probability of the four stages. Therefore, each stage
acts as a potential “bottleneck” for the system. For instance, if the probability of an intent
being detectable from the electrical activity in the muscle is only 0.8, then the Environment
probability is 0.8, and so it does not matter how accurate the Sensing, Conditioning or
Processing stages become—the total probability will never exceed 0.8.

Each stage can contain multiple sensing nodes. Adding a second sEMG sensor to
another site on the muscle and combining the two sensors together with a sensor fusion
algorithm increases the probability of the Sensing stage. However, both sensors are operat-
ing in the same Environment, and so the total probability will still be limited to 0.8. Adding
sEMG sensors to a second Environment, such as a different muscle, helps circumvent this
“bottleneck” and allows for the total probability of the system to increase.
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steps that lead from the genesis of a given event up to its detection are shown at the top of the figure.
(i) shows the simplest design, with only one node at each stage. (ii) shows a more complex network,
featuring two sensors sharing the same sensing environment, each with their own conditioning step.
(iii) displays the network used in this study, with two sensing environments (EMG and IMU sensing),
each with 12 sensors, conditioned individually and combined together in the processing step.

In order to keep the network dynamic without being limited to any particular con-
figuration of sensors, each sensor node will be considered on its own and only combined
together at the final Processing stage.

In the proposed intent-sensing system, sensors that are added may have very high
accuracies for identifying some intents and low accuracies for others—such as sEMG
sensors placed on muscles in the lower left leg when used to detect walking versus using
the same sensors to detect a reaching motion of the arm. A simple majority voting system
would not account for this, so it would be unsuitable.

Instead, a more versatile Bayesian approach can be taken. Where P(E) is the probabil-
ity of the event occurring and P(V) is the probability of getting a particular set of sensor
values, Bayes’ rule [12] gives the probability that an event has happened given a set of
sensor values, P(E|V), as:

P(E|V) =
P(V|E)·P(E)

P(V)
(1)

The dataset probability can be obtained using the total probability rule [13], and so the
confidence can be written as follows, where P(E′) represents the probability of the event
not occurring and P(V|E′) represents the probability of getting a set of sensor values given
that the event has not occurred:

P(E|V) =
P(V|E)·P(E)

P(V|E)·P(E) + P(V|E′)·P(E′)
(2)
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P(V|E) is obtained from the sensor sensitivities. It is the probability of getting a
specific set of sensor values given that the event did occur. If they are independent, this is
the product of their probabilities. P(E) is a prior for the probability of the event occurring
and could be obtained from contextual information, such as user routine and time of day.

Calculating a confidence value in this way for each possible intent and choosing the
intent option with the highest confidence is a more effective method of combining sensor
outputs. Effectively, it is giving an optimal “weighting” to each sensor’s contribution
according to its individual accuracy. Combining sensor information according to this
method means that, provided the accuracy of each sensor is precisely known, adding
sensors can only monotonically improve the overall accuracy of the system, even if only by
a very small amount as in the case of sensors that are close to random in their predictions.

To apply such a method, accuracy estimations for each sensor will need to be obtained
for each possible intent option, i.e., each sensor will require a known confusion matrix.
This should list the probability of each intent being true given the sensor’s prediction of a
particular intent. The entries for this confusion matrix can be populated through calibration.
This can be completed individually for each user, for all users or for some combination of
the two, starting with a general estimation and adjusting it to become more personalised
over time.

In the case of sensors dropping in and out over time, all that is required in this Bayesian
method is for their confusion matrices to be added to or removed from the equation. No
retraining of the other sensors is needed to compensate for the change, and therefore this
method is interesting as a potential solution to the need for a dynamic network.

Other, more advanced methods of combining sensor measurements together do exist.
Many of these employ machine learning techniques, such as decision trees [14], random
forest classifiers [15] and support vector machines [16]. These techniques do not treat each
sensor as an individual “black box” and instead consider, for example, the relationships
between sensors. Exploiting this extra dimensionality has the potential to provide addi-
tional information, suggesting it is a more suitable technique. However, it also means that
they must be trained on specific combinations of sensors and that adding and removing
dimensions from the trained classifiers “on the fly,” as sensors drop in and drop out of the
network, is not within the capability of established machine learning techniques (if not
trained for it).

It is therefore proposed that while combined machine learning techniques are theo-
retically able to perform better than the Bayesian fusion technique, they will rapidly drop
in performance when sensors are removed, and repeated experiments simulating sensors
dropping out should show this effect.

1.4. Objective

The objective of this study is to develop a Modular Method (MM) suitable for the
dynamic environments described previously and to compare it to a Non-Modular Method
(NMM), utilising a combined machine learning (cML) algorithm representative of current
commonly used methods. The experiments performed should measure classification
accuracy early in the activity cycle, well before any activity example is completed, in
order to demonstrate the goal inference aspect of intent sensing. The change in accuracy
with increasing time allowed between the activity’s inception and classification should be
determined.

Then, the two algorithms should be compared in their accuracy versus a varying
number of sensors when they were allowed to train on the exact combination of sensors
they are being tested on. The hypothesis is that the new MM will not perform as well as
the NMM.

Subsequently, a scenario of random sensor dropout will be introduced, where the
sensor combinations required are not trained on in advance. The hypothesis is that the MM
will perform better overall than the NMM, with the difference in accuracy between the two
techniques increasing as more sensors drop out.
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2. Materials and Methods
2.1. Data Collection

Data used for this study were originally gathered under laboratory conditions as part
of a prior study [17]. All data were anonymised, and prior informed consent was obtained
from each individual. The study was approved by the institutional ethics committee
(Reference Numbers: 16/SC/0051 and 14/LO/1975).

Five adult non-disabled participants wore full-body MVN-Awinda [18] Inertial Mea-
surement Units (IMUs) (Xsens Technologies B.V., Enschede, The Netherlands) during task
execution (sampling frequency: 60 Hz). Passive retro-reflective markers were placed on
their body, which were tracked with a 16-camera Vicon (Vicon, Oxford, UK) motion tracking
system. This Optical Motion Capture (OMC) data (sampling frequency: 100 Hz) were used
for the verification of activity labels.

A wireless 10-channel Zerowire (Aurion Srl, Milan, Italy) electromyography (EMG)
system was used to collect surface EMG (sEMG) data at a sampling frequency of 1000 Hz
for the five selected superficial muscle groups: Pectoralis major (Clavicle), Biceps brachii,
Triceps (Long head), Deltoid (Medial) and Brachioradialis.

Subjects were asked to perform three trials each of eleven different reach/grasp
activities (Reach to grasp: (i) forward, (ii) left, (iii) right and (iv) up; Reach: (v) forward,
(vi) left, (vii) right and (viii) up; (ix) hand to mouth, (x) hand to the top of head and
(xi) hand to contralateral shoulder), which were grouped into three categories: Reach tasks,
Reach-to-Grasp tasks and Gross Motor Skill tasks.

These actions were performed using a specially built test rig, shown in Figure 3. A
total of 165 datasets were collected. Each participant also performed a Maximal Volun-
tary Isometric Contraction (MVIC) test with each measured muscle group to allow for
normalisation of the corresponding experimental sEMG data.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

increasing time allowed between the activity’s inception and classification should be de-
termined. 

Then, the two algorithms should be compared in their accuracy versus a varying 
number of sensors when they were allowed to train on the exact combination of sensors 
they are being tested on. The hypothesis is that the new MM will not perform as well as 
the NMM. 

Subsequently, a scenario of random sensor dropout will be introduced, where the 
sensor combinations required are not trained on in advance. The hypothesis is that the 
MM will perform better overall than the NMM, with the difference in accuracy between 
the two techniques increasing as more sensors drop out. 

2. Materials and Methods 
2.1. Data Collection 

Data used for this study were originally gathered under laboratory conditions as part 
of a prior study [17]. All data were anonymised, and prior informed consent was obtained 
from each individual. The study was approved by the institutional ethics committee (Ref-
erence Numbers: 16/SC/0051 and 14/LO/1975). 

Five adult non-disabled participants wore full-body MVN-Awinda [18] Inertial 
Measurement Units (IMUs) (Xsens Technologies B.V., Enschede, The Netherlands) during 
task execution (sampling frequency: 60 Hz). Passive retro-reflective markers were placed 
on their body, which were tracked with a 16-camera Vicon (Vicon, Oxford, UK) motion 
tracking system. This Optical Motion Capture (OMC) data (sampling frequency: 100 Hz) 
were used for the verification of activity labels. 

A wireless 10-channel Zerowire (Aurion Srl, Milan, Italy) electromyography (EMG) 
system was used to collect surface EMG (sEMG) data at a sampling frequency of 1000 Hz 
for the five selected superficial muscle groups: Pectoralis major (Clavicle), Biceps brachii, 
Triceps (Long head), Deltoid (Medial) and Brachioradialis. 

Subjects were asked to perform three trials each of eleven different reach/grasp ac-
tivities (Reach to grasp: (i) forward, (ii) left, (iii) right and (iv) up; Reach: (v) forward, (vi) 
left, (vii) right and (viii) up; (ix) hand to mouth, (x) hand to the top of head and (xi) hand 
to contralateral shoulder), which were grouped into three categories: Reach tasks, Reach-
to-Grasp tasks and Gross Motor Skill tasks. 

These actions were performed using a specially built test rig, shown in Figure 3. A 
total of 165 datasets were collected. Each participant also performed a Maximal Voluntary 
Isometric Contraction (MVIC) test with each measured muscle group to allow for normal-
isation of the corresponding experimental sEMG data. 

 
Figure 3. Photographs of the experimental setup used for the acquisition of data used in this study. 
The configuration pictured is for the reach-grasp activity. 

Figure 3. Photographs of the experimental setup used for the acquisition of data used in this study.
The configuration pictured is for the reach-grasp activity.

To ensure the experiment was representative of intent sensing rather than pure activity
classification, only the first 1000 ms of each dataset were used.

2.2. Processing

The affiliated Xsens MVN Analyze software [19] was used to process the IMC data
and export it as MVN open XML (.MVNX) files to be used as inputs for the algorithms.

The OMC data corresponding to marker trajectories was processed and exported
in C3D or Coordinate 3D (C3D.ORG; https://www.c3d.org/index.html; accessed on
26 February 2022) format using the Vicon Nexus 2.5 software [20]. Further processing
took place in MATLAB R2020b (Mathworks, Natick, MA, USA). The sEMG data was

https://www.c3d.org/index.html
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synchronised with the IMU data from the XSens IMC system using the recommended
protocol [21].

The sEMG data was filtered using a 10–500 Hz band-pass fourth order Butterworth
filter and normalised according to the maximum signal measured in the MVIC tests [22].

2.3. Feature Extraction

A breakdown of the features extracted from the IMU and sEMG sensor signals is
shown in Table 1.

Table 1. Breakdown of the number of features used from each sensing input available.

Measured Value No. Features

Orientation 4
Accelerometer 3
Magnetometer 3
sEMG 11
Total 21

The three IMU channels included were orientation, accelerometer and magnetometer
signals. The raw values for these were used directly in the training step. These three distinct
data channels allowed each IMU sensor to be more closely approximated as probabilistically
independent by the Bayesian model. The orientation measurement contained some co-
dependency on the accelerometer and magnetometer readings.

For the sEMG signals, a more complex feature extraction method was required. The
process detailed in [23] was followed to ensure standard methods were applied. The data for
each participant were divided into 200 ms segments and shifted by 50 ms increments (such
that consecutive segments overlapped by 150 ms). Within these segments, the following
features were extracted: Integrated EMG, Mean Absolute Value, Mean Absolute Value
Slope, Variance of EMG, Root Mean Square, Waveform Length, Autoregressive Coefficients
(to the fourth order), Frequency Median and Frequency Mean.

This full set of features was carried forward for analysis. An investigation of feature
reduction, not used in the final algorithm, may be found in Appendix A.

2.4. Data Separation (MM/Bayesian Fusion Only)

To allow as large a training set as possible, leave-one-out cross-validation was used.
As such, for each repetition of the analysis, one sample was held back for testing (the
Testing Set), leaving 164 samples for training.

In order to learn the probabilities associated with each sensor and thereby populate
each sensor’s confusion matrix (as is required for the Bayesian sensor fusion method)
without introducing any element of bias, the remaining samples were divided again. Half
of the 164 samples were pseudo-randomly selected and used to train an MM classifier
for each sensor (the Classifier Training Set), and the remaining half were used to test the
MM classifiers and measure their accuracy for each activity (the Probability Learning Set).
To complete this, the number of successful classifications was divided by the number of
samples for each activity to estimate the probability, which was recorded in the confusion
matrix. The sums of the diagonal entries of the confusion matrices were then used to
approximate each sensor’s overall accuracy.

The choice of which samples were placed in the Classifier Training Set and which
in the Probability Learning Set could have an impact on the performance of the classifier.
To produce results representative of all subjects and activities, a selection algorithm was
used to pseudo-randomly place an approximately equal number of data samples from
each participant and activity type in the Classifier Training and Probability Learning Sets.
Where multiple examples were available (each participant provided three samples of each
activity), the set they were placed in was randomly selected.
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An optimisation step also took place here, repeating the previous steps five times, with
a different pseudo-randomly selected and split between the sets each time. The classifier
chosen to take forward was whichever resulted in the highest mean accuracy across sensors,
as measured in the Probability Learning Set.

For the comparison, a Combined KNN technique was used in the NMM; this step
was not required, as all data in the training set from all sensors were used to train a single
classifier, with no estimation of the classifier’s accuracy.

2.5. Learning Classifiers

For both the MM (Bayesian Fusion algorithm) and the NMM (Combined KNN algo-
rithm), KNN classifiers were used. The distinct difference between the two was that, for
the MM, one KNN classifier was trained for each sensor and then combined, whereas the
NMM trained a single classifier using all the sensors as inputs (see Figure 4 for a graphical
representation).
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Figure 4. Overall pipeline of training and testing for the two algorithms. The Bayesian Fusion (MM)
algorithm divides the training dataset into Classifier Training and Probability Learning subsets. The
Classifier Training Set is used to train the classifier for each sensor, and then the Probability Learning
set is used to populate the confusion matrix for each classifier. The confusion matrix then provides
weightings for each sensor’s contribution to the overall network output, which is used to predict
the class of the testing set. The Combined KNN (NMM) does not subdivide the training set, instead
using all sensor data to train a single classifier, which then predicts the class of the testing set. Dashed
lines indicate testing data.
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The features described in Section 2.3 were used as inputs to train the KNN classi-
fier [24], with hyperparameter optimisation selecting an N value (no. neighbours) of 1 and
a Gaussian distance metric with an exponent of 0.5. The same number of features was
used for both algorithms. For the Combined KNN classifier, all features were used for one
algorithm, whereas for the Bayesian Fusion algorithm, the features were evenly distributed
across the individual sensors.

2.6. Sensor Fusion (Bayesian Fusion Only)

In the Bayesian Fusion algorithm, each sensor produced its own independent classi-
fication of the activity. Equation (2) was used with the confusion matrices populated in
the Probability Learning Set in order to calculate a probability of each activity being the
true activity given the sensor values. Whichever activity had the highest probability was
selected as the output of the combined system.

For the comparison with the Combined KNN algorithm, all the sensor inputs were
fed into the KNN algorithm previously used exclusively within each EMG sensor. This
is a well-established supervised learning technique [25,26] used in many EMG-driven
intent-sensing studies and should be representative of the general performance of machine
learning techniques.

2.7. Testing

The performance of the two algorithms was compared by testing their classification
of the data sample in the testing set. The total number of correct classifications across the
165-fold leave-one-out cross-validation method was divided by the number of trials (165)
to result in an accuracy measure for each algorithm.

2.8. Time Variation

The first goal to be investigated was the effect on the accuracy of intent classification
when varying amounts of time were allowed to pass after the activity’s inception before
intent classification was performed. To measure this, the experiment was repeated with
all 24 sensors active, making the prediction using only the first X milliseconds of each
sample, with X increasing from 200 in 50 ms increments up to the full 1000 ms allowed. The
resulting accuracies were plotted against the time allowed to show the trend. The trend for
both methods was then quantified using a Spearman’s rank correlation coefficient, where
R(Pi) and R(Ti) are the ranks of each (i-th) sample in accuracy and time, respectively, and
n is the number of samples:

rs = 1− 6 ∑ (R(Pi)− R(Ti))
2

n(n2 − 1)
(3)

This gives a result between −1 and 1, where 1 is a perfectly monotonically increasing
pattern, −1 is a perfectly monotonically decreasing pattern and 0 indicates no monotonic
relationship. This is an appropriate measure, as it will indicate to what extent the hypothesis
is true, namely that accuracy will increase when more time is allowed to pass [27].

2.9. Variant No. of Sensors

The second area to be investigated was the effect on intent classification accuracy
when the number of sensors was varied, where in each instance, the algorithms were
trained only on the sensors that were active. It should be noted that this is not testing
robustness to sensor dropout (this is described in Section 2.10) but instead showing the
effect of increasing the number of sensors.

The number of sensors used as inputs, R, was varied from 1 to 24. For each num-
ber, 50 randomly selected combinations of R sensors were tested and the mean accu-
racy was recorded, along with the 95% confidence intervals. These were plotted and
compared graphically.
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Referring back to the PSN model discussed in Section 1.3, as both algorithms use the
same sensors in this experiment, in the same sensing environments and with the same
signal conditioning, this suggests the difference in probability comes entirely from the
Stage D, Signal Processing step.

If the probability associated with the MM (Bayesian Fusion) method is P(D1) and
the probability associated with the NMM (Combined KNN) method is P(D2), and the
probabilities of the Environment, Sensing and Conditioning stages are P(A), P(B) and
P(C) for both algorithms, respectively, the ratio of the Processing probabilities for the two
algorithms is given by:

P(BF)
P(CKNN)

=
P(A)·P(B)·P(C)·P(D1)
P(A)·P(B)·P(C)·P(D2)

=
P(D1)
P(D2)

(4)

This ratio therefore quantifies the relative benefit of using the MM over the NMM
for intent detection, and so this value will be estimated using the data points plotted and
then used to compare the algorithms. This ratio is not expected to be consistent for all data
points, and so the range of values will be given.

2.10. Simulated Dropout

The third (and most important) element to be investigated was the effect on the intent
classification accuracy of the algorithms only trained with all sensors active when a number
of sensors begin “dropping out”. To test this, the experiment was repeated again, this time
by randomly selecting N sensors to be set to a constant 0. For the Bayesian algorithm, these
sensors’ predictions were not used. On the other hand, the K-nearest-neighbours algorithm
trained on all the sensors cannot have an input removed, so they continued to use the
0 value.

The number of dropped sensors, N, was increased from 0 to 23, with the predictions
made only 1000 ms into each activity—well before their completion, making this analysis a
“goal inference” task. The accuracies measured were averaged over 50 random combina-
tions of N sensors dropping out. The mean accuracies over twenty repetitions of the MM
(Bayesian Fusion) and NMM (Combined KNN) were plotted against N, along with the
upper and lower bounds of the 95% confidence interval of each.

As in Section 2.9, the ratio of the accuracy of the MM to the NMM will be used to
quantify the relative benefit. This will vary as N increases, and so the range will be given.

3. Results

The accuracies of the two classification methods versus an increasing amount of time
allowed after activity inception with all sensors used are shown in Figure 5. Both showed
trends of increasing accuracy over time, with a Spearman’s rank correlation coefficient of
0.9 for the MM (Bayesian Fusion) and 0.6 for the NMM (Combined KNN).

The accuracies of the MM and the NMM trained and tested on a varying number of
sensors from 1 to 24 with no drop out are shown in Figure 6. The NMM had consistently
higher accuracy than the MM in this case, with no overlap between the 95% confidence
intervals until the number of sensors reached 24, at which point the upper confidence
interval of the MM exceeded the lower confidence interval of the NMM. The accuracy ratio
of the MM to the NMM method ranged between 0.8 and 0.9, with a mean of 0.85.

The accuracies of the MM and the NMM all trained on the complete set of sensors
when the number of sensors dropping out varies from 0 to 23 are shown in Figure 7. Initially,
with no sensors dropping out, the NMM resulted in a higher mean accuracy than the MM.
As more sensors dropped out, this difference decreased, until with 10 sensors dropping
out, the MM mean accuracy exceeded that of the NMM. From this point on, the accuracy
advantage of the MM over the NMM continued to increase, resulting in an accuracy ratio
of MM to NMM ranging from 0.9 at 0 dropout to 1.4. Initially, there was a large amount of
crossover between the 95% confidence intervals of the two methods, but after 17 sensors
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had dropped out, the lower bound of the MM became greater than the upper bound of the
NMM, and remained so for all greater numbers of dropped sensors.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Graphs to show the accuracy of the intent-classification system against the time allowed 
to pass after the activity’s inception before classification was performed, up to the 1-second limit 
and with all 24 sensors active (no dropout). These graphs are shown separately to clearly illustrate 
the presence of a general trend for each algorithm, but comparisons between the two in this context 
should be avoided (see Section 4.1 for discussion on this). The Combined KNN method does not 
have confidence intervals, as all the sensors are included and there is no subdivision of the training 
data, so its performance is entirely reproducible. 

The accuracies of the MM and the NMM trained and tested on a varying number of 
sensors from 1 to 24 with no drop out are shown in Figure 6. The NMM had consistently 
higher accuracy than the MM in this case, with no overlap between the 95% confidence 
intervals until the number of sensors reached 24, at which point the upper confidence 
interval of the MM exceeded the lower confidence interval of the NMM. The accuracy 
ratio of the MM to the NMM method ranged between 0.8 and 0.9, with a mean of 0.85. 

 
Figure 6. Graph showing the accuracy of the intent-classification system using the Bayesian Fusion 
method (treating each sensor separately and then combining them) and the combined method (put-
ting all sensor information into a single KNN classifier) as the number of sensors increases. No sen-
sors dropped out—instead, the number of sensors was varied from 1 to 24, and the algorithms were 
trained on the number of sensors active in each case. 

The accuracies of the MM and the NMM all trained on the complete set of sensors 
when the number of sensors dropping out varies from 0 to 23 are shown in Figure 7. Ini-
tially, with no sensors dropping out, the NMM resulted in a higher mean accuracy than 
the MM. As more sensors dropped out, this difference decreased, until with 10 sensors 
dropping out, the MM mean accuracy exceeded that of the NMM. From this point on, the 

Figure 5. Graphs to show the accuracy of the intent-classification system against the time allowed
to pass after the activity’s inception before classification was performed, up to the 1-second limit
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should be avoided (see Section 4.1 for discussion on this). The Combined KNN method does not
have confidence intervals, as all the sensors are included and there is no subdivision of the training
data, so its performance is entirely reproducible.
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4. Discussion
4.1. Time-Dependent Classification

The results obtained from the experiment demonstrated a link between the time
allowed to collect data and the accuracy of the classification, with the accuracy increasing
approximately monotonically over time (see Figure 5). This link was shown more strongly
for the MM than for the NMM, with a higher Spearman’s correlation coefficient for the
former than the latter. There is no reason in the algorithms that the time allowed should
have a different effect on the MM than the NMM. It is possible that the difference is due
to the experiment being performed with all 24 sensors active—in this case, the NMM is
expected to perform better than the MM, and is therefore closer to the maximum accuracy
achievable by the sensors. As a result, there is less capacity for an increase as more time is
allowed. Regardless of the difference, the experiment indicates that intent classification is
more difficult earlier on in the activity cycle.

This is an expected result, as the activities all start in approximately the same position,
with the differences between them increasing as they progress. Similar findings were
shown in [28], though in a somewhat different context, and when viewed in combination
with this study, it is suggested that the monotonic increase in classification accuracy begins
even before activity inception (where it is purely predictive) and continues throughout the
activity cycle.

4.2. Variant No. of Sensors

A clear relationship is also seen between the total intent classification accuracy and
the number of sensors used as inputs in the algorithms (see Figure 6). It should again be
noted that, in this test, the algorithms were trained on each possible combination of sensors,
which is not possible in real-world applications where the sensors that may or may not be
available are not known in advance.

For both algorithms, the classification accuracy increased with the number of sensors.
However, as there is no “sensor drop out” in this scenario, the NMM (Combined KNN algo-
rithm) showed consistently better performance than the MM (Bayesian Fusion algorithm).
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Again, this is an expected result that aligns with previous studies [29], as the Combined
KNN algorithm is able to exploit relationships between the features from different sensors,
whereas the Bayesian Fusion algorithm is limited to only exploiting relationships between
features within each modular sensor. The Combined KNN algorithm therefore has access
to more information than the Bayesian Fusion.

The ratio between the accuracy of the MM and NMM ranged between 0.8 and 0.9,
suggesting that while the modular approach does show lower performance than the non-
modular approach with no sensor dropout, this difference is relatively small, and much of
the accuracy is still retained.

Both algorithms followed a similar pattern of initially rapid increases in accuracy as
the number of sensors increases, with a decreasing slope as the number of sensors becomes
large, approaching an asymptote. This follows the general pattern expected by a PSN with
increasing sensor numbers [30].

4.3. Simulated Dropout

The case of simulated dropout is the one most directly pertaining to the proposed
real-world application, and is the main focus of this study. While the Bayesian Fusion
algorithm was not designed to outperform standard combined methods in situations where
the specific combination of available sensors is known and trained on, this pre-training will
not be possible in dynamic real-world scenarios.

The situation of sensors dropping out reflects the fact that, in a dynamic sensing
environment, sensors which were initially available will no longer become available as
the user moves away from them. It also applies to the issue of maintenance, where
sensors on a user’s device may fail over time with use, often requiring regular follow-up
appointments [31], which may be costly and unfeasible in developing countries [32].

By treating the individual sensors as modular, the Bayesian Fusion algorithm allows
any combination of sensors to still function together as a system, rather than relying on all
of them. In this scenario, therefore, both algorithms were trained on all available sensors,
and then increasing numbers of sensors were randomly set to 0. The hypothesis was that
the modular Bayesian Fusion approach would be much more robust to this dropout than
the Combined KNN approach, which was dependent on all sensors working together and
should therefore drop in accuracy more rapidly.

This was supported by the results, which showed that while the NMM was superior
with no dropout (as expected from previous studies [33]), as the number of dropped sensors
increased, the MM overtook its accuracy and became increasingly superior. Given that a
real-world intent-sensing system might involve hundreds of different sensors dropping
in and out throughout the user’s activities of daily life, these results indicate the MM as a
more appropriate choice than non-modular alternatives.

Furthermore, an NMM would have to be pre-trained on every possible combination
of sensors, which becomes prohibitively complex and computationally expensive with
hundreds of sensors in play. Conversely, an MM would only need to train a single classifier
for each sensor.

4.4. Limitations of the Study

While the algorithms used in this study were designed to still be valid for real-time ap-
plication, the tests described were performed on data “after the fact.” A practical application
would require real-time testing, factoring in elements such as processing speed.

This study involved only five participants, each performing three trials. While this
was sufficient to demonstrate the general ideas discussed, small datasets with high di-
mensionality can lead to bias in performance estimates and inaccuracies in classifiers [34].
As such, a larger dataset would allow the study of more effective classifiers, with more
accurate confusion matrices and more precise final accuracy measurements.

This study classified intent between three different classes, but in daily life, intent
options are far more diverse.
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This study used only IMU and EMG sensors as inputs, in order to demonstrate the
combination of different sensing environments for networked intent sensing. Many other
sensor types would also be valid.

In terms of sensor numbers, this study was limited to 24 sensors. While this is far
more than may be found on a typical prosthetic device, compared to a network composed
of wearable, smart-phone and smart home sensors across multiple environments including
home, travel, work, etc., it is relatively small. Given the pattern established by this study, it
is likely that the difference between the algorithms will only increase with larger numbers
of sensors dropping out.

This study only concerned itself with the scenario of sensors dropping out, and did not
consider the possibility of sensors dropping in. It would have been impossible to include
sensors in the NMM that were not originally trained on, as this would result in more input
dimensions than the trained classifier allows. The MM, however, would have had no issue
with this, so long as confusion matrix entries for the new sensors were provided.

4.5. Suggested Future Work

While the data set used for this work was a good starting point, applying the methods
established here to a much larger data set (such as [35]) would also be of interest, allowing
the study of more accurate classifiers and more accurate estimations of the confusion
matrix entries.

Secondly, the analysis performed here took place offline, with all data recorded in
advance. The next stage of the algorithm’s development would be to adapt it to run in real
time, perhaps in a scenario similar to [36], which would be much more representative of
practical use in a prosthetic device.

More sensors, particularly from multiple sensing environments, would further im-
prove the algorithm and allow more precise classification into finer, more detailed classes.
A future study could combine the sensors used in this study (perhaps built into a wearable
device) with smart home sensors and built-in sensors on devices such as smart phones
and smart watches to further expand the network and provide a better simulation of the
proposed real-world application.

The MM also has the benefit of reducing the dimensionality of the classifiers trained
compared to the NMM. The NMM, using the same number of training samples, must train
a classifier to distinguish between features from every sensor at once. The MM splits this
problem up into R individual classifiers (where R is the number of sensors), each with
the number of dimensions reduced by a factor of 1/R. It is possible that this could reduce
the amount of training data required to train the needed classifiers—a future study could
investigate, verify and quantify this potential advantage.

Finally, the maintenance applications of the modular algorithm could be further
explored by applying the algorithm to the number and types of sensors found on actual
prosthetic devices for current industry-standard classifications, to investigate advantages
in continued prosthetic viability as sensors cease to function.

5. Conclusions

Firstly, it has been shown that intent classification is easier the later on in the activity
cycle it is attempted, and that a high classification accuracy (~96%) can be reached using
only the first 1000 ms of data after activity inception for simple tasks.

Adding more sensors has been shown to produce a strong improvement in accuracy
regardless of which intent-sensing algorithm was used, well beyond the relatively small
number of sensors typically used in prosthetic devices. Networking larger numbers of
sensors together is supported by this study as a potential method for improving device
input detection accuracy, which could not only lead to better performance in devices but
also allow the option of more precise, complex input actions that previously have not been
detectable with a high-enough accuracy through existing methods.
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The proposed modular approach to sensor fusion supports a dynamic intent-sensing
network more effectively than the comparison combined approach, with higher accuracy
under conditions of major sensor dropout and the possibility for “drop-ins”, which are not
viable for a non-modular system.

This approach is not only useful in a dynamic context where users move from one
sensing environment to the other, but also in maintenance scenarios, to allow devices to
continue to function with a reduced set of sensors where repair is costly or impossible. It
could even be possible to use a combined algorithm where all sensors are available, and
then switch to a modular algorithm when sensor dropout is detected, maximising accuracy
with a “best of both worlds” approach.

In summary, this is an early exploration into the requirements and viability of a
dynamic intent-sensing system, and it is hoped that subsequent research will push this
technology further, towards a future where intent sensing approaches ubiquity in medical
devices and beyond.

Author Contributions: Conceptualisation, J.R. and J.H.M.B.; methodology, J.R., J.H.M.B. and V.H.N.;
software, J.R.; validation, J.R.; formal analysis, J.R.; investigation, J.R.; resources, J.H.M.B.; data cura-
tion, J.R., J.H.M.B. and V.H.N.; writing—original draft preparation, J.R.; writing—review and editing,
J.H.M.B. and V.H.N.; visualisation, J.R.; supervision, J.H.M.B.; project administration, J.H.M.B.; fund-
ing acquisition, J.R. and J.H.M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was performed as part of Joseph Russell’s DPhil, funded through an EPSRC
Doctoral Training Award (Student Number 811504).

Institutional Review Board Statement: The data used in this study was gathered in accordance with
the Declaration of Helsinki, and approved by the Institutional Review Board of the University of
Oxford (Reference Numbers: 16/SC/0051 and 14/LO/1975).

Informed Consent Statement: Consent was obtained from all subjects involved in the study.

Data Availability Statement: Data can be obtained on request by contacting the named researchers.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Feature Reduction

The high dimensionality of the features used in this study could create an issue of
overfitting in the classifiers trained. This risk is higher in the NMM (Combined KNN) than
in the MM (Bayesian Fusion), as the same amount of data is used to train both, but the
dimensionality is 12 times greater in the former than in the latter.

To mitigate the risk of overfitting, a visual inspection was performed (see Figure A1) to
check how the measured accuracy with both algorithms varied with the number of features,
N, increasing from 250 to 4500 (the number of features present in the full one second of
data). For this test, the number of features used was constrained through feature reduction,
performed using a Principal Component Analysis (PCA) [37]. The features were ranked in
order of “importance” as estimated by the PCA, and the top N features were retained.

This test demonstrated that, allowing for random fluctuation, the accuracy increased
approximately monotonically in both algorithms as more features were included. This
suggested that overfitting was not occurring and that the features should not be reduced
in the algorithm, and as such all 4500 features were included. This number is generally
consistent with the number of features used with similar amounts of data in similar
studies [14].
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