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Abstract: This paper addresses the problem of automatic quality inspection in assembly processes
by discussing the design of a computer vision system realized by means of a heterogeneous mul-
tiprocessor system-on-chip. Such an approach was applied to a real catalytic converter assembly
process, to detect planar, translational, and rotational shifts of the flanges welded on the central body.
The manufacturing line imposed tight time and room constraints. The image processing method and
the features extraction algorithm, based on a specific geometrical model, are described and validated.
The algorithm was developed to be highly modular, thus suitable to be implemented by adopting a
hardware–software co-design strategy. The most timing consuming computational steps were identi-
fied and then implemented by dedicated hardware accelerators. The entire system was implemented
on a Xilinx Zynq heterogeneous system-on-chip by using a hardware–software (HW–SW) co-design
approach. The system is able to detect planar and rotational shifts of welded flanges, with respect to
the ideal positions, with a maximum error lower than one millimeter and one sexagesimal degree,
respectively. Remarkably, the proposed HW–SW approach achieves a 23× speed-up compared to the
pure software solution running on the Zynq embedded processing system. Therefore, it allows an
in-line automatic quality inspection to be performed without affecting the production time of the
existing manufacturing process.

Keywords: geometrical model; machine vision; automatic in-line inspection; hardware–software
co-design; field programmable gate array systems-on-chip; assembly process

1. Introduction

The production line of manufacturing processes is typically divided into consecutive
separated steps that are demanded to robots and/or automated machines, which can
accomplish their tasks quicker than a human operator can, with a higher accuracy and in
a safer mode [1]. However, the whole automation-based flow does not have a complete
feedback control system; thus, the production line imposes some checkpoints aimed at
verifying the correct operation of the single production step. Such verification procedures
typically consist of a visual inspection of the item within the production line and in
checking its geometrical compliance with the particular requirements. Very often, the check
is performed by a human operator who manually operates on the item with the help
of specialized instruments, such as microcenters and calibers. A typical example is the
geometrical compliance check of an assembled item where its components are welded
together by a welding robot [2]. The human-based compliance check has some obvious
drawbacks: it is time consuming and it requires the line to stall for the time required by the
checking operation. Moreover, as a consequence, it can be applied on one single or a few
samples over a set within the production lot, preventing the collection of useful data about
the manufacturing process that may be used, as an example, for a predictive maintenance
based on big data analytics.
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Computer vision systems (CVSs) have emerged as effective alternatives to human-
based inspections [3–5]. Indeed, they represent an effective methodology to build a digital
twin of the item to be analyzed, i.e., a digital avatar or a cyber–physical equivalent that
can be used in real time in parallel with its physical counterpart [6]. The digital twin of
the item is updated in real time by the data that are continuously gathered by the sensors
(i.e., the cameras) and it allows a continuous analysis of the virtual item in a more accurate
and faster way than usually required by the physical item [7].

CVSs enable an in-line inspection check that can be performed without interfering with
the regular flow of the production line and, hence, without requiring a periodical production
stall. Moreover, a CVS is not affected by possible errors that a human operator may commit
and its high execution speed allows inspecting much more assembled items. Depending on
the assembled item to be inspected, a CVS has to face particular challenges. As an example,
the image segmentation process aimed at extracting the features of interest can be difficult
due to poor luminosity, color homogeneity of the object to analyze, noisy background,
and/or surface irregularity. Another typical challenge arises when the geometrical check
needs a three-dimensional optical digitizing. Finally, in order to avoid interferences with
the existing manufacturing line and its production speed, the CVS has to assure a high
computational speed. Existing works deal with some of these problems by proposing
strategies that unfortunately cannot be generally applied. As an example, the approaches
proposed in [8,9] exploit forward and backward lighting to eliminate shadows and to
enhance edges, respectively, and to artificially change the color of the object of interest.
This is highly required by any machine vision system because the illumination noise
and the reliability of the measurement are correlated: the higher the noise (i.e., the more
the illumination deviates from the assumed one) the higher the error in the measurement.
The three-dimensional optical digitization of the item proposed in [10,11] uses rotating
tables. This kind of solution may not be applicable when the room available to integrate the
CVS with the manufacturing line is constrained and/or inaccessible. The CVSs described
in [12–14] are suitable to detect geometrical deviation of an object from a reference pattern,
but they are able to detect only the movements of the item along a plane parallel to the video
camera. As deeply discussed in [15–17], machine learning and deep learning techniques
are also widely adopted in CVSs for inspection tasks. However, such techniques aim
to classify surface imperfections of the inspected item and they are not used to detect
position shifts from a reference point. Furthermore, they require a large training image
data set with known information of all the possible defects that may not be available
and/or easily collected. Finally, in order to deal with noise due to irregular illumination,
some papers [15,18–20] propose to iterate the computation of the CVS over a large set of
consecutive frames. Indeed, random illumination noise can affect the correctness of the
measure. By iterating the procedure on several consecutive frames and by averaging the
resulting measurements, the effect of noise is averaged too and, thus, the final measured
value is more reliable. However, this strategy increases the computational time of the CVS
and makes the use of a compact and high performance specialized hardware device highly
desirable to meet the production timing and physical space constraints [21].

To solve the aforementioned limits, in [22] we proposed a geometrical model of the 3D
space that can be embedded in a CVS for a flexible, precise, and low-cost in-line geometrical
inspection of the assembly processes. As a case study, it was applied to the geometrical
compliance check of a real catalytic converter assembly process. The geometrical modeling
makes the CVS able to detect planar, translational, and rotational shifts of the flanges
welded on the central body of the catalytic converter by using two-dimensional elabora-
tions of an input image. To improve measurement accuracy, several consecutive captured
frames are processed and averaged by the proposed algorithm, thus reducing noise effects.
As a drawback, the total computational time of course increases and may eventually ex-
ceed the available time slot. This problem is even more significant if it is considered that
such procedures usually run on a single board computer (SBC) with limited hardware
resources [22]. This paper extends the previous work by proposing the design of an embed-
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ded system based on a heterogeneous multiprocessor system-on-chip (MPSoC) hosting a
general-purpose multicore processor and a reconfigurable programmable logic platform
based on a field programmable gate array (FPGA). To this purpose, the geometrical inspec-
tion algorithm was analyzed and a detailed timing profiling of its computational steps
was developed. Then, the most timing consuming tasks were accelerated by an on purpose
designed hardware architecture realized in the programmable logic portion of the chip; whereas
the remaining steps were executed by software routines by the embedded processor.

The proposed embedded system was implemented using the PYNQ-Z2 development
board, equipped with the Xilinx XC7Z020-1CLG400C SoC. The automatic inspection of the
geometrical compliance of the flanges of catalytic converters is referred to as the application
of interest. Our results show that, when supported by the system described here, the whole
computation is performed within a total processing time of only 1.3 s, thus being 23 times
faster than the pure software solution. Due to this, the proposed methodology can be
successfully exploited to design CVSs suitable for integration into a manufacturing line
without interfering with the production process.

The remainder of the paper is organized as follows: Section 2 outlines the specifi-
cations of the assembly process related to the catalytic converter; Section 3 discusses the
image processing and the adopted geometrical model; Section 4 describes the proposed
architecture of the heterogeneous embedded system with a particular emphasis on the
FPGA-based hardware accelerator; finally, some conclusions are drawn in Section 5.

2. The Catalytic Converter Assembly Process

Figure 1a illustrates a catalytic converter of an actual manufacturing process. It is
composed of two collectors, two clamshells, and a selective catalytic reduction on filter
(SCRoF) chamber. The two collectors are welded to their respective clamshell by an auto-
mated metal active gas (MAG) welding process, which is demanded to an automated robot.
Once assembled, the item is placed in a quality cell, as shown in Figure 2, for a leakage test
that takes about one minute. If process imprecisions occur, the collector B may experience
a translational and/or a rotational shift from its reference position, as schematized in
Figure 1b,c. The aim of the inspection task is to check the geometrical position of the flange
B. In order to avoid interferences with the production line, the inspection can be demanded
to a CVS running when the catalytic converter is fixed in the quality cell, just before the
beginning of the leakage test.
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of the collector (courtesy of Marelli Europe SPA Green Technology Systems, Caivano, Italy).

As visible in Figure 2, the room available to integrate the system (including the
video camera, the illumination source, the computing platform, etc.) with the existing
quality cell is very constrained. This forces the system to be flexible and able to operate
with reduced degrees of freedom (e.g., the camera and the illumination source cannot be
arbitrarily positioned, the computing platform should have a reduced size, etc.). Due to
the limited room, it is not possible to place a video camera capturing frames of the flange
B. Nevertheless, the focus of the CVS can be moved to the sensor boss C [22]. Indeed,
the latter does not undergo any welding process but it is monolithically realized on the



Sensors 2022, 22, 2839 4 of 16

collector. As a result, any geometrical noncompliance of the flange B is then reflected on
the sensor boss C.
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3. The Image Processing and the Geometrical Model

The algorithm at the basis of the proposed system consists of two steps: the image
segmentation, which extracts the region of interest (ROI), and the feature extraction that
detects translational and rotational shifts.

3.1. Image Segmentation

The image segmentation consists of the following main steps:

1. The color image acquisition from the video camera (GeTCameras Inc., Eindhoven,
The Netherlands); 640 × 480 image resolution was used in our experiments;

2. The image conversion and cropping. It converts the input image from the RGB
color space into the 8-bit grayscale domain. Moreover, it crops a 220 × 220 region
of the original image, which contains the profile of the sensor boss C, to reduce the
computational complexity;

3. The ROI filtering removes noise and detects the edges of the sensor boss. Firstly,
a 5 × 5 median filter removes the noise from the image. Successively, a Canny filter
with lower and higher thresholds of 10 and 50, respectively, detects the edges [23].
The filter dimension and its thresholds are set empirically. The Canny filter was
chosen since it is well known as one of the most robust processing methods for
edge detection [24–27];

4. The contour selection aims at selecting only the edge related to the external profile of
the sensor boss. The inevitable irregularities on the surface of the collector, as well as
noise in the illumination conditions over time, cause the detection of several edges
that are not of interest. The goal is to find a reasonable procedure to select just the
contour related to the profile of the sensor boss. Towards this aim, all of the contours
in the filtered image produced by the previous step are stored into a data structure.
The contour with the largest length is then selected as the one that most likely is
related to the boundary of the sensor boss;

5. The morphological filtering of the selected contour. It is important that the selected
contour delimits a closed area in order to robustly discern, in the image, the area of the
sensor boss from the other non-relevant regions. Due to noise, such a condition may
be not satisfied. Moreover, the selected contour may still contain some irregularities
that can affect the precision of the sensor boss detection procedure. To remove such
non-idealities, a 3 × 3 morphological dilatation filtering is used that thickens the
selected contour so that any possible gap can be filled, and, most likely, the contour
can delimit a closed area. Successively, the pixels that are inside the identified area
are set to the same value (i.e., 255, corresponding to white in an 8-bit grayscale image).
A 3 × 3 morphological erosion filtering restores the original size of the detected en-
closed area. Afterwards, two consecutive erosion and dilation morphological filtering,
with their larger 21 × 21 kernel sizes, eliminate any other possible fringes outside
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the sensor boss area from the segmented image. Figure 3 illustrates the intermediate
outputs of the above discussed steps.
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3.2. Features Extraction

The segmented image is then processed to extract features of interest. Firstly, a connected
component analysis is performed. Then, the central coordinates (XP, YP) in the 2D camera
plane are calculated as shown in Equation (1):

mji = ∑
x,y

[
P(x, y)·xj·ji

]
XP = m10

m00
, YP = m01

m00
,

(1)

where P(x, y) is the value of the generic pixel belonging to the segmented area (i.e., with the
same label) at the (x, y) coordinates. The procedure described so far is made more robust by
iterating it over a certain number of consecutive captured frames. The coordinates (XP, YP)
are then calculated by averaging the obtained results [18]. The appropriate number of
processed frames may change according to the illumination setup: more frames are required
with a lower illumination condition. For the specific application, we experimentally verified
that 50 consecutive frames are enough to obtain a fairly robust parameters extraction.

Considering the pinhole camera model [28], the coordinates (XP, YP) can be mapped
into the coordinates (Xw, Yw) in the real world, on a plane that is parallel to the camera
plane, by means of Equation (2), where Z0 is the camera–object distance in the real world
and F is the focal length (in pixels) of the camera:(

XP
YP

)
=

F
Z0
·
(

XW
YW

)
. (2)

Consequently, Equation (3) can be applied when an imprecise welding process causes
the sensor boss translational shifts from a reference point A to a point B on a plane parallel
to the camera plane, (

∆XW
∆YW

)
=

(
|XW,B − XW,A|
|YW,B −YW,A|

)
=

Z0

F
·
(
|XP,B − XP,A|
|YP,B −YP,A|

)
=

Z0

F

(
∆XP
∆YP

)
,

(3)

with (∆XW , ∆YW) and (∆XP, ∆XP) being the translational shifts of the sensor boss center
in the real world and in the camera plane, respectively, along the x- and y-axes.

To improve the global accuracy, we adopted the more realistic geometrical model
depicted in Figure 4. There, the center of the sensor boss experiences a translational shift
on a plane not parallel to the camera plane. The values of the following parameters can be
considered as inputs to the proposed system (they can be measured on the actual set-up and
position of the video camera inside the quality cell): α is the angle between the camera and
the sensor boss planes; Z0 is the distance between the sensor boss center and the camera
plane; b is the distance between the sensor boss center and the point A (i.e., the point with
the same distance from the image plane as the expected ideal position B, but aligned with
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the camera focal point). An imprecise welding process may cause a shift of the sensor
boss center from the expected ideal position B to a point D. Let us define with r and c
the direction of such a shift and its magnitude, respectively. By detecting the sensor boss
center coordinates in the image plane, Equation (2) can be applied to measure the value
a. Since the sensor boss and the camera planes are not parallel, a is not the final shift
magnitude because point C is only the projection of point D on the plane R. Under the
realistic assumption that Z0 is much larger than F, the measure of the actual shift c in the
real world can be found by Equation (4):

δ = arctg a+b
Z0

β = π
2 − δ = π

2 − arctg a+b
Z0

ϑ = π
2 + δ− α = π

2 + arctg a+b
Z0
− α

c = a· sinβ
sinϑ = a·

sin
(

arctg a+b
Z0

)
cos

(
arctg a+b

Z0
−α

)
(4)

To experimentally validate the above model, the item under test and the video camera
were placed on an optical bench. To emulate translational shifts, the camera was subjected to
micro-movements through a mechanical carriage that allowed controllable and measurable
movements with tenth-of-millimeter resolution. Figure 5 depicts the maximum, minimum,
and mean absolute error measured through experimental tests on several manufactured
items and for different distances between the camera and the sensor boss. It is worth noting
that the obtained errors are of the order of microns. Figure 6 depicts the values of the
measured vs. the exact shifts for different values of α. As visible, the proposed model
is able to measure the shift of the sensor boss center with a high precision: the obtained
maximum error was found to be below the millimeter.
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shift extent and the angle between the camera and the sensor boss planes (b = 5 cm and Z0 = 48 cm).

Finally, the model was able to detect possible rotations of the sensor boss bound-
ary. Such displacements can occur along an axis passing through the sensor boss center.
The geometrical model was enhanced, as depicted in Figure 7, where φ is the rotation angle
to detect, Z0 is the distance between the camera and the sensor boss planes for φ = 0, and B
(D) is the point representing the left border of the sensor boss boundary for φ = 0 (φ > 0).
According to the camera pinhole model, points D and C are projected onto the image plane
in the same position. Due to the rotation, the sensor boss on the image plane assumes an
elliptic shape with an eccentricity depending on φ, so the length of the segment c can be
obtained by finding one semi-axis of such an ellipse. Towards this aim, a synthetic ellipse
is drawn in the image tracing the sensor boss boundary, as depicted in Figure 8, and the
lengths of the semi-axes (in pixels) are obtained. The latter is then converted into a measure
in the real world by Equation (2). Afterward, the rotation angle φ can be calculated by
Equation (5), derived by the geometrical model of Figure 7:

β = arctg |b+a|
Z0

α = π
2 − β c

sinγ = b+c
sin(π−α)

γ = arcsin c·sin(π−α)
b+c

φ = π − γ− (π − α) = α− γ

(5)Sensors 2022, 22, x FOR PEER REVIEW 8 of 17 
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Figure 7. Geometrical model for rotation shifts.
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Figure 8. Elliptical matching (in red) of the sensor boss surface (in white).

Some of the obtained experimental results are depicted in Figure 9, which shows that
the proposed methodology is able to detect the rotation angle φ with a maximum error
below 1 sexagesimal degree.
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4. The Hardware System

We implemented the designed CVS on a Xilinx Zynq XC7Z020-1CLG400C heteroge-
neous SoC (AMD-Xilinx Technology Ltd., Cambridge, UK) because it is a compact and
flexible hardware platform that also allows multiple geometrical inspection processes run-
ning in parallel. Such a device provides a dual-core Cortex-A9 processor, also running the
PetaLinux v2.4 operating system, and a programmable logic area of about 85 K logic cells.

As discussed in Section 2, the assembled catalytic converter is expected to remain
inside the quality cell for no longer than one minute. The automatic geometrical inspection
should be activated just after the operator places the item in the constrained position,
shown in Figure 2. Once the leakage test starts, sensor bosses and flanges are plugged
by hydraulic pistons; thus, they cannot be inspected anymore. Therefore, the CVS has to
complete the automatic inspection in less than 10 s, to avoid an excessive slowdown of the
production step.

The pure software implementation of the algorithm described in Section 3 requires
0.573 s per frame, when it runs on the Zynq embedded ARM processing system. Therefore,
processing at least 50 consecutive frames to obtain a reliable inspection of the item under test
would lead to a timing specification violation. This pure software implementation evidently
does not meet the above-mentioned inspection time constraint. For this reason, we adopted
a hardware/software co-design approach: custom hardware accelerators execute the most
time-consuming computational steps, whereas the less critical operations rely on the
general-purpose processor of the Zynq SoC. Figure 10 shows the time breakdown of the
pure software elaboration of a single frame. It can be noted that the morphological filtering
is responsible for almost 92% of the computational time, whereas the image conversion and
the ROI filtering operation account for the 4.1% of the total latency. Hence, these represent
the time-critical computational steps that deserve to be hardware implemented.



Sensors 2022, 22, 2839 9 of 16

Sensors 2022, 22, x FOR PEER REVIEW 9 of 17 
 

 

The pure software implementation of the algorithm described in Section 3 requires 
0.573 s per frame, when it runs on the Zynq embedded ARM processing system. 
Therefore, processing at least 50 consecutive frames to obtain a reliable inspection of the 
item under test would lead to a timing specification violation. This pure software 
implementation evidently does not meet the above-mentioned inspection time constraint. 
For this reason, we adopted a hardware/software co-design approach: custom hardware 
accelerators execute the most time-consuming computational steps, whereas the less 
critical operations rely on the general-purpose processor of the Zynq SoC. Figure 10 shows 
the time breakdown of the pure software elaboration of a single frame. It can be noted that 
the morphological filtering is responsible for almost 92% of the computational time, 
whereas the image conversion and the ROI filtering operation account for the 4.1% of the 
total latency. Hence, these represent the time-critical computational steps that deserve to 
be hardware implemented. 

 
Figure 10. The time breakdown of the pure software execution of the geometrical inspection 
algorithm. 

Figure 11 depicts the architecture of the proposed embedded system. The SoC device 
is formed by the processing system (PS), hosting the Cortex-A9 processor, and the 
programmable logic (PL), where the FPGA is located. Subsystems implemented in the PL 
run with 100 MHZ clock frequency. The operating system running on the PS manages the 
USB communication with the video camera. The PS has direct access to the DDR memory 
controller, so the operation of storing the captured frames into the DDR memory is 
controlled by a software routine. Besides running the less critical computational steps of 
the algorithm, the PS also has to program and activate two direct memory access modules, 
DMA0 and DMA1, which regulate the input/output data flow between the hardware 
accelerators accommodated into the PL and the external DDR memory. For this task, the 
software running on the PS uses the port M_GP0 of the processor through the AXI4-Lite 
protocol [29]. 

 
Figure 11. Top-level architecture of the designed embedded system. 

ARM Cortex A9 

Pynq-based OS 

AMBA Interconnect USB IO 
Interface CAMERA 

DDR 
DDR 

Controller 

DMA1 

DMA0 
RGB2Gray Dilate 

Erode 

Erode 
Dilate 

Processing System 

Programmable Logic 

AXI4-Full 
AXI4-Lite 
AXI4-Stream 

Canny Edge 
Detection 

Median 
Blur 

Figure 10. The time breakdown of the pure software execution of the geometrical inspection algorithm.

Figure 11 depicts the architecture of the proposed embedded system. The SoC device
is formed by the processing system (PS), hosting the Cortex-A9 processor, and the pro-
grammable logic (PL), where the FPGA is located. Subsystems implemented in the PL run
with 100 MHZ clock frequency. The operating system running on the PS manages the USB
communication with the video camera. The PS has direct access to the DDR memory con-
troller, so the operation of storing the captured frames into the DDR memory is controlled
by a software routine. Besides running the less critical computational steps of the algorithm,
the PS also has to program and activate two direct memory access modules, DMA0 and
DMA1, which regulate the input/output data flow between the hardware accelerators ac-
commodated into the PL and the external DDR memory. For this task, the software running
on the PS uses the port M_GP0 of the processor through the AXI4-Lite protocol [29].
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Figure 11. Top-level architecture of the designed embedded system.

When not directly available as synthesizable intellectual properties (IPs), the required
hardware accelerators have been described using the C++ high-level language and then
synthesized through the Xilinx high-level synthesis (HLS) Vivado Tool [30]. Once the
captured frame is stored in the DDR memory, the DMA0 is configured to transfer it to
the first hardware accelerator through the AXI4-Stream protocol. As dictated by the
DMA0 module interface, the input data flow consists of a stream of 32-bit words, each one
containing a 24-bit RGB pixel. The stream enters the module RGB2Gray and flows through
the modules median blur and canny edge detection. Eventually, it turns back into the
DMA0 that provides the transfer of the result of the image conversion and ROI filtering
operation into the DDR memory. As an example, Figure 12 shows an excerpt of the C++
HLS description of the developed median blur module and the synthesized hardware
performing the required sorting of the pixels belonging to the 5 × 5 window. The incoming
8-bit grayscale input pixels are stored into a line buffer. The latter has a width of 220
(i.e., the number of pixels within the image rows) and a depth of 5 (i.e., the size of the
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chosen kernel). At each clock cycle, the pixels in the line buffer are right-shifted in a circular
way and a new incoming pixel enters the buffer, as depicted in Figure 12b. At the same time,
a 5 × 5 window of pixels is selected. The latter is rearranged into a linear vector composed
of 5 × 5 8-bit registers that is used as data structure to perform the sorting algorithm
described in Figure 12a and required by the median filtering operation. The #pragma HLS
PIPELINE II=1 assures that the synthetized hardware is provided with a pipeline sustaining
a unitary throughput (i.e., a new result is outputted every clock cycle). The pipeline reduces
the clock period, thus making the computation faster. Moreover, with a unitary throughput,
the data stream coming from the previous RGB2Gray module does not require to be stalled,
which is beneficial for the overall timing performance of the embedded system. Eventually,
the pixel placed in the median position of the sorted array is selected as the filter output.
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The Canny module was designed following the same approach. The module is respon-
sible for the following main consecutive computational steps: Sobel filtering, non-maximum
suppression, double thresholding and Hysteresis comparison [23]. The Sobel filtering cal-
culates the gradient magnitude and direction for each input pixel. Pixels that have a
high gradient magnitude are considered to belong to an edge. The gradient is calculated
based on the pixel intensity values: for each pixel, the direction along which there is the
maximum intensity variation (direction) and the amount of such a variation (magnitude)
are calculated. Practically, the gradient computation is equivalent to two convolutional
operations between a 3 × 3 pixel window and two constant kernels of the same dimen-
sion. As for the median filter, the two convolutional operations can be accelerated by a
hardware architecture performing the required computations on the 3 × 3 pixels in parallel.
The output pixels of the median filter enter a line buffer described in Figure 13a in order
to create a 3 × 3 pixels window. After that, the parallel convolution engine, whose C++
HLS description is depicted in Figure 13b, performs the two convolutions centered on the
generic pixel PXY. The module requires the #pragma HLS PIPELINE II=1 to assure that the
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synthetized hardware performs the operations described in the two loops of Figure 13b
with a throughput of one clock cycle. The gradient direction is quantized into only four
values (i.e., 0, 45, 90, and 135 expressed in sexagesimal degrees) corresponding to four
directions: horizontal, bottom–left to upper right, vertical, and bottom–right to upper
left. Successively, the output pixel, characterized by two values MAG and DIR, enters the
non-maximum suppression module. The latter is composed by a line buffer, as the one
depicted in Figure 13a building a 3 × 3 window, followed by a combinatorial module that
compares the MAG value of the central pixel PXY (PXY_MAG) with the MAG values of
the two pixels placed on the direction of PXY (PXY_DIR). If PXY_MAG is lower than one
of them, PXY_MAG is set to 0, otherwise it keeps its original value. Figure 14 depicts an
excerpt of the C++ HLS description related only to the horizontal direction. The obtained
value (NMS) is then compared with a low (LT) and a high threshold (HT): if NMS is higher
than HT, the pixel is considered to belong to a strong edge and its value is set to 255; if NMS
is lower than LT, the pixel is not considered to belong to any edge and its value is set to 0;
if any of the above conditions are not verified, the pixel is considered to belong to a weak
edge and its value is set to 1. Finally, the weak edge information is converted into a strong
edge one if the pixel is spatially adjacent to any pixel classified as strong edge (the C++
HLS description of the last two steps is not reported for the sake of brevity).
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Once the output image of the Canny edge detection module is stored back into the
external DDR memory, the software routine running on the PS performs the contour
selection computational step. At this time, the elaborated image is segmented, as shown in
Figure 3c. Then, the DMA1 is programmed and activated and the segmented image is sent,
through the AXI4-stream protocol, to the second hardware accelerator implementing the
module chain Dilate_Erode and Erode_Dilate. To implement such modules, we used the
synthesizable intellectual properties (IPs) of the Xilinx hls_video library [30]. The modules
perform the morphological filtering and send back the output image, depicted in Figure 3d,
to the external DDR memory. Finally, the software running of the PS completes the image
elaboration with the connected component analysis, to find the geometrical center of the
segmented area, and to draw the synthetic ellipse, useful to detect a potential rotation.

Figure 15 shows the timing breakdown when the algorithm runs on the proposed
embedded system of Figure 11. It can be seen that the computational time per frame is
reduced to only 26 ms, thus resulting in a global computational delay on 50 consecutive
frames of only 1.3 s. Compared to the pure software-based solution, the proposed ap-
proach shows a speed-up of 23×. Such a high computational speed allows performing
the geometrical check of the assembled item without practically adding any extra delay
to the existing manufacturing line. As a result, the proposed methodology turns out to
be very effective at designing low-cost digital automation systems, to be integrated in the
existing productive processes without requiring complex re-engineering, and to boost the
well-known Industry 4.0 and smart manufacturing transformation. Figure 16 depicts the
integration of the embedded system into the quality cell of the real manufacturing process
during the in-line testing phase.
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Table 1 reports the hardware resources utilized by the designed accelerators in terms
of look-up tables (LUTs), block RAMs (BRAMs), digital signal processing elements (DSPs),
and flip-flops (FFs). As it can be inferred, the proposed HW/SW co-designed system has a
reduced hardware footprint, so it can be easily embedded in a heterogeneous computing
platform with a reduced hardware capability. Table 2 compares area and speed characteris-
tics of the new system with the FPGA-based heterogeneous architecture proposed in [31]
to accelerate the bolt inspection task. Despite the different referenced use-cases, compared
designs share common CV elaborations, thus allowing a relatively fair analysis. In such a
case, even though the system [31] accelerates a lower number of CV operations and it is
implemented on a high-end 16 nm FINFet Ultrascale+ device, it achieves a throughput just
39% higher than the proposed architecture. Noteworthy, the latter occupies 67%, 57.7%,
and 77.7% less LUTs, FFs, and BRAMs, respectively, thus confirming its suitability for
platforms having a reduced footprint.

Table 1. Hardware resource utilization.

Hardware Component LUTs FFs DSPs BRAMs (36 Kb)

DMA0 1671 2322 0 3
DMA1 1487 1948 0 3

RGB2Gray 119 169 3 0
MedianBlur 4795 3383 0 1

Canny 2347 2455 2 3
Dilate_Erode 844 904 0 3
Erode_Dilate 844 904 0 3

AXIS width converters 154 366 0 0
Systems Interrupt 168 159 0 0

PS7 AXI Peripheral 727 1284 0 0
AXI SMC 3495 4316 0 0

TOTAL 16,651 18,210 5 16

% of the available 31.3% 17.1% 2.2% 11.4%

Table 2. Comparison with the FPGA design for bolt inspection in [31].

[31] This Work

CV operations Threshold, Morphological
Filtering, Find centers.

Median Filter, Canny Filter, Contour
Selection, Morphological Filtering,
Connected Component Analysis.

Device XCZU7EV XC7Z020
LUTs 50,607 16,651
FFs 43,012 18,210

DSPs 0 5
BRAMs (36 Kb) 72 16

Mpixels/s 15.7 11.3
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Finally, Table 3 furnishes an overview of the previous works dealing with computer
vision algorithms for inspection tasks. Although the referenced works are related to
different application scenarios, algorithms, and implementation platforms, thus preventing
a direct comparison with the proposed hardware/software co-design, Table 3 shows that
the speed performances achieved by the heterogeneous embedded system here presented
are comparable or even better than those reached by more expensive and less integrable
computing platforms. The approach presented here demonstrates the feasibility of low-cost
and high-performance automated systems for quality inspection tasks that can be easily
integrated in area- and time-constrained manufacturing lines. Such a strategy could show
further advantages when two or more independent inspection points have to be checked,
each one by a specific camera. In these cases, multiple hardware custom processors can be
accommodated on the same platform to operate in parallel.

Table 3. Comparison with prior works.

Work CV Operations Time (ms) Platform Implementation

[8] Canny, Morphological Filtering - PC SW
[13] Sobel edge detection, OTSU thresholding. - PC SW
[14] Contours Selection, Method of Moments, Template Matching. ~65 - SW

[15] Histogram Equalization, Gaussian Filtering, Canny,
Circle detection, Inference on a DNN. 33 GPU SW

[19] Pixel Thresholding, Median Filter. 250 PC SW
[21] Canny, Hough transformation, Background Subtraction. 400 PC SW

[32] Contrast enhancement, Gamma transformation,
Custom 3 × 3 Convolution. 250 - SW

[33] Template Matching. 99 PC SW
[34] Median Filter, OTSU thresholding 22.5 PC SW

[35] Image Adaptive Thresholding, Find Contours, Template
matching, Hough Transform. - PC SW

[36] OTSU Thresholding, Blob analysis, Morphological Filtering,
3D rendering. - - SW

This
work

Median Filter, Canny Filter, Contour Selection, Morphological
Filtering, Connected Component Analysis. 26 Xilinx Zynq

XC7Z020
HW/SW
codesign

5. Conclusions and Future Works

This paper proposes a hardware–software co-design approach to implement an effi-
cient embedded system based on heterogeneous MPSoCs for automatic quality inspection
in assembly processes. The high computational speed required by the existing manufac-
turing line is obtained by purposely-designed FPGA-based hardware accelerators that
accelerate the computations of the most timing consuming tasks of the developed computer
vision algorithm. When applied to a real assembly process, the proposed methodology
resulted in a 23× speed-up compared to a pure software-based solution, thus proving to be
a valid solution to design low-cost, high-speed, and compact digital automation systems
for the Industry 4.0 transformation.

The obtained results can pave the way for future research directions. Indeed, with the
goal to build a more sophisticated digital twin of the assembled item, the proposed HW/SW
design methodology can be exploited to implement more complex image processing rou-
tines. As an example, stereoscopic techniques can be useful to automatically detect the dis-
tance between the cameras and some points of interest of the assembled item, thus allowing
the realization of a more advanced 3D virtual model.
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