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Abstract: The design of cooperative advanced driver assistance systems (C-ADAS) involves a holistic
and systemic vision that considers the bidirectional interaction among three main elements: the
driver, the vehicle, and the surrounding environment. The evolution of these systems reflects this
need. In this work, we present a survey of C-ADAS and describe a conceptual architecture that
includes the driver, vehicle, and environment and their bidirectional interactions. We address the
remote operation of this C-ADAS based on the Internet of vehicles (IoV) paradigm, as well as the
involved enabling technologies. We describe the state of the art and the research challenges present
in the development of C-ADAS. Finally, to quantify the performance of C-ADAS, we describe the
principal evaluation mechanisms and performance metrics employed in these systems.

Keywords: cooperative advanced driver assistance systems; road safety system; holistic; systemic;
Internet of vehicles; natural perception; assisted perception; human–machine interface

1. Introduction

The history of research on assistance systems for driving safety is almost as old as
the rise of the automobile industry itself. One of these first systems was implemented
as standard equipment by Volvo in 1959, when it began to install the seat belt with a
three-point system in its vehicles, which was patented in 1962 [1] and later became the
universal standard used by commercial vehicles today. Different road safety mechanisms,
also known as advanced driver assistance systems (ADAS), have been incorporated over
the years in the development of the automotive industry to provide a higher level of
road safety to traditional transport systems. These mechanisms constitute technological
implementations of concepts that the Electronic and Telecommunications Systems Institute
(ETSI) has subsequently defined as road safety applications, which can be grouped into
primary road safety applications (equivalent to the so-called active road safety systems)
and secondary and tertiary road safety applications (equivalent to so-called passive road
safety systems) [2]. The former focuses on collision avoidance as its primary mission, while
the latter aims to lessen the severity of potential injuries to vehicle passengers or vulnerable
road users (VRU) after the collision. Specific bumpers designed to keep pedestrians safe,
airbags, and seat belts are some of the well-known examples of passive safety mechanisms.
Others such as the anti-lock braking system (ABS), lane change assistance (LCA), or forward
collision warning (FCW) are examples of active safety systems.

Thanks to the technological development achieved in the electronics area, the auto-
motive industry evolved from traditional mechanical control to electronic control of the
main internal functions of the vehicle, fundamentally related to acceleration, braking, gear
change, suspension, and ignition/alternator integration [3,4]. The principal elements of this
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evolution are the electronic control units (ECU) and the management of the information
flow between ECUs, for which bus communication protocols, such as the controller area
network (CAN) bus [5,6] or the local interconnect network (LIN), are employed. These
developments allowed the implementation of safety systems such as the ABS, the elec-
tronic stability control (ESC), or electronically assisted steering (EAS). The introduction of
on-board sensors such as radars, ultrasonic, cameras, light detection and ranging (LIDAR),
the global positioning system (GPS), and the inertial measurement unit (IMU), enables the
development of driving assistance systems more oriented to the sensing and interaction of
the vehicle with the surrounding environment to help the driver in the driving process [7].
Initially, these safety systems were oriented to the longitudinal control of the movement
of the vehicle, such is the case of the adaptive cruise control (ACC) system, FCW, and
autonomous emergency braking (AEB) [8]. Later, lateral control-oriented systems emerged,
such as the lane departure warning (LDW) [9], blind-spot warning (BSW) [10], lane-keep
assistance (LKA) [11], or LCA [12]. Although these sensor technologies represented a
benefit for the surrounding awareness knowledge of the vehicle in terms of road safety,
their short-range and line-of-sight obstruction problems limit their ability to sense the
environment. A new generation of ADAS, named cooperative advanced driver assistance
systems (C-ADAS) [13,14], has started to be developed, which also incorporates wireless
communication devices. The main distinguishing factor between the C-ADAS and ADAS
is the visibility of the system. C-ADAS can have knowledge of the traffic situation miles
ahead, while conventional systems have knowledge of a few meters around the vehicle. The
extended visibility is possible not only due to vehicle-to-vehicle (V2V) communication but
also to vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X) communication [15].

Road safety is an area in which internal and external elements converge and interact.
Figure 1 shows the main elements involved in a road safety system (RSS), the environment,
the driver, and the vehicle. The limitations in the design of ADAS by not considering the
presence of all these elements, as well as the interaction among them, degrades the level of
road safety and diminishes the effectiveness of these systems.
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Figure 1. Main elements involved in a road safety system: environment, vehicle, and driver. Inter-
actions between these elements: vehicle–environment (V–E) interaction, driver–environment (D–E)
interaction and driver–vehicle (D–V) interaction. At the center is reflected the holistic relationship
between elements and the opportunity in the C-ADAS design.

An important aspect for the proper functioning of C-ADAS is the performance of the
vehicular communication networks, which must be able to guarantee the timely exchange
of sensitive information for road safety. Vehicular ad hoc networks (VANETs) [16] are
powered by vehicular communications and further provide an enhancement in driving
experience by improving security, infotainment, and robustness. Many researchers have
contributed and explored this concept, but due to many security and privacy-related
issues, the implementation stage has not matured enough. Only in the last few years
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has there been a growing commercial interest from the automotive industry in the area
of vehicular communications. A considerable volume of research in this field has led
to a move from conventional VANETs to the Internet of vehicles (IoV) [17]. The fusion
between the traditional concepts of VANETs and the most recent concepts linked to the
Internet of Things (IoT) has promoted a very tempting research area today. The IoV concept
materializes this integration process between VANETs, IoT, and mobile computing. In
this sense, the so-called intelligent vehicles are defined, which are equipped with Internet
connection devices to collaborate with each other through data exchange and can even
interact with other road users, such as pedestrians or roadside units, through the exchange
of information about the road environment. Under this concept, a traffic management
system can be established based on communication and cooperation between the vehicles,
the road infrastructure, and the rest of the actors present in the road environment. On-board
sensors and processors with remote connection capacity are required in each element of the
network, where the information exchange must be managed efficiently to guarantee that
the system is useful and capable of providing a road safety benefit.

In this work, we present a review of the previous works that have addressed the
interactions between the principal elements of the RSS (i.e., driver, environment, and
vehicle) and the challenges that currently persist in each area. Then, we present a proposal
for the general vision of the C-ADAS design. Note that, unlike the previous studies, in this
work we intend to describe a holistic and systemic architecture while highlighting the main
works that have already been carried out in each type of interaction. Besides, we describe
the elements that we consider fundamental for proposing a C-ADAS design that seeks
to bring together all the technological advantages from the point of view of algorithms,
communications, and sensing capabilities. The main contributions of this work are: (i) To
propose a novel C-ADAS architecture with a holistic and systemic approach that considers
the main elements of the RSS (driver, environment, and vehicle) and their interactions. To
the best of our knowledge, it is the only survey that addresses the interactions between each
of these elements from a bidirectional approach, considering the relevance of information
exchange, highlighting cooperative solutions and the need for intelligent techniques in
decision making; (ii) To present a study on the main evaluation metrics and mechanisms
used for the validation of C-ADAS, which has been little addressed in the previously
published surveys.

The rest of this paper is organized as follows: In Section 2, we describe the main
characteristics and limitations of previous surveys on ADAS and the current challenges in
this subject, while in Section 3, we propose a novel C-ADAS architecture from a holistic
and systemic perspective. Sections 4–6 review the details associated with the interactions
of the three principal elements (driver, environment, and vehicle) of the RSS, mentioning
its actual state and challenges. More specifically, Section 4 presents an overview of the
interactions between vehicle and environment, defined as an assisted perception module,
Section 5 details the interaction between driver and vehicle, mainly described through the
HMI module, and Section 6 presents the interactions between driver and environment,
defined as the natural perception module. Section 7 presents the most used metrics and
mechanisms in the evaluation and validation of C-ADAS systems, mentioning some of the
main challenges in this area that, according to our vision, hinder the implementation of a
C-ADAS system, such as the one proposed in this article. Finally, we conclude the paper in
Section 8 and consider some directions for future work.

2. Previous ADAS Surveys and Current Challenges

There are several published surveys on ADAS in connected and automated vehicles
(CAV) with different design perspectives. Despite the latent needs and challenges of the
integration and bidirectional interactions of the three subsystems analyzed, to the best of
our knowledge, these aspects have not been addressed in the scientific literature. However,
some surveys have stood out for the rigor and depth with which they address some of these
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elements. In this section, we present the aspects in which each one of them stands out in
order to later point out the shortcomings and discuss the current challenges in the subject.

• Pathan et al. [18] provide a review of the proposed techniques to implement C-ADAS
and intelligent traffic management systems, comparing pros and cons, and also look
at the practically feasible features;

• Hasenjäger et al. [19] provide a review of the personalization for ADAS and propose
a general conceptual framework of personalized ADAS and the human–machine
interface (HMI), which can be expected to continuously adapt in interaction with
the driver;

• Martinez et al. [20] provide a survey on driving-style characterization and recognition,
revising several algorithms with emphasis on machine learning approaches;

• Xing et al. [21] present an overview of the driver intention inference, which mainly
focuses on the lane change intention on highways;

• Bila et al. [22] provide an overview of information and communication technologies-
based support and assistance services for the safety of future connected vehicles, given
from the perspective of vehicle detection, road detection, lane detection, pedestrian
detection, drowsiness detection, and collision avoidance;

• Siegel et al. [23] summarize the state of the art in connected vehicles, reviewing the
architectures, enabling technologies, applications, and development areas;

• Wang et al. [24] focus on heterogeneous multi-sensors fusion technologies, including
radar, camera, LIDAR, ultrasonic, GPS, IMU, and V2X communication, analyzing the
necessity of fusion strategies because of the limitations of sensors;

• Martí et al. [25] propose an overview of existing and upcoming sensor technologies
applied to common perception tasks for ADAS and automated driving. Specifically,
they focus on artificial vision, radar, and LIDAR technologies of exteroceptive sensors
applied in tasks as (i) automatic traffic-sign detection and recognition, (ii) perception
of the environment, and (iii) vehicles, pedestrians, and other obstacles detection;

• Kaiser et al. [26] carry out an author-centric literature review to illustrate the opportu-
nities in using smartphones to detect driver distraction. The authors have reviewed
several papers and summarized their application cases, smartphone sensor data used,
methods, and results;

• Arumugam et al. [27] survey driver behavior analysis based on the use of big data.
Works related to monitoring driving patterns and fatigue, detecting drowsiness and
driver distraction, are discussed;

• Zhang et al. [28], investigate mean take-over times from 129 studies with SAE (Society
of Automotive Engineers) level two automation or higher. How quickly drivers take-
over control of the vehicle in response to a critical event or a take-over request is an
important question in automated driving research;

• Sarker et al. [29] review the principal aspects of the sensing and communications
technologies, human factors, and controller aspects for information-aware CAV.

Table 1 summarizes these works and shows that none of them have described the
ADAS architecture from a holistic and systemic perspective; evaluation mechanisms are
hardly mentioned and only one of them has addressed the interaction between the three
subsystems, but not bidirectionally in all cases.
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Table 1. Analysis of the main characteristics and limitations of other published surveys and this work
in terms of architecture, system evaluation, and interactions between elements, considering D–V
interaction, D–E interaction, and V–E interaction; specifying whether this relationship is bidirectional
(<->) or unidirectional (->). Cases where these topics are not addressed (N/A) are also highlighted.

Articles Architecture D–V Interaction D–E Interaction V–E Interaction System Evaluation

[18] N/A D <-> V N/A V <-> E N/A

[19] Modular D <-> V N/A N/A Mechanisms

[20] N/A D <-> V N/A E -> V N/A

[21] Modular and relational D <-> V D -> E , E -> D E -> V Mechanisms and metrics

[22] N/A N/A D -> E , E -> D V <-> E N/A

[23,24] N/A N/A N/A V <-> E N/A

[25] N/A N/A N/A E -> V N/A

[26] N/A N/A D -> E , E -> D N/A N/A

[27,28] N/A D <-> V D -> E , E -> D N/A N/A

[29] Modular D <-> V N/A V <-> E N/A

This work Modular, holistic, and systemic D <-> V D <-> E V <-> E Mechanisms and metrics

Current Challenges

A holistic approach of the system in the interactions between vehicle–environment,
vehicle–driver, and driver–environment, which are essential for improving road safety,
has not been sufficiently addressed in the literature consulted. Holistic is an adjective that
indicates that something is relative or belongs to holism. Holism is a concept created by
Jan Christiaan Smuts [30], which he describes as “the tendency of nature to use creative
evolution to form a whole that is greater than the sum of its parts”. In general terms, holistic
indicates that a system and its properties are analyzed as a whole, in a global and integrated
way, through the multiple interactions that characterize them. Holism assumes that all
the properties of a system cannot be determined or explained as the sum of its elements,
highlighting the importance of the inter-dependence of those elements. The term systemic
is used in the literature with a similar meaning to the term holistic; however, in this work
when referring to a systemic perspective we focus mainly on the structural aspect of the
system, in the analysis of each of the elements that compose it, and in the bidirectional
study of the interactions that occur among them.

In this sense, the design of current ADAS has a variety of potential difficulties: reflect-
ing the effects of all kinds of traffic factors on driving safety; describing the interactions
between the characteristics of the driver’s behavior, the state of the vehicle, and the road
environment; or providing an accurate basis for vehicle control. Existing systems that
assess driving safety may not work properly if they consider only a limited number of
factors and their interactions. Driving is a complex decision-making process due to the
intricate relationships between the main elements (vehicle, environment, and driver) and
the dynamic nature of these elements. In the driver–vehicle–road closed-loop system, the
driver is a crucial component, with unique driving characteristics that vary from driver to
driver or even for the same driver under different conditions or on different days.

The directionality of the interactions between vehicle, environment, and driver is very
relevant. For example, consider a situation where a driver approaches an intersection, in
which the traffic light just switched to red. In this scenario, the environment is issuing a
notification about the state of road safety, representing a form of interaction in the direction
environment -> driver (E -> D) and environment -> vehicle (E -> V). This notification
can be captured correctly or not by the driver. The vehicle, through its on-board sensors,
could detect the red light and then calculate the distances between the elements of the
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environment, e.g., the predecessor vehicles and the intersection. Besides, the surrounding
situation is transmitted to other road users through messages corresponding to the V -> E
interaction. On the other hand, the vehicle can sense the driver’s reaction to surrounding
stimuli by monitoring the driver through on-board devices, which is a form of D -> V
interaction. The system alerts the driver through the V -> D interaction if their reaction
is not as expected and communicates to other road users the potential risk, as a V -> E
interaction form. Additionally, the vehicle captures the driver’s reaction to the C-ADAS
alert notice, such as a D -> V interaction form. Consequently, the C-ADAS takes control
of the vehicle to guarantee road safety if the driver’s reaction is not as expected, which
is a form of V -> E interaction. In this way, it is observed how the C-ADAS system is
responsible for assisting the driver in a timely manner on road safety risks, guaranteeing
the correct closure of the cycle started with the notification of the environment to the driver
on the red light (the E -> D interaction), finishing with a correct response in relation to the
reaction that the driver should have in this situation (D -> E interaction), preserving road
safety with or without the intervention of the C-ADAS at different levels. This shows how
C-ADAS can mitigate a poor reaction on the part of the driver, resulting from a wrong
interpretation of the situation, or the driver’s inability to react.

The RSS consists of a driver subsystem, a vehicle subsystem, and a road environment
subsystem. These three subsystems are essential to ensure the safe driving of automobiles.
The “gaps” in the interactions between the three subsystems are causes of degradation in
road safety. A fundamental element to fill the gaps in these interactions is the design of
ADAS from a holistic approach that considers the presence and interaction between these
different elements as a single system. Recently, there have been situations in which the
challenges faced by the automation of vehicle systems are emphasized, demonstrating how
the non-consideration of any of these elements can produce unfavorable results. Examples
of this are some tragic accidents that occurred in Tesla vehicles [31–33], highlighting the
serious life-or-death consequences associated with the failures or miscalculations that can
occur with vehicular systems. A Model X issued several audible and visual alerts before
crashing into a concrete wall without the driver putting their hands on the wheel [31].
A preliminary report from the National Transportation Safety Council (NTSC) found that
the driver of the vehicle activated autopilot, which provides automatic driving functions,
10 s before impact [32]. The document also indicates that the automatic system did not
detect the driver’s hands on the wheel in the last eight seconds and that it did not perform
evasive maneuvers to avoid colliding with a truck. In reference [33], the Tesla driver
acknowledged that he was watching a movie on their mobile phone at the time of the
accident. However, the vehicle never got to take control of the situation, necessary in view
of the evident state of distraction of the driver. In this particular case, perhaps the first and
foremost thing is to slow down the rush to “remove the human being” from the equation.
Officially, Tesla’s autopilot was meant to aid the driver, not replace them. Human beings
remain essential to driving and should continue to be so for some time until the technology
matures. It is crucial to understand the surrounding cars with respect to the road context
and to interact with them harmoniously for the success of the autonomous cars used in
mixed urban traffic [34].

Similar examples can be evidenced by excluding any of the other two elements (vehicle
and environment) of the system in the design of ADAS. The increase in road safety has
motivated progress in the area of safety systems. Depending on the degree of automation
of these, their action can be limited to driver assistance tasks or to be even of a more au-
tonomous nature: acting directly on the components that modify the response of the vehicle,
such as the acceleration and braking pedals and/or the power supply and steering control.
The complex interactions between these characteristics and the actions of drivers have
led to numerous investigations on the human factors involved in motor vehicle accidents.
Some of these factors are demographics, distraction, experience, fatigue, alcohol, stress, the
tendency to risk behavior, and decision making. At present, ADAS are a promising field of
research in order to improve road safety.
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While it is true that current projections on the levels of autonomy of modern vehicles
tend towards a fully autonomous design, the fifth level according to SAE [35], the process
of the mass inclusion on the roads of fully autonomous vehicles and their coexistence
with human-driven vehicles is not expected to end in the short term [36]. Moreover, it
should be noted that the very process of the development and improvement of the artificial
intelligence systems that control autonomous vehicles requires for the continuous learning
of the interactions between other drivers and road users, which is, in essence, learning
to deal with human behavior. In the evolution of the levels of autonomy of vehicles, it is
necessary to guarantee road safety in order to preserve lives and limit economic losses
through accident avoidance. To this end, the implementation and development of an
effective ADAS that accompanies and assists the evolution and maturity of autonomous
driving is essential.

3. General Description of the Ideal Architecture of a C-ADAS

In this section, we describe our C-ADAS architecture proposal from a holistic and
systemic vision. The systemic vision considers the relevance of the three main elements
that make up the RSS (driver, environment, and vehicle). For its part, the holistic vision
also reflects the relevance of considering the dependence and interrelationship that exists
between each of these elements as essential requirements for the functioning of the system
as a whole. Additionally, we establish a comparative analysis between this proposal and
the architectures proposed in the previous reviews, describing its main characteristics and
limitations. Figure 2 presents our C-ADAS architecture proposal.

Figure 2. Conceptual architecture of a cooperative advanced driver assistance system (C-ADAS)
from the holistic and systemic vision. The red, green, and blue lines indicate the local operation of
the principal module (inside the vehicle), while the cyan lines refer to the remote operation of the
principal module through the vehicular network under the IoV concept.
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This architecture considers the presence of the three main elements of an RSS as inde-
pendent and closely interrelated subsystems, which influence and determine the state of
road safety. The driver subsystem includes everything related to the actions and reactions
of the drivers during the driving process, conditioned by their physical and psychological
characteristics, such as age, gender, mental state, driving skills, experience, and driving
profile. The vehicle subsystem considers aspects related to the electromechanical charac-
teristics of the vehicle, braking behavior, acceleration, and sensing and communication
technologies embedded on board, among others. Finally, the environment subsystem takes
into account the rest of the elements outside the vehicle and the driver; among them, we
can mention the elements of the road structure, the physical conditions of the road, the
weather conditions, as well as other vehicles, pedestrians, animals, or obstacles on the
road. We propose an integral communication system that seeks to leverage the advantages
offered by the IoV concept, using data integration and the capacity for centralized decision
making. Note that taking C-V2X communications into consideration implies a high degree
of redundancy so as not to lose communication and to have several sources through which
redundant data may arrive. Furthermore, the heterogeneity of networks and technologies
may generate significant variations in the perceived delay and jitter among different com-
munication paths, which become very sensitive issues for road safety applications. That is
why a C-ADAS must conceive minimum delay times for the security modules, which could
imply that in some cases the information that causes an action could be only conditioned
by messages received from neighboring vehicles in the vicinity of the ego vehicle. In [37],
an in-depth discussion of the control aspects of CAV systems is carried out, highlighting
the main challenges generated by the existence of different information flow topologies,
mainly focused on string stability, communication issues, and dynamics heterogeneity.
These aspects must be taken into consideration for a practical implementation of a C-ADAS,
such as the one proposed here, since the heterogeneity in the network topology and the
high dynamism of vehicular networks can impose additional communication challenges.
However, we are committed to the idea of conceptualizing the use of on-board communica-
tion devices with C-V2X functionality, framed within the IoV concept, given that current
and future developments point to the convergence of technologies. In this sense, 5G is seen
as a key technology to support the development of future vehicular networks, and presents
low-latency values in communications, which will undoubtedly help to compensate for the
delays associated with the processing and control of communication schemes.

This architecture includes three modules to capture the data from the bidirectional
interaction between the three main elements of the RSS, these are the natural perception
module, the assisted perception module, and the human–machine interface module. Addi-
tionally, a main module is included in an upper layer that receives, processes, and stores
the collected information by the lower modules to make decisions about the state of road
safety. This is a modular architecture where the main module can be implemented both
locally, inside the vehicle, and remotely, in a centralized management station within the
environment of intelligent transportation systems (ITS) under the IoV concept. In the latter
case, the entire flow of information from the three data capture modules would be shared
through the V2X communication devices on board the vehicle. From the review of the state
of the art in articles of enabling technologies, we can divide them into sensor technolo-
gies, wearable technologies, and communication technologies, which are related to each
of the data capture modules and their connections with the main module. Although the
most researched enabling technologies are those that intervene in the vehicle–environment
interaction, it is also important to highlight those that are part of the vehicle–driver and
driver–environment interactions, since all of them together allow for a closing of the cycle in
a holistic and systematic design of cooperative ADAS, where the three main elements of an
RSS are present: driver, vehicle, and environment. In this sense, we have tried to list below
the most relevant technologies (described repeatedly in many of the articles consulted), but
at the same time to reflect, through an integrating spirit, the technologies present in each
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of the three areas of interaction between the three main elements of the RSS. For a greater
level of detail, the reader can consult these technologies in references [23,25,27,29,38,39].

(i) Sensor technologies:

• Radar systems are classified into: (i) short-range radars (SRR), which have a detection
range of up to 20 m, are based on a single antenna, and are not capable of detecting
angular information; (ii) long-range radars (LRR), which have a range of up to 150 m
and an angular resolution of up to 2 degrees [40];

• Cameras embedded on vehicles are of two fundamental types: (i) stereo cameras used
to obtain a wide panoramic vision in conditions of good visibility; (ii) infrared cameras
used in situations of reduced visibility at night or in the presence of adverse weather
conditions [41];

• Light detection and ranging (LIDAR) uses laser signals to determine the relative
distance of nearby objects from a vehicle. Laser signals are emitted and their respective
echo signals are received to calculate these distances, with detection ranges between
10 and 200 m [42];

• Acoustic sensors use an operating principle similar to that of radars and LIDAR, but
they use high-frequency sound waves (ultrasonic) to determine the distance of an
object to the vehicle [43].

(ii) Wearable technologies (electronic devices designed to attach to the user’s body—
classification depends largely on the device’s functional properties):

• Smartwatches are electronic devices with functionalities such as GPS, fitness/health
monitoring, and waterproof operation [44];

• Wearable cameras are much more flexible and mobile than conventional cameras, as
they focus on a first-person view and are often attached to eyeglasses, helmets, and
caps [45];

• Smart eyewear are used to provide information, notifications, and a three-dimensional
view through optical head-mounted displays (OHMDs), heads-up displays (HUDs),
virtual reality (VR), augmented reality (AR), and/or mixed reality (MR) [45];

• Fitness trackers are placed on different parts of the body to monitor the physical state
of the individual during the performance of daily activities or exercise routines. Their
measurements include parameters such as speed, heart rate, calories released, and
number of steps [46];

• Smart clothing—usually shoes, hats, clothing, and helmets—incorporate cameras and
sensors to monitor body signals and adapt their characteristics to the individual’s
state [47];

• Wearable medical devices made up of one or several biosensors are used to monitor
the physiological activity of the individual for the purposes of the prevention, diag-
nosis, and early treatment of diseases and health status abnormalities by measuring
temperature, heart rate, blood pressure, and glucose level, or by performing electrocar-
diography (ECG), electroencephalography (EEG), or electromyography (EMG) [48].

(iii) Communication technologies:

• Dedicated short-range communication (DSRC) is a technology of fully integrated
vehicular networking, implemented over the 75 MHz bandwidth (5.85–5.925 GHz)
assigned for the Federal Communications Commission (FCC). The architecture and
the services to enable these secure V2V and V2I communications in the Wireless
Access Vehicular Environment (WAVE) are provided by the IEEE 802.11p and IEEE
1609 protocol suites [49];

• Light fidelity (Li-Fi) uses wireless communications in the visible-light band for data
transmission by encoding the flashing states of light-emission diodes (LEDs) [50];

• LTE Advanced Pro (LTE-A) is part of the evolution of LTE networks in version 14 to
ensure that V2X service requirements are supported by the LTE transport network. Dif-
ferent V2X application scenarios are defined, including V2V, V2I, vehicle to pedestrian
(V2P), and vehicle to network (V2N) [51];



Sensors 2022, 22, 3040 10 of 40

• The “5G/IMT-2020 Standing Committee” reports the standardization process of fifth-
generation wireless communication technologies (5G) [52]. This technology is expected
to be the future of vehicular communication networks, providing support for low-
latency and ultra-reliable communications (URLLC) scenarios.

• The internal communication networks of a vehicle are composed of electronic control
units (ECUs), mechanical and electric sensors, and actuation devices to guarantee the
correct vehicle operation. Original equipment manufacturers (OEMs) today design
proprietary devices and networks to share data through on-board diagnostic (OBD)
hardware. Well-established technologies such as CAN bus, MOST, LIN, and FlexRay
are examples of their resilience and flexibility. Other emerging technologies such as
the vehicular Ethernet support the growing communication capacity demanded for
modern vehicles, and are discussed in reference [53].

The main module is in charge of using the information from the three data capture
modules to analyze the state of road safety and make the best decision when it comes to
assisting the driver or acting directly on the vehicle’s safety systems in case of the non-
attention of the driver regarding warning notices to an imminent danger situation, with
the aim to minimize the level of risk and traffic accidents. It is also in charge of sharing this
information with the other actors in the road environment. The operation of this module
begins with a reception information block that receives the data from the three capture
modules. Once this data has been processed, models of driver behavior are established
and stored, and customized according to the characteristics of the driver. These models
allow for estimating the prediction of the longitudinal and lateral movement of the vehicle,
information that can be used by different advanced driver assistance systems (ADAS-1
. . . ADAS-N blocks) either to provide assistance to the driver or to take direct control of the
vehicle in case the driver does not respond adequately and in a timely manner to certain
dangerous situations on the road. In this sense, the decision making of the C-ADAS system
may entail carrying out the functions of vehicle control, visualization through the HMI, or
the transmission of information related to road safety to the rest of the actors on the road or
to the centralized management station in an ITS.

Under the IoV concept, different multi-layer architectures have been proposed and
different types of interactions between the elements that compose it have been estab-
lished [17,54]. One of the layers that is commonly addressed is the centralized platform
in the cloud (associated with the “intelligent brain” in the IoV architecture). In this, the
centralized processing of the road safety data obtained in the lower layers is carried out, as
well as the global strategies and the management of road safety alerts, assisted automatic
driving, and intelligent navigation, among other functions. Centralized or distributed
execution implies differences in the signaling overhead and delay associated with decision
making, but the processing delay in the cloud is less than in the computer equipment inside
the vehicle. Some critical security applications will demand URLLC-type communications,
which will benefit from the growing development of 5G. The analysis of the local data
allows to guarantee the control of the main functions of the vehicle in real time, while the
remote analysis of the same allows to create added value in the system to improve the
reliability, the efficiency, and the performance of the vehicle through the application of
communications, computational processing, and distributed information on a large scale.
To the extent that connectivity capabilities and computer technologies are developed and
latency in the execution of applications is reduced, the use of aggregated data, obtained
remotely, becomes more useful in the operation of these road safety applications in real
time. Vehicles do have limited computation and storage resources that may not be sufficient
for road safety applications that need to process a big amount of data. Since they require
big storage and complex computations, for this, vehicle-to-cloud computation helps by
providing proficient support to these applications. In our architecture, the main module
is flexible in order to operate with some of these functions, and is mainly oriented to the
design of advanced driver assistance systems. Another layer that is described in an IoV
architecture is the data acquisition layer, whose main function is to collect different types
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of data from different sources and to digitize the data to ensure that it can be successfully
transmitted and analyzed. In our architecture, this IoV layer is represented by the three
data capture modules: the natural perception module, the assisted perception module, and
the HMI module, described below.

The natural perception module is responsible for capturing the elements of the D–
E interaction during the natural perception process from the driver of the surrounding
environment. Through devices implemented inside the vehicle, such as vision cameras,
heart-rate-monitoring devices, and ethyl breath detection, the driver’s behavior can be
analyzed based on the monitoring of their activity on board and their reactions to the
dynamics of the environment, which can help infer their behavior and future actions on
the road [21].

The assisted perception module is responsible for capturing the elements of V–E
interaction through sensors, such as as radars, ultrasonic, GPS, IMU, LIDAR, and cam-
eras, jointly with communications equipment, meaning that the state of the surrounding
environment of the vehicle is sensed and its dynamic data are captured for the posterior
presentation to the driver as additional information of their natural perception. This mod-
ule is also responsible for communicating the driver’s mobility and status information
to the environment while driving, as well as ADAS alerts and warnings and the driver’s
reaction to them.

The HMI module is responsible for capturing the elements of the D–V interactions
during the driving process. It is composed of the human–machine (H-M) visualization
devices, such as displays, vision cameras, or instrument panels, and by the H–M control
devices, such as the acceleration, brake, and clutch pedals, the steering wheel, switches,
panel buttons, and the gear lever, etc. The four principal functions of this module are:
(i) sensing the physical actions of the drivers over the direct and indirect devices involved
in the driving process, such as the steering wheel, the brake, clutch, and acceleration pedals,
the transmission state, lights, and other on-board controls; (ii) displaying information
about the vehicle status (from the internal modules of the CAN bus and GPS modules)
and the surrounding environment (maps, routes, traffic signs, location of other vehicles,
pedestrians, and obstacles on the road); (iii) visualizing alerts for the driver regarding
dangerous situations as a product of the analysis of data related to road safety; and
(iv) sensing the driver’s reactions to the alerts emitted by the assistance system.

Control systems refer to where C-ADAS processing and decision-making takes place,
it can be locally in the vehicle itself or remotely, under IoV concept. The modular structure
describes the elements that make up the system and their functions. Personalization refers
to the degree of mutual adaptation between the system and the driver during the vehicle-
driver interaction, it includes the latter’s actions during the driving process, as well as its
reaction to the system alert notices presented through the HMI interface of the vehicle.
Cooperative communication highlights the capacity of the system to communicate to other
actors in the road environment about the information regarding the driver’s actions and
the result of the system’s decision-making regarding the state of road safety. The assistance
functions basically refer to assisting the driver or taking control of the vehicle’s safety
systems. It also highlights the system’s ability to operate simultaneously with more than
one ADAS (LCA, FCW, AEB, BSW, LDA, among others).

However, monitoring the progress of these technologies, as well as the achievements
and projections of the main automakers, will favor the implementation of a proposal
close to this C-ADAS that efficiently exploits bidirectional interaction between the three
subsystems to increase road safety.

Table 2 resumes the analysis of the architectures proposed in the surveys consulted and
our architecture proposal, highlighting the control systems, the assistance functions, and
the degree of personalization and cooperation, as well as the main elements that compose
them, describing also how the interactions between these elements are implemented.
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Table 2. Analysis of the ADAS architecture proposed in the revised surveys and the architecture
proposed in this work.

Articles Control
System Modular Structure Personalization Cooperative

Communication Assistance Function

[19] Local control

System composed of three main
modules: ADAS module,
personalization module, and
HMI module.

Personalization module
that continuously adapts
the ADAS to the driver’s
behavior through the
HMI interface.

Cooperative communication
is not explicitly considered.

Consider vehicle
control and multiple
driver assistance
functions.

[21] Local control

System composed of six main
modules: environment
perception module, vehicle
dynamic module, driver
behavior recognition module,
driver intention inference
module, lane change decision
module and interaction module.

The interaction module
models the driver hand
and foot dynamics as well
as the dynamics of the
vehicle–control interface.

Cooperative communication
is not explicitly considered.

Consider vehicle
control and a single
assistance function:
lane change intention
inference.

[29]
Local and
remote
control

System composed of three main
elements: sensing and
communication technologies,
human factors, and
information-aware autonomous
vehicles controllers.

Human factor element:
design of a CAV system
based on human driver’s
expectation, and
adaptation of the human
driver to the designed
CAV system.

It considers the exchange of
environment information
through the sensing and
communication modules, but
not the alerts and warnings
generated for the ADAS
system.

Consider vehicle
control and multiple
driver assistance
functions.

This
Work

Local and
remote
control

System composed of three
modules that sense the
interaction between the three
elements of road safety: the
natural perception module,
assisted perception module, and
HMI module. Besides, a
principal module that receives,
processes, stores, makes
decisions, and transmits the
safety information.

Continuously adapts the
ADAS by monitoring the
driver’s condition and
their physical interactions
with the vehicle’s
driving-control elements,
as well as its reaction to
the information and alerts
issued by the HMI
module.

It considers the exchange of
information through the
communication devices on
board the vehicle, both the
information obtained by the
three sensing modules and
the alert or warning
information generated by the
main module of the system.

Consider vehicle
control and multiple
driver assistance
functions.

4. Vehicle-Environment (V-E) Interaction

The analysis of bidirectionality in the study of the interaction between driver and
environment (V-E) is relevant to all ADAS. If we analyze, for example, the information
coming from the environment, we find that it can be received by the C-ADAS through
several ways: (i) directly, through the information captured by the set of sensors and
communication devices that are found on board the vehicle (E -> V) or else (ii) indirectly,
at first through the information captured by the driver through their sensory elements
and later, through the information partially captured by devices on board the vehicle in
charge of monitoring the status and behavior of the driver as a reaction to the stimuli that
he perceives from the environment (E -> D -> V). This alternative path of redundancy is
relevant to consider, given that sensors and communication devices present limitations and
challenges for their optimal operation. This degree of redundancy can only be achieved if
the design of the C-ADAS is approached from a holistic and systemic perspective, where
the study of directionality in interactions is considered. The works of the state of the
art that are described in this section, fundamentally contribute to the first of these two
ways (directly).

The main elements associated with the assisted perception module of the surrounding
environment are described in this section, as well as the signaling devices, sensors, and
communication technologies involved with the operation of this module. On the one hand,
this perception “assists” the driver in acquiring information from the environment in which
he/she operates. On the other hand, the vehicle, through its signaling and communication
devices, communicates to the surrounding environment information on its movement
state and also information related to the intention and actions of the driver. In a general
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sense, the sensors and communication technologies improve the range and precision of the
information that the driver can perceive, especially in variables that are difficult to estimate,
such as distances, speeds, and the relative accelerations between vehicles and other actors
in the environment.

With the use of communications, high-level information can be incorporated with a
high predictive degree, which allows for the anticipation of changes in the dynamics of
vehicle movement before they materialize and can be perceived by drivers. In the same
way, the range of perception coverage can be extended and information can be obtained
beyond the local environment of the vehicle, which is associated with scenarios where there
are no direct-line-of-sight conditions.

4.1. Actual State

The discussion of this section begins by grouping the works that use vision and
infrared cameras to capture the information from the vehicle–environment interaction,
a method that is currently widely used in the automotive industry, but with limitations
related to adverse weather conditions, lighting deficiencies, and the high computational
cost of image processing algorithms, to name a few. Xin et al. [55] propose an intention-
conscious model to predict the trajectory based on the estimated lane change intention
of neighboring vehicles, using an architecture with two long–short-term memory (LSTM)
networks. The first one receives as input sequential data that characterizes the lateral
movement of the vehicle to infer the driver’s intention to stay in the lane, turn left, or turn
right. Once the target lane is detected, this indicator is passed as an input to the second
LSTM network, which also receives the sequential data of the longitudinal movement of
the vehicle, to finally predict its position. From the view point of the ego vehicle, only the
features that can be feasibly measured using on-board sensors, such as LIDAR and radar,
are used as input. The database used in this paper is from the next generation simulation
(NGSIM) [56].

Deo et al. [57] design an LSTM encoder–decoder model that uses convolutional social-
grouping layers as an enhancement of social-grouping layers for the robust learning of
inter-dependencies in vehicle movement. The social grouping is defined by a structure called
the social tensor, which groups the LSTM states of all the agents located around the predicted
agent. This is done by defining a spatial grid around the agent being predicted and filling
the grid with LSTM states based on the spatial configuration of the agents in the scene. The
encoder is an LSTM network with shared weights that learns vehicle dynamics based on
trajectory histories. The output of the LSTM decoder generates a probability distribution on
future movement for six maneuver classes and assigns a probability to each maneuver class.
A lot of complementary information can be captured using visual- and map-based cues. For
the experiments, they use the publicly available NGSIM database. Deo et al. [58] propose
a variation of the architecture designed in [57], using an LSTM network as an intermediate
layer to classify and assign a probability to the maneuvers instead of the convolutional
social-grouping layer. The results of these analyses evidenced the importance of modeling
the movement of adjacent vehicles to predict the future movement of a given vehicle, as well
as the importance of detecting and exploiting common vehicle maneuvers for the prediction
of future movement. They use the publicly available NGSIM database for the experiments.

Kim et al. [59] present a collision risk assessment algorithm that quantitatively assesses
collision risks for a set of local trajectories through the lane-based probabilistic motion predic-
tion of surrounding vehicles. Initially, the target lane probabilities are calculated, representing
the probability that a driver will drive or move into each lane, based on lateral position and
lateral velocity in curvilinear coordinates. It assumes that the lateral offset of vehicles with
respect to the road center-line is measured from a suitable sensor suite, such as a camera,
radar, or LIDAR. To estimate the collision probability, the collision risk is assumed as a metric,
which is modeled as an exponential distribution, dependent on the time to collision (TTC). The
prediction performance of the lane-based probabilistic model is first validated by comparing
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the model probabilities from the probabilistic target lane detection algorithm against the
maneuver probabilities obtained from real-world traffic data from the NGSIM database.

Hou et al. [60] propose a model of mandatory lane change (maneuver of incorporation
into the vehicular flow of a highway) that considers as input variables data associated
with the distances and relative speeds between the vehicle that is going to carry out the
maneuver and the front and rear vehicles in the lane to which it is intended to enter, in
addition to the distance the vehicle has traveled on the merging lane. Bayesian classifiers
and decision trees are used to predict the driver’s decision to carry out the maneuver or not,
determining as the most relevant variable the relative speed between the vehicle carrying
out the maneuver and the vehicle in front on the line to which it is intended to enter
and, in general, the greater relevance of relative speeds over relative distances. Detailed
vehicle trajectory data from the NGSIM database were used for model development (data
of U.S. Highway 101) and testing (data of Inter-state 80). Liu et al. [61] develop a deep
learning model to evaluate discretionary lane change maneuver decision making. The
model is based on deep neural networks and with the exception of the instantaneous states
of the subject and the surrounding vehicles, the historical experience of the drivers and the
memory effect from vehicle to vehicle are also taken into account for the final evaluation of
the maneuvering situation of change of lane, considering the analysis of the time series of
trajectory data as part of the historical behavior of drivers. The classifier used is a gated
recurrent unit (GRU) neural network, which is a type of RNN. They use the traffic data of
the NGSIM database to train and test the model.

Benterki et al. [62] present a system for predicting lane change maneuvers on motor-
ways. These maneuvers are classified into left turn, right turn, and lane keeping, using
two machine learning techniques: a support vector machine (SVM) and neural networks.
The system also estimates, with a time window in advance, the time in which the lane
change maneuvers will take place. The lane change process is subdivided into three stages:
preparation of the lane change, active execution of the lane change, and completion of the
lane change. Therefore, the system proposes to exploit the changes that occurred during the
lane change preparation stage for the premature detection of maneuvers. The real-driving
data of the NGSIM database is used for training and testing. Ding et al. [63] propose a
method that combines high-level policy anticipation with low-level context reasoning. An
LSTM network is used to anticipate the vehicle’s driving policy (go ahead, yield, turn left,
and turn right) using its sequential historical observations. This policy is used to guide a
low-level optimization-based reasoning process. In this reasoning process, cost maps are
defined to represent the context information, which are associated with certain character-
istics of the road, such as lane geometry, static objects, moving objects, the area enabled
for driving, and speed limits. The open-source urban autonomous driving simulator, CAR
Learning to Act (CARLA) [64] is adopted to collect the driving data, with the use of a
Logitech G29 racing wheel.

Mahjoub et al. [65] propose a stochastic hybrid system with a cumulative relevant
history based on GPs. This design is used within the context of model-based communication
to jointly model driver/vehicle behavior as a stochastic object and obtain accurate predictive
models for mixed driver/vehicle behavior trends in the short and long term (within 0–3 s)
of the critical dynamic states of the vehicle, such as its position, speed, and acceleration,
within the discrete modes of the system, which are equivalent to the different long-term
behaviors (maneuvers) of the driver. The lane change maneuver is selected as a specific
long-term driver behavior, and the lateral position of the vehicle is modeled through an
available set of already-observed instances. This is done by building a cumulative training
history of on-the-go maneuver-specific data from identical or relevant maneuvers observed
in the driver’s recent driving history, and then feeding this training data to the model
inference block, such as your initial training set. To evaluate the proposed method, real
trajectory data of 40 lane change maneuvers from the NGSIM database were used. As a
recommendation for network situations with a high degree of congestion, where frequent
reception of messages is difficult, a model that combines the constant speed model with the
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proposed Gaussian regression model would ensure prediction for both the near future (less
than one second), as well as for the far future (between one and three seconds).

The following describes the works that use more specific sensors of greater complexity
and economic cost, such as radar, LIDAR, GPS, and IMU, to capture the information from
the interaction with the vehicle environment. These devices, on the other hand, have disad-
vantages due to direct-line-of-sight obstruction problems, in the case of LIDAR radars, and
in general to unfavorable environmental conditions. Batsch et al. [66] propose a classification
model using a Gaussian process (GP) for the problem of detecting the presence or absence of
the risk of collision between a vehicle and the vehicle that precedes it, which circulates at a
slower speed as a result of being part of a traffic congestion scenario that includes several
vehicles. To train the system they use data produced by CarMaker simulation software [67].
The tests are conducted in an automated vehicle equipped with a radar sensor, neglecting
the sensor uncertainty in the velocity and aperture angle measurement. Zyner et al. [68]
present a method based on recurrent neural networks to predict driver intention by predicting
multi-modal trajectories that consider a level of uncertainty. To deal with data sequences of
different lengths, sequence-fill techniques are introduced, taking as reference the last known
position of the vehicle. The data analyzed contains the lateral and longitudinal position track
history, as well as heading and velocity. Park et al. [69] employ the use of LSTM networks to
predict the future trajectory of surrounding vehicles based on a history of their past trajectory,
formulating the vehicle trajectory prediction task as a multi-class sequential classification
problem. For the evaluation of the system, real-vehicle trajectory data from a highway
environment was employed. To capture the vehicle–environment interaction data, the test
vehicle used a radar sensors and the IMU sensors.

Next, the works that use, together with the use of cameras, the incorporation of sensors,
such as radar, LIDAR, GPS, and IMU are grouped to capture the information from the
interactions with the vehicle environment. It is worth noting the fact that by using a greater
number of sensors of different technologies, a greater degree of robustness of the system is
achieved due to the redundancy in the information that can be received, but on the other
hand, a greater degree of processing is necessary for data from diverse heterogeneous
sources, which increases the computational cost. Liu et al. [70] establish an autonomous
lane change (discretionary maneuvering) decision-making model based on benefit, safety,
and tolerance functions that analyze not only lane change factors in autonomous vehicles
associated with route planning and monitoring, but also in addition to the lane change
decision-making process. The benefit function considers the relative speed and distance
data between the vehicle and the predecessor vehicles in the same lane and the target
lane. The safety function considers a minimum safe distance between the vehicle and the
successor vehicle located in the target lane, in addition to the relative distance and speed
values between the two. Finally, the tolerance function considers relative distance and
speed values between the vehicle and the predecessor vehicle in the same lane, avoiding
frequent lane changes if the distance between them is too great. In order to verify the
effectiveness of the model in real scenarios, they realized a test verification in the vehicle.
The test vehicle used is equipped with Mobileye, millimeter-wave radar, mobile station
GPS, AutoBox dSPACE, IMU, and other devices.

In this site are grouped the works that exclusively employ the use of vehicular com-
munications (DSCR) to capture the information from the interactions with the vehicle
environment. Although the use of communications manages to fundamentally compensate
for the range limitations presented by the use of sensors and cameras, providing greater
flexibility in terms of the road safety information that can be exchanged, there are also a
series of limitations associated with all technologies of wireless communication, such as
packet loss, transmission errors, and communication delay, to name a few. Fallah et al. [71]
use the model-based communication scheme in a cooperative FCW system using the exam-
ple of CAMPLinear and, specifically, the collision detection algorithm proposed in [72] and
later refined in [73]. This algorithm uses speed and acceleration information as input, both
from the host vehicle and from the remote vehicle, which is the vehicle ahead in its own
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lane. The model used to estimate the remote vehicle mobility data belongs to the family
of follower car models; specifically, the model introduced in [74] is used. The concept of
hybrid automation is used [75], which is a well-known method for modeling mixed systems
of discrete and continuous states. To evaluate the model-based communications (MBC)
approach, two configurations are presented (MBC1 and MBC2), which are compared with
traditional communication schemes that directly transmit speed and acceleration data. In
both MBC1 and MBC2, each vehicle sends its movement models once at the start of the test
and then periodically transmits the updates of the model inputs (speed and acceleration).
In the case of MBC2, more sporadic additional messages associated with the change in
the movement pattern are also transmitted. It is precisely this second configuration that
obtains the most accurate results when tracking the movement of a vehicle.

Huang et al. propose [76] and develop [77] a mechanism based on the real-time esti-
mation of the position-tracking errors of neighboring vehicles, to manage the cooperative
information exchange in the vehicle communications environment. They first evaluate
decentralized information dissemination policies for tracking-error-dependent multiple
dynamic systems and then use collision-error-dependent policy to obtain better tracking
performance. Finally, the transmission probability is calculated for each vehicle every
50 milliseconds based on expected tracking errors. Upon receiving information from the
channel, each vehicle updates its estimated states of the neighboring vehicles using a first-
order kinematic model, i.e., a constant speed predictor. The main concept of measurements
in these algorithms is that the generation of messages from the receiver and the timing of
the communication must be determined so that the position-tracking error is reasonably
limited. A local copy of the neighboring estimators is executed at each local estimator. The
sender compares the output of this simulated estimator with its actual state, thus estimat-
ing the position-tracking error, and determines whether remote vehicles need updated
messages from the sender. The decision is made by comparing the position-tracking error
with a configurable error threshold, generally defined according to the requirements of the
cooperative road safety application (RSA).

Mahjoub et al. [78] propose a technology-independent hybrid model selection policy,
based on the MBC scheme, for vehicle-to-everything (V2X) communication. The core idea
is to implement a hybrid modeling architecture that switches between different modeling
subsystems to adapt to the dynamic state of the vehicle. In this particular case, two
modeling states are used: one governed by GP, which uses two kernels: one linear and one
radial basis function. The other modeling state is defined by the constant velocity kinematic
model. A tracking error threshold is used as a selection element when using these models.
The results show the effectiveness of the proposed communication architecture both in
reducing the required message exchange rate and in increasing the accuracy of remote
vehicle tracking. The greater tracking accuracy of the MBC scheme can be attributed to its
ability to capture higher-order vehicle dynamics as a result of harsh braking maneuvers
and lane change maneuvers.

Mahjoub et al. [79] explore the modeling capabilities of the non-parametric Bayesian
inference method: GP, integrated into the MBC design scheme, accurately represents
different patterns of driving behavior using only a bank of GP kernels of limited size.
To do this, a group of representative trajectories from the SPMD data [80] were selected
and the properties of the required kernel bank were explored to be modeled within the
GP-MBC scheme. The two fundamental metrics used to evaluate the proposed system
are: the length of the transmitted message (related to the size of the kernel bank) and
the message transmission rate (related to the persistence of the model). The existence of
such a kernel bank allows for transmitting entities to send only the kernel ID instead of
the kernel itself, which consequently reduces the length of the packet. The persistence of
the model is understood as the time in which a model remains valid for the prediction,
i.e., obtaining a margin of error in the prediction lower than the threshold established
by the RSA requirements. The results obtained showed the feasibility of using a group
of GP kernels of finite size to predict, with the precision required by the RSA, the future



Sensors 2022, 22, 3040 17 of 40

position of the vehicle through an indirect prediction method, i.e., by predicting the values
of the time series of the future speed and direction of the vehicle. An indirect position
estimation (speed, direction, or acceleration) achieves superior results compared to direct
position estimation.

Vinel et al. [81] design an analytical framework that considers the behaviors of
cooperative road safety applications considering the performance of V2V communications.
The relationship between the characteristics of V2V communications associated with the
probability of packet loss and the packet transmission delay, with the physical mobility
characteristics of the vehicle, such as the inter-vehicle safety distance, is analyzed. The
case of the cooperative ASV of the emergency electronic brake light defined by the ETSI
is analyzed.

Finally, the jobs that use, together with the use of vehicular communications (DSCR),
cameras and sensors such as radar, LIDAR, GPS, and IMU are grouped to capture the
information from the interaction with the vehicle environment. This favors the complement
between communication and sensor technologies, taking the best of both and guaranteeing
a more complete performance and greater possibilities for facing the challenges in the area
of road safety. Mahjoub et al. [82] design a system for the prediction of the lateral and
longitudinal movement of the vehicle. For the prediction of the longitudinal trajectory,
nonlinear auto-regressive exogenous models based on neural networks are used. In the
case of lateral trajectory prediction, recurrent neural networks (RNN) are used. The
system uses two main sources of information: (i) cameras and on-board detection devices
such as radars and LIDAR that are assumed as the primary information providers for
CAV applications; (ii) V2V communication, which is obtainable using dedicated short-
range communication (DSRC) devices, and is regarded as an important supplementary
information source whenever it is accessible. The performance of the system is evaluated
not only in ideal communication conditions, but also in the presence of scenarios with
up to 40% losses. In this case, a zero-hold estimation method is included to combat
packet loss or sensor failure and to reconstruct the time series of vehicle parameters at a
predetermined frequency. Its evaluation is simulated using real-communication scenarios
with data extracted from safety pilot model deployment (SPMD) [80]. Du et al. [83] develop
a network architecture called vehicular fog computing to implement the cooperative data
census of multiple adjacent vehicles circulating in the form of a platoon. Based on this
architecture, a greedy algorithm is used to maximize the census coverage (associated with
the area ratio and total ratio parameters) and minimize the overlap coverage (associated
with the efficiency parameter), enhancing the parallel calculation through of the distributed
management of the computational resources of the platoon members. A SVM algorithm is
used to merge the census data of multiple vehicles and obtain precise information on the
status of the vehicles. Through an occupancy grid filtering (OGF) of the on-board sensors
(LIDAR, cameras), the environment is mapped as occupancy states. These OGF maps
are integrated into the head vehicle, and by means of SVM it is classified when a grid is
occupied by a vehicle. To train the SVM classifier, the GPS position data extracted from the
NGSIM database is used to locate the vehicles on the OGF map. Finally, the result of the
merger of the census data of multiple vehicles (location of the vehicles on the OGF map)
feeds the algorithm of a light GRU neural network to predict the discretionary maneuvers
of lane changes to classify them into lane-keeping maneuvers or lane change maneuvers.

Moradi-Pari et al. [84] use the model-based communications scheme to design a
small-scale and large-scale modeling strategy for the dynamics of vehicular movement.
The representation model of the system to describe the behavior of the vehicle is based on
the representation of stochastic hybrid systems, where: (i) small-scale evolution represents
actions of braking and acceleration, represented by exogenous auto-regressive models
and (ii) large-scale evolution, which includes lane change maneuvers and free circulation
flows, are represented by coupling these models within a Markov chain. At each model
calculation time, all currently available states of the latest version of the model must be
explored, and the best-fit parameter values must be found for each of them according to the
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new observation element. If at least one of these states satisfies the error threshold specified
by the application using its new parameter values, the current model is assumed to be
fully descriptive for the entire observation sequence received. However, if the minimum
error reached given by the current model exceeds the required threshold, it is necessary
to introduce a new state to represent the new observation segment and describe the last
maneuver of the driver. To evaluate the performance of the proposed models and adaptive
cruise control methods, various scenarios were simulated with different realistic data sets,
including data from SPMD [80] and driving cycles for Environmental Protection Agency
testing standards [85].

We want to emphasize that cooperative driving can significantly contribute to the de-
velopment of C-ADAS, since this is the most important result of detection, communication,
and automation technologies, and, in turn, significantly influences the behavior of drivers.
Z. Wang et al. [37] provide a review of the literature associated with cooperative multiple
CAV longitudinal motion control systems, with an emphasis on the architecture of several
cooperative CAV systems. An in-depth discussion of the control aspects of CAV systems
is carried out, highlighting the main challenges generated by the existence of different
information flow topologies, which are mainly focused on string stability, communica-
tion issues, and dynamics heterogeneity. Zhou et al. [86] present a literature review of
learning-based longitudinal motion planning models for autonomous vehicles, focused
on the impact of these models on traffic congestion. They surveyed the non-imitation
learning method and imitation learning method, and the emerging technologies used by
the principal automakers for implementing cooperative driving are described.

Multiple research works have investigated in the context of cooperative driving the
design of control systems that favor the management of traffic and/or the crossing of
intersections. Zu et al. [87] propose a cooperative method for connected automated vehicles
that controls the timing of the traffic lights and manages the optimal speed at which the
vehicles should circulate. The optimization of the traffic light times and the calculation of
the arrival times of the vehicles at the intersection allows for the minimization of the total
travel time for all the vehicles, as well as the fuel consumption of the individual vehicles.
Zheng et al. [88] establish analytical results on the degree of stability, controllability, and
accessibility of a mixed-traffic system composed of autonomous vehicles and human-driven
vehicles. The proposed system allows the flow of traffic to circulate at a higher speed
and shows that the autonomous vehicles, along with cooperative driving, can save time
and energy, smoothing traffic flow and reducing traffic undulations. Wang et al. [89]
propose a cooperative platoon system for CAV, based on a predictive control model with
real-time operation capability, to efficiently manage the vehicle tracking behaviors of all
CAVs in a platoon. The constant time advance method is used to adjust the balance gap
between successive vehicles. Zhou et al. [90] introduce a smooth-switching control-based
cooperative adaptive cruise control scheme with information flow topology optimization
to improve riding comfort while maintaining string stability. A Kalmann filter-based
predictor is used to estimate the state of the preceding vehicle, suppressing the noise in the
measurement and estimating the acceleration of the vehicle in the event of communication
failures. Zhou et al. [91] propose a hybrid cooperative intersection control framework to
manage the entrance and exit of a group of vehicles to an intersection. A virtual platoon is
defined to group these vehicles according to their proximity to the entrance of the conflict
zone of the intersection. The location assignment of the vehicles within the virtual platoon
differs from their real relative locations. This virtual platoon is obtained by linearly projecting
the distances at which the vehicles are from the center of the intersection, then, platoon
control rules are applied to manage the movement of vehicles approaching the intersection.

The management of the flow of information exchanged in a V2V communication
environment has been addressed in [92]. Wang et al. develop a mathematical modeling
based on queues to manage the transmission of information of multiple classes with
different levels of delay according to the cooperative road safety applications. In [93], these
authors also addressed traffic management in mixed environments with the presence of
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human-driven vehicles and autonomous and connected vehicles, analyzing the differences
in the principles of route choice and the traffic patterns followed by human-driven vehicles
and connected and autonomous vehicles, and they also considered the use of preferential
circulation lanes with free access to connected and autonomous vehicles in [94].

Table 3 summarizes the main works consulted that address elements of the vehicle–
environment interaction. The directionality in which this interaction is approached is
analyzed, as well as the way in which it is implemented.

Table 3. Works in which vehicle–environment interaction is addressed. The “ideal” behavior means
that the authors do not consider the losses of the communication channel. The works that are not
grouped within “ideal” behavior or “non-ideal” behavior, are those in which the use of communica-
tions is not considered for the design of ADAS.

Articles Directionality Implementation of the Interaction Communications

V -> E E -> V Data Source Data Type Environment “Non-Ideal”
Behavior

“Ideal”
Behavior

[82] X
Cameras, radar, LIDAR, and
DSRC Real Real X

[66] X Radar Simulated Simulation

[55,57–62] X Cameras Real Real

[63] X Cameras Real Simulation

[68] X LIDAR Real Real

[69] X Radar Real Real

[70] X Cameras, radar, GPS, and IMU Real Real

[83] X X Cameras, LIDAR, and DSRC Real Real and simulation X

[71] X X DSRC Real and simulated Simulation X

[65] X Cameras Real Real

[84] X X
Cameras, radar, LIDAR, and
DSRC Real and simulated Simulation X

[76,77,81] X X DSRC Simulated Simulation X

[78] X X DSRC Real and simulated Real X

[79] X DSRC Real Real X

[37] X X DSRC Real and simulated Real and simulation X

[86] X Cameras, radar, and LIDAR Real and simulated Real and simulation

[87] X X DSRC Simulated Simulation X X

[88] X X DSRC Simulated Simulation X

[89] X X
Cameras, radar, LIDAR, and
DSRC Real and simulated Simulation X

[90] X X
Cameras, radar, LIDAR, and
DSRC Real and simulated Simulation X

[91] X X DSRC Simulated Simulation X

[92] X X DSRC Simulated Simulation X

[94] X X DSRC Simulated Simulation X

[93] X X DSRC Simulated Simulation X

4.2. Current Challenges

The addressed challenges in this section are focused on the sensors and communica-
tions technologies. The main challenges with regard to sensors technologies are:

(i) The sensor occlusion with respect to the line of sight of the objects and other road
actors. The good performance of these technologies is affected under various climatic
and environmental conditions, such as roads with markings covered by snow, heavy
rain, or dense fog. Objects, people, and animals located in the vicinity of the vehicle, or
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obstructing each other, represent serious security problems for detection by these devices.
This phenomenon is not so serious when the objects are located at greater distances, where
the processing algorithms can help the sensing devices to improve detection tasks. These
drawbacks can be minimized by sensor redundancy as in [95], where a 360-degree vision
system is used for parking assistance.

(ii) The high computational resource consumption of image processing algorithms present
in camera-based sensors. Detection at distances greater than 200 meters requires the use of
ultra-high-resolution cameras for the sensing of small details in the target image. Therefore,
powerful image processing algorithms are required to analyze the high volume of image
data and extract useful information from the noise associated with it [96], which continues to
represent a limitation to the adequate processing in real time that road safety demands.

(iii) The high cost of specific hardware technologies. Some well-established technolo-
gies in the market, such as vision cameras or radars, have managed to establish themselves
in large-scale production, lowering their production costs. This situation, however, differs
from other more specific technologies for the automotive industry, such as LIDAR devices,
whose standard incorporation in vehicles considerably increases their price depending on
various factors, such as the type of use for the one that the vehicle is destined for, or their
sensing capabilities in 2D or 3D.

The main challenges with regard to communications technologies are:
(i) The scarce deployment of network infrastructure in the road environment. The

massive implementation of V2I technologies is an expensive and time-consuming task.
Various costs must be assumed depending on the location environment, such as the instal-
lation of nodes, bandwidth, and energy support, and the subsequent maintenance of the
installed equipment. An important aspect is the traffic capacity of these networks, given
that cooperative road safety applications require a high degree of penetration of vehicles
with installed connection capabilities, e.g., in the case of the cooperative collision warning
application, a density greater than 60% of the total connected vehicles is desirable [97].

(ii) The lack of robustness of current communications networks to operate in a vehicu-
lar environment, evidenced by the loss of transmitted packets and other problems, such
as communication channel congestion, transmission delay, and fading and shadowing in
signal propagation. The reliability and accuracy of the exchanged data is vital to ensure
the proper functioning of cooperative applications, as inaccurate data can result in bad
judgment when making a decision related to road safety. These networks must guarantee
robustness against sending duplicate messages or false positives in the issuance of alerts.
Furthermore, even when the data exchanged is accurate, the freshness of the information
is required, due to the importance of the temporal component of road safety data. It is
not enough to detect a risk situation on the road and communicate it accurately, it is also
required that this information arrives in time for the appropriate reaction to said danger
and thus guarantee the good global operation of cooperative road safety applications. In
this sense, emerging technologies such as 5G can provide greater capacity and reduced
latency when exchanging this sensitive information [98]. With the progressive increase
in the volume of data, the need arises to have tools and algorithms capable of efficiently
processing them. Raw data handling is becoming less feasible and more expensive. Dimen-
sionality reduction techniques are required to identify patterns in data and achieve more
scalable developments [99].

(iii) The security and privacy of the information exchanged represent an important
challenge to consider when designing C-ADAS. As in any communication network where
private information is exchanged, the issue of data security and integrity is vital, but in
these networks in particular it is even more important, since people’s lives are at stake, as
well as overall road safety. Hacking activity in networks without adequate protection can
cause attackers to take control of a vehicle’s security systems, causing traffic diversions or
the activation of the emergency braking system, the stealing of personal data from users, and
in the worst case scenario, the creation of conditions for the occurrence of traffic accidents.
These challenges are part of the OEM and after-sales connectivity systems [100], which is
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especially sensitive in automated vehicles with electronic control of their actuators. Another
current problem is that network security approaches can, on occasion, compromise vehicle
security due to the overload of exchanged security information, generating excessive delays
in communications, which is associated with authentication mechanisms, validation, and
security certificates.

The shortcomings that still persist, and the study and achievements related to the
V–E interaction, are the inability to operate bidirectionally, the lack of holistic integration
between the detection, communication, and processing technologies, as well as the joint
operation with the driver subsystem, which allows for the exploitation of these redundant
pathways to obtain information from the environment. In addition to this, there are also the
challenges associated with the functioning and operation of these sensing (e.g., resolution
and scope) and communication (e.g., reliability and delay) technologies, which undoubtedly
limit the effectiveness of the current implementation of the proposed C-ADAS.

5. Driver–Vehicle (D–V) Interaction

The analysis of bidirectionality when studying the interactions between driver and
vehicle (D–V) is relevant for proactive decision making in a vehicular context. Let us
consider an example where the driver is developing aggressive driving on the road—the
C-ADAS detects this behavior (D -> V interaction). This characterization of the driver
will allow the C-ADAS to estimate possible risk situations when this vehicle approaches
other aggressive or extremely conservative drivers. Given such knowledge, convenient
and personalized messages could be sent to moderate the conduct of those involved, which
is a more complex form of interaction (D -> E -> V). This redundancy alternative path is
relevant to consider, given that HMI devices have limitations and challenges for optimal
performance in cooperative environments and sometimes limited customization features.
This degree of redundancy can only be achieved if the design of the C-ADAS is approached
from a holistic and systemic vision, with bidirectional interactions among subsystems.

The D–V interaction describes the main elements related to the HMI module. This
area is in charge of presenting the driver with the information about the environment
acquired by the sensors and communication technologies and the information of the
vehicle itself, obtained from the internal communication pathways, such as the CAN bus.
Similarly, it is also necessary to sense the driver’s reaction to the operation of the assistance
system. At the same time it is in charge of materializing, through the vehicle operation, the
driver’s actions on the environment that surrounds him. As an “assistance” system, its first
function should be to learn about the particular characteristics of the driver, understand
their actions, and to be able to model their behavior (instantaneous and historical) to
identify the “particular assistance needs” that the driver requires. It must also be able to
communicate that knowledge acquired to the rest of the actors on the road, as part of the
concept of cooperative knowledge. Note that, the warnings and vehicle take-over should
be limited to situations evaluated with a high degree of certainty and personalization. The
redundant information in terms of sources, modules, and communication paths, as well as
the prior and continuous characterization of drivers and their driving styles, prevent the
unnecessary modification of driving styles and regulates those aggressive behaviors that
represent a danger.

5.1. Actual State

The discussion of this section begins by grouping the works that use the devices that
allow the driver to operate on the vehicle while driving to capture the information of
the driver–vehicle interaction, obtained through the internal communication buses of the
vehicle, for example, the CAN bus. Although this information is present in most modern
vehicles, it is not currently sufficiently exploited by the automotive industry to establish a
personalized interaction between vehicle and driver. Wang et al. [101] propose a method to
predict the driver’s braking intention in car-following scenarios from a perception–decision–
action perspective according to their driving history, considering the following variables:
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vehicle speed, distance between the host vehicle and vehicle preceding, and the relative
speed between them and TTC. The system combines a Gaussian mixture model (GMM) with
a hidden Markov model (HMM) to infer the driver’s braking action given the state of the
driving situation, using data from the CAN bus, cameras, and radars installed in the vehicle.
Dang et al. [102] design an adaptive cruise control system with a lane change assistant. First,
the risk associated with the lane change is analyzed by calculating the minimum safe space
between the host vehicle and the surrounding vehicles. To calculate this risk, a driving
style factor is introduced, which modifies the calculation of the minimum safety distances
between the vehicle performing the maneuver and neighboring vehicles. The value of
this factor is set by the driver. Values greater than one indicate conservative conductors,
lower values indicate aggressive conductors. Finally, a coordinated control algorithm is
developed using a predictive model control theory that limits the longitudinal acceleration
of the vehicle to guarantee a better performance in terms of comfort in movement.

Zhu et al. [103] propose a personalized driver assistance system that includes driver
profile identification for lane change assistance. Initially, the data obtained through driving
simulators are analyzed and statistically processed to select the most relevant variables.
With these results, the fuzzy c-means clustering algorithm is used to extract different
conduction profiles. Three clusters are generated, which are associated with aggressive,
normal, and conservative profiles. A neural network classifier, optimized by a particle
swarm algorithm, is used to detect these conduction profiles. According to the profile
of the driver identified by the system, preset values are determined for the execution
time of the lane change maneuver and the minimum safety distance margin required
with the preceding vehicle in the lane to which the change is made to avoid a forward
collision. These personalized values are included in the analytical model to calculate the
risk of collision associated with lane change and the subsequent behavior of the following
vehicle in the destination lane. Su et al. [104] design a forward collision system that
employs a method to recognize driver intent and driving behavior, based on the GMM.
The proposed system has the advantages of adapting the model and the ability to generate
probability densities in arbitrary shapes. In addition, it allows real-time implementation
and has high precision. A precise recognition model of the driver’s driving behavior is first
established and verified in a real-time driving simulator with 36 drivers as samples. Then,
an FCW algorithm is designed with a braking execution strategy and an alarm classification
based on the results of the driver’s driving behavior recognition. Drivers are classified as
conservative, normal, and reckless. Mantouka et al. [105] identify driving styles based on
unsupervised classification techniques, using acceleration and speed data collected through
the use of smartphones. Initially, the styles are grouped into aggressive and non-aggressive
behaviors to subsequently analyze additional unsafe behaviors associated with distraction
and risk taking. Once the driving profiles have been detected, the driver’s average behavior
and its persistence or volatility in different situations are analyzed.

Works that use the vehicle driving devices to capture the information of the driver–
vehicle interaction have been grouped here, including the use of devices that emit visual,
sound, or vibro-tactile alerts to the driver and analyze their reaction to these alerts. Al-
though the use of devices that alert the driver is increasingly being addressed by the
automotive industry in modern vehicles, the personalized interaction between vehicle and
driver, which also includes the issuance of personalized warnings according to the driver’s
behavior, continues to be a challenge in this area. Yang et al. [106] propose a collision
warning system based on V2V communication. The algorithm initially detects the intention
of the driver of the preceding vehicle, which is transmitted, together with other movement
parameters of said vehicle, to the following vehicle through the V2V communication mod-
ule. Finally, the safety application that runs in the following vehicle estimates the risk of
potential collision with the information received through V2V and with the movement
parameters of the vehicle itself, to alert the driver, outperforming systems based on TTC
thresholds. Bavendiek et al. [107] present a human–machine interface design method based
on the concept of metaphors to analyze and improve the vehicle–driver interaction through
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the design of HMI interfaces. This methodology, whose best known example is the design
of computing machines based on the desktop interface, enables a friendlier relationship
between man and machine, achieving improvements in the design of the HMI interface
installed in the vehicle. The study focuses on describing a procedure to identify metaphors
in the HMI environment of the automobile. Subsequently, the development of new HMI
concepts based on the identified metaphors is proposed.

Iranmanesh et al. [108] design a FCW system that considers the driver’s historical
braking profile in the face of previous alert events to establish a reaction threshold. The
time of advance (time headway) for a vehicle is understood as the time it would take for
the vehicle to travel circulating at its current speed and the distance between its front part
and the front part of the vehicle that precedes it. The main metric is the alert activation,
which is defined as a warning-triggering threshold, considered as the normal level of risk
tolerance, to determine the need to issue an alert to the driver in the event of a possible
dangerous situation. The caution–deceleration threshold is also defined to avoid false alerts
and discard situations outside a dangerous situation, such as stops or turns in the presence
of traffic lights. The system continuously monitors driver distraction through data obtained
from the CAN bus associated with the state of the acceleration pedal, speed, acceleration,
and turning angle, among others. The detection of driver distraction is performed by
SVM classifiers and a multi-layered perceptron neural network. Sun et al. [109] propose a
lane change assistance system based on the identification of the individual driving profile,
determining an optimal alert threshold that varies as the characteristics of the individual
profile change. The authors use the signal detection theory (SDT) to develop a method to
determine the characteristics of the driver in a lane change maneuver. The target signal is
defined as the operation to complete the maneuver by the driver and the noise signal is the
operation to abandon the maneuver, which are associated with warning and non-warning
criteria for the lane change warning system. The warning threshold is adjusted in real time,
according to the particular characteristics of each driver during the maneuver. According
to the authors’ definition, those who complete the lane change maneuver even in the
presence of the safety system warning signal are grouped as aggressive drivers, and those
who abandon the lane change execution even in the absence of the system alert signal are
grouped as conservative drivers. Based on the analysis of the existing warning criteria,
variables such as the TTC and the relative distance between the subject vehicle and the rear
vehicle in the destination lane were used as warning indicators, while the initial warning
threshold according to the difference of the speed of the subject vehicle was selected for the
adaptive algorithm.

Choi et al. [110] propose a personalized design of the next generation HMI interfaces,
where the driver can personalize the way in which he/she interacts with the vehicle and,
in turn, it responds in a personalized way, identifying the characteristics and the state of
the driver in a given situation. The proposed system consists of elements such as sensors
embedded in the car, an adaptive inference engine that analyzes the driver–vehicle interaction,
and an advanced digital platform in the vehicle cabin, which accesses the data obtained
from this interaction. Dargahi Nobari et al. [111] propose a control scheme with feedback
that considers the state of the driver as an input element for the system that analyzes the
driver–vehicle interaction. Sensors (e.g., eye-tracker, physiological sensors) are used to detect
the state of the driver. This result is compared with previously established situations to
then design a policy that regulates the generation of stimuli tending to reduce the degree of
criticality of the traffic situation. Table 4 summarizes the main works consulted that address
elements of the driver–vehicle interaction. The directionality in which this interaction is
approached is analyzed, as well as the way in which it is implemented.
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Table 4. Works in which driver–vehicle interaction is addressed. The type of personalization described
in the consulted works is analyzed from two approaches: (i) the action that the driver exerts on the
driving elements of the vehicle (described as an action on the vehicle) and (ii) the reaction that the
driver adopts before the notices and alerts sent by the system (described as reaction to ADAS).

Articles Directionality Implementation of the Interaction Personalization Types

V -> D D -> V Data Source Data Type Environment Action on
the Vehicle

Reaction
to ADAS

[101] X CAN bus Real Real X

[102] X CAN bus virtual Real Simulation X

[103,104] X CAN bus virtual Simulated Simulation X

[105] X Smartphone sensors Real Real X

[106,107] X X CAN bus and warning indicator Real and simulated Real and simulation X X

[108–110] X X CAN bus and warning indicator Real Real X X

[111] X X Eye-tracker and warning indicator Real Simulation X X

5.2. Current Challenges

The current challenges of this section are focused mainly on the personalization of the
ADAS and the motion modeling.

(i) The personalization of the ADAS, which should consider the driving profile, prefer-
ences, and peculiarities of the driver. In the design of HMI devices, not only the driver’s
action on elements of the vehicle that determine its state of movement should be considered,
but also feedback elements through visual or sound information that alert the driver about
the consequences of their actions and that of the other actors in the environment regarding
road safety. There is a common assumption in the personalization of ADAS systems that
the driver is more comfortably adjusted to systems that implement a driving style similar to
their own, but in practice, determining that optimal driving style for each individual driver
is a very challenging task. In current systems, the process of interaction between driver
and vehicle through the HMI limits the driver’s ability to correct and shape the system to
establish a driving style that provides greater comfort. This interactive exchange phase
between vehicle and driver requires further development. Another aspect to deal with in
greater depth is the fact that the personalization process must be conceived as a continuous
process. It is not enough to limit the customization process to obtaining and establishing a
personalized system, since the drivers, influenced by various internal and external factors
present on the road, can modify their preferences and driving styles in certain situations.
For this reason, this phase of interactive exchange between driver and vehicle must last
over time as a continuous process, improving its usability characteristics and finally, its
benefit for road safety.

(ii) Modeling the longitudinal and lateral motion is a challenging task, which includes
predicting the driver’s intention in response to the dynamics of the surrounding environ-
ment. The accurate sensing of the surrounding environment and the prediction of the
intent of neighboring vehicles represent the biggest challenges for modeling the lateral and
longitudinal motion of a vehicle by considering human driving preferences in the process.
When the distances between vehicles, pedestrians, and objects are small, the degree of
precision of on-board sensors must be very high. Similarly, if we take into account that
the movement of vehicles on the road is a complex scenario of interaction between several
actors, it is crucial to have tools that allow us to infer the intention and future behavior of
neighboring vehicles. The failure of any of these two elements can lead to a tragic result,
the dynamic instability of the vehicle, and even a traffic accident. When dealing with a
high risk of collision, the development of conservative algorithms is chosen, even if this
sacrifices aspects of the system such as efficiency, comfort, and acceptance of drivers and
passengers. Incorporating V2V and V2I communications into the system can overcome
these limitations and inefficiencies of non-cooperative systems [112].
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(iii) Vehicles with SAE level three automation allow the driver to freely participate
in tasks not directly associated with driving, but the driver is required to be able to
disconnect from these tasks to regain manual control whenever required by the system.
This requirement, related to the term take-over, represents a challenge to consider in the
study of D–V interaction. This capability demands that the driver carry out this process of
returning to driving tasks, ensuring a smooth, and at the same time, safe transition towards
taking control of the vehicle. This challenge requires a novel design when addressing
the D–V interaction (between the driver and the automated system), which considers the
driver’s ability to take control in real time [113]. Situational awareness may be diminished
in highly automated driving environments compared to manual driving environments
if drivers are engaged in non-driving tasks [114]. In [115], the authors present a novel
predictive haptic take-over controller to further explore the safe and smooth interaction
mechanism during the take-over of autonomous vehicles.

The works described do not show the required bidirectionality between driver and
vehicle, nor a holistic integration between subsystems, which is essential for information re-
dundancy and system reliability. However, the more specific challenges in D–V interaction
are associated with the degree of customization of these HMI devices for the timely display
of alerts to the driver, the high-precision modeling and prediction of the driver’s intentions
and the execution of the maneuver, and the guarantee of safe take-over transitions. Note
that these interaction challenges not only limit the implementation of the proposed C-ADAS
but also the progress in autonomous driving.

6. Driver–Environment (D–E) Interaction

The analysis of bidirectionality in the study of the interaction between driver and
environment D–E is relevant for the C-ADAS to be aware of how attentive drivers are to the
environment and how they react to eventual risk situations. Let us analyze, for example,
the information provided from the environment directed towards the driver, which can be
a stop warning signal. This information can be received: (i) directly by the driver (E -> D),
or (ii) indirectly, via a stop notification issued from an RSU and notified by the vehicle to
the driver (E -> V -> D). Regardless of the way in which the driver perceives the stop order,
the C-ADAS must guarantee the vehicle’s stop. In this sense, it is vital to determine as
soon as possible if the driver is aware of their surroundings and will carry out the braking
maneuver effectively. For this purpose, the C-ADAS must continuously monitor the driver
behavior through sensors, cameras, and wearable devices on board the vehicle (D -> V). In
this particular case, if the driver does not react adequately, then the C-ADAS itself can issue
an alert to stop, contributing as a redundancy path that guarantees that the information
that the driver should receive is received satisfactorily (D -> E, D -> E), but if the risk
situation cannot be fully mitigated by warning or vehicle take-over, then a general stop
warning should be issued to alert other drivers and vehicles of the situation (D -> V -> E).
It is important to take this redundancy route into consideration by the C-ADAS, given
that there may be innumerable occasions in which the driver fails to perceive relevant
information in terms of road safety, either due to distraction or due to impairments in their
driving operational capacity. This degree of redundancy can only be achieved if the design
of the C-ADAS is approached from a holistic and systemic perspective, where the study of
bidirectionality in interactions is considered. The works of the state of the art, which are
described in this section, fundamentally contribute to the indirect ways of obtaining this
information and, in this sense, they are relevant in terms of the use of sensors, cameras, and
wearable devices to monitor the status and behavior of the driver.

The importance of the natural perception’s module lies in the fact that the drivers form
a personal reality about their surrounding environment, and make their own assessment
of risk situations and the interaction between the different actors on the road, and based
on this, the module determines their primary behavior before interacting with the ADAS.
This module of natural perception has an amazing capacity to process large volumes of
very diverse data, and this versatility of processing in humans still represents a challenge
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for the computer systems that exist in the present. However, it also has real limitations
regarding the level of precision when estimating the kinematic variables associated with
the movement of vehicles, something that is vitally useful in potential-risk situations on
the road. This can be seen reflected in the deficient calculation of the adequate distances
to carry out lane change or overtaking maneuvers, in maintaining an adequate safety
distance with the vehicle in front, and detecting the presence of vehicles approaching from
behind in adjacent lanes, among other common situations that arise daily. As an active
element within the dynamics of the road environment, the drivers modify the state of
said environment through their actions and reactions. The use of various signals by the
drivers represents how they interact with the surrounding environment. Among these,
we can mention: (i) visual signals through the vehicle’s lighting devices, such as turn
signals, position indicator lights, or the stop lights; (ii) sound signals through the use of
the horn; and (iii) body signals through the gestures or so-called “hand signals” of the
drivers. The technological development associated with the infotainment area, together
with the challenges imposed by the increase in the complexity of the road infrastructure
and the increase in traffic congestion, have shown a growing use by drivers of navigation
applications through the use of maps for route planning, which to some extent conditions
their future behavior and mobility.

6.1. Actual State

The discussion of this section begins by grouping the works that use cameras to capture
the information of the driver–environment interaction, a method that is currently widely
used in the automotive industry to analyze the behavior of the driver inside the vehicle.
Qiao et al. [116] propose a fatigue detection system using images of the driver’s face, eyes,
and mouth, obtained by a smartphone camera. Signals of fatigue such as the blinking of the
eyes are detected by means of a Haar qualifier [117], while sudden movements of the head
are captured by calculating the variance of the centroid of the face. Yawning is detected
by measuring changes in the geometry of the mouth through the Canny active contour
method [118]. Mandal et al. [119] propose a fatigue detection system for bus drivers, using
a percentage of eyelid closure (PERCLOS) method to determine the level of eye opening.
Initially the system locates the position of the driver’s head in the incoming image to detect
the location and orientation of the eyes. Yuen et al. [120] propose a system to monitor the
driver’s activity during driving, analyzing information related to facial reference points,
which is used for the detection of the face and the position of the head. Its performance is
analyzed under various lighting conditions and degrees of occlusion of the driver’s face,
which enables the system to be able to detect when there are occluded parts of the face and
consequently achieve better estimation results in this situation.

Next, the works that use smartphones to capture the information of the driver–
environment interaction are grouped together, a method that allows, in addition to the
use of the smartphone camera, the use of the various sensors embedded in it, which allow
for an obtaining of various physical variables that favor a more complete analysis of the
driver’s actions while driving. One of the principal causes of vehicle accidents is distraction
during the driving process. Eraqi et al. [121] present a vision-based system that uses RGB
images obtained from the rear camera of a smartphone to recognize distracted driving
postures, composed of a face detector, a hand detector, and a skin segmenter. The proposal
is implemented using convolutional neural networks (CNN), obtaining results of the order
of 90% accuracy; however, its performance overhead is higher in a real-time configuration.
Janveja et al. [122] present a smartphone-based system for the detection of driver distraction
by analyzing gaze tracking through the left and right rear-view mirrors and for fatigue
detection by monitoring yawning and eye-blinking frequency. The system is designed to
operate in low-light conditions using two configurations: in the first, a near-infrared (NIR)
LED coupled to a smartphone is used; in the second, a generative adversarial network is
used to synthesize a thermal image obtained from the RGB camera of a smartphone. The
results show a better behavior of the system when NIR images are used. Kapoor et al. [123]
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designed a smartphone-based driver distraction detection system capable of operating
in real time, which alerts the driver with a beep once distracted behavior is detected.
The 10 classes of distracted behavior are drawn from the State Farm Distracted Driving
Database [124], which is used for fine-tuning the four pre-trained CNN models, namely
MobileNetV1, InceptionV3, VGG-16, and MobileNetV2. Xie et al. [125] present a system
for the detection of driver distraction based on the use of data from GPS and the IMU
sensors of a smartphone during the performance of turning maneuvers, lane change, lane
maintenance, stops, and near stops. According to the results published by the authors, the
best performance of the distraction detector, in terms of the F1 score metric, is obtained for
lateral maneuvers (turn and lane change). This is assumed to be because the data used are
more sensitive to this type of movement. This metric is defined by the authors themselves,
using sliding windows to extract the temporal characteristics of the data obtained from
the sensors and weighting the classification result of each sliding window according to the
number of normal driving or distracted driving labels.

Next, we describe a work that uses the devices and internal sensors of the vehicle,
which are grouped to capture the information of the driver–environment interaction,
through physical variables that they describe as the result of the driver–environment
interaction directly in the vehicle. Hu et al. [126] present a system to detect abnormal
driving behaviors, such as recklessness, fatigue/drunkenness, and use of a smartphone.
Unlike other works, where the driver’s activity is monitored by cameras that capture the
image and movements of the driver while driving, in this study the authors analyze vehicle
movement patterns, such as sudden acceleration and braking with a delayed response
to traffic conditions, to detect abnormal driving behavior. To quantitatively assess these
behaviors, a driver abnormality index is proposed. Qi et al. [127] present a passenger and
driver activity detection system by means of acoustic recording devices for the recording
and inference of activity inside the vehicle and by means of IMU and GPS sensors, including
OBD-II [128] data for human activity detection and for the detection of vehicle movement
patterns, such as braking, lane changes, and turns.

The works that use wearable devices and biomedic sensors have been grouped to
capture the information of the driver–environment interaction, which allows a deeper
analysis from the biological and physical point of view of the behavior of the driver during
driving. The use of these devices, however, presents as a challenge the design of less
invasive systems for the driver, with the aim of not distracting them or making them
uncomfortable during the driving process, together with the necessary medical restrictions
so as not to compromise the driver’s health. Rohit et al. [129] exploit the use of wearable
EEG sensors for the real-time detection of driver drowsiness. An SVM classifier is used to
detect drowsy states, by means of a spectral analysis of the EEG signals obtained from the
drivers. Additionally, the blink duration parameters are extracted and analyzed, which
were less favorable than the spectral analysis for the detection of drowsiness. Li et al. [130]
develop a system for the early detection of driver drowsiness using not only the signal
obtained from a wearable EEG sensor, but also by incorporating a gyroscope coupled to the
driver’s head to analyze the movement of the driver’s head. Different from previous works,
this study analyzes the feedback of the system when stimulating the driver by means of
transcranial direct current to improve their state of alertness in real time while driving.
In the same way, visual and vibro-tactile alerts are presented to the driver to combat the
different levels of drowsiness detected by the system. Guo et al. [131] present a study to
analyze the transition process of the driver’s intention, caused by the driver’s emotions.
Various visual, olfactory, and auditory stimuli are used to generate emotions in the driver
before driving tests and maintain them during the driving process. The results show a
high accuracy and reliability to estimate the driver’s intention through the evolution of
their emotions, and this system can be used to design personalized driving alerts in the
human–machine interfaces of modern vehicles.
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Finally, works have been grouped in which the driver plans their future route through
the selection of points of origin and destination, which may undergo modifications ac-
cording to the dynamic characteristics of the environment. Through the ADAS assisted by
navigation maps, the driver is an active agent that modifies the environment, and through
route planning, the state of the road environment is modeled. An assistance opportunity
could be designed based on specific sections present in the routes defined by the driver,
considering traffic between roads with different vehicle-flow capacities, entering round-
abouts, overpasses, joining or exiting motorways, lane changes, and turns at intersections,
among others. All these maneuvers involve risk, and through a cooperative knowledge of
the pre-established routes, this risk can be minimized at these critical points for road safety.
In these cases, an explicit notification prior to carrying out maneuvers at these points could
mean the difference between the occurrence or not of a road accident. Xu et al. [132] present
a study focused on improving intelligent transport management to combat the problem of
predicting road congestion levels in real time. To do this, they develop an analysis method
implemented in big data and cloud-computing platforms, which enriches the traditional
method based only on the use of historical driving data, while also incorporating the users’
travel plans contained in the vehicle navigation information, which is associated with route
planning. The system visualizes the data from this analysis by means of heat maps and
sends personalized notifications to drivers according to the particular situation of their
road environment.

Withanage et al. [133] develop a personal navigation system that simplifies the user’s
interpretation of the translation of voice commands and the visualization of the routes
in the navigator. During this process, the system initially translates the audio files into
text using automatic speech recognition (ASR), and then uses natural language processing
(NLP) techniques to retrieve previously undetected navigation information, finally display-
ing the generation of trajectories on the map using the development interface provided
by Google Maps. Keerthana et al. [134] designed a navigation assistant based on voice
instructions as a human–machine interface to guide the user to the requested destina-
tion through text-to-speech techniques to show the source and destination addresses on
the map, allowing the planning algorithms to obtain route information by recognizing
the user’s voice instructions. The addition of voice recognition techniques represents an
improvement to the navigation tools for an individual client who needs to navigate in
an obscure landscape. Zhou et al. [135] propose a system for planning tourist routes by
correlating data associated with tourist places with the precise data of personal interest
of the individual. To do this, it studies the behavior and personal needs of tourists and,
based on this, it proposes tourist places with views and characteristics that are related to
the interests previously analyzed. This method allows to obtain a more personalized route
planning and its viability is testified through the design and execution of experiments with
real data. Rathnayake et al. [136] present an interactive system for planning and evaluating
travel routes, which analyzes the distances and weather conditions of the moment to carry
out an evaluation of the trip previously established by the user. As a result of this analysis,
recommendations and improvements to the initial travel plan are established, guaranteeing
the optimization of the journey in terms of the distance and coverage of the different
destinations selected a priori by the user.

Here, we consider driving behavior by capturing and detecting from on-board sen-
sors of the bodily and physiological reactions that the driver manifests regarding stimuli
from the environment. The knowledge of the D–E interaction can be correlated with the
knowledge of the D–V interaction to be able to conclude about the ability or not of the
driver to respond to certain events. Through V2V communication, the C-ADAS knows that
the ego vehicle is approaching the vehicle in front of it (E–V interaction), simultaneously,
through on-board cameras, it perceives drowsiness in the driver (D–E interaction) and, in
turn, low pressure on the brake (D–V interaction). Consequently, the intervention of the
C-ADAS in driving is required to avoid the accident, given the inability of the driver to react
appropriately. Table 5 summarizes the main works consulted that address elements of the
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driver–environment interaction. The directionality in which this interaction is approached
is analyzed, as well as the way in which it is implemented.

Table 5. Works in which driver–environment interaction is addressed. In this work, we decided to
analyze two of the characteristics most addressed in the literature consulted on detection of the driver
state: (i) monitoring of driver fatigue or drowsiness (fatigue monitoring) and (ii) driver distraction.
Furthermore, we analyze the works in which the driver has an active role in the modification of the
environment’s state through the planning of their future route.

Articles Directionality Implementation of the Interaction Driver Status

E -> D D -> E Data Source Data Type Environment Detection of the
Driver State

Trajectory
Planning

[116,119] X Camera Real Real Fatigue monitoring

[129] X EEG and wearable sensors Real Simulation Fatigue monitoring

[130] X
Bluetooth sensor and smart
watch Real Real Fatigue monitoring

[126] X CAN bus Simulated Simulation Fatigue monitoring,
driver distraction

[121,123] X Smartphone camera Real Real Driver distraction

[122] X Smartphone and NIR led Real Real Fatigue monitoring,
driver distraction

[127] X Microphone and CAN bus Real Real Driver distraction

[125] X Smartphone sensors Real Real Driver distraction

[131] X
Visual, auditory, and
olfactory stimuli

Real and
simulated

Real and
simulation Driver distraction

[120] X Cameras Real Real Driver distraction

[132] X Map display device Real Real Route planning

[133] X Smartphone Real Real Route planning

[134] X Smartphone Real Real Tourism guidance

[135] X Map display device Real Real Tourism guidance

[136] X Non specified Real Real Tourism guidance

6.2. Current Challenges

The current challenges of this section are focused mainly on capturing the information
associated with the driver’s natural perception process and to minimize the degree of
distraction to the driver.

(i) Determining the main implicit and explicit characteristics that allow a capturing
of the information associated with the driver’s natural perception process about the road
environment. Actually, the most used explicit characteristics to describe the driver’s status
are the movement of the eyes, head, hands, and feet, which reflect the state of attention of
this and the body’s actions of reaction to the traffic’s dynamic. These are mostly monitored
through vision and infrared cameras installed inside the vehicle, which are susceptible, in
many cases, to adverse environmental conditions and poor visibility conditions.

(ii) How to make the sensing of these characteristics as least invasive as possible in
order to minimize the degree of distraction to the driver. On the other hand, the implicit
characteristics are related to drunkenness, drowsiness, and blood pressure or heart rate,
among others, which can be obtained through various types of biomedical sensors attached
to the driver. In this case, the installation of these devices can sometimes be inflexible in the
face of driving dynamics and even a possible element of distraction and discomfort for the
driver himself.

(iii) To address in greater detail the study of the influence that the driver exerts during
the driving process on the road environment, an aspect that is evidenced in Table 5 with
the reduced number of works that consider the directional interaction D -> E.
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(iv) The integrated and complementary approach for the natural context perception
module. In this process, the obvious physical limitations of the driver must be considered
to analyze aspects related to the calculation of distances and relative speeds between the
different vehicles, pedestrians, and objects on the road. It is necessary to establish a holistic
approach to develop a comprehensive surrounding environment model from the vision
through the sensors and the vision through the driver. This integration to analyze the
driving behaviors in the dynamics of the environment will allow a significant increase in
the prediction horizon and the precision in the prediction of the driver’s intention.

Studies related to the D–E interaction have addressed to a very low degree the correla-
tion between the interpretation of the environment by the driver and the notification to the
environment of this, which would undoubtedly modify the situation of the environment
itself. The proposed C-ADAS architecture could take advantage of situations of vehicular
congestion, unfavorable weather conditions, or dangerous situations of an effective bidi-
rectional interaction between the driver and the environment, which would moderate the
behavior of all drivers and consequently mitigate the risks in the environment. In addition
to this, there are also the challenges associated with the use of these wearable devices and
other on-board sensors and cameras and the way in which they are implemented, so as
not to generate distraction or discomfort in the driver, while being able to obtain diverse
information with a high predictive value in terms of inferring its future actions. The current
state of progress made in the interaction between the driver and the environment, as well
as the latent technological challenges, still limit the potential of the proposed C-ADAS.

7. System Evaluation

This section presents aspects related to the evaluation of C-ADAS in the field of
road safety, the main mechanisms used, and the evaluation environments, as well as the
main evaluation metrics used. We also include some of the challenges associated with the
limitations in the use of simulators and evaluation metrics employed in order to meet the
design requirements of a C-ADAS proposal, such as the one presented.

7.1. Evaluation Mechanisms

Road traffic represents a complex system made up of multiple independent and
interrelated elements. In terms of safety, economy, and fluidity, the evaluation of transport
can be associated with the performance of certain main factors, which can be grouped
into elements such as the driver, the vehicle, and the road environment. For the most
part, the interrelationship between these elements is highly variable and random in nature.
The behavior of transport, from the mathematical point of view, can be associated with a
stochastic process, where each of its elements can be represented as random variables. An
in-depth study of the complexity of this system requires tools that allow for the achieving
of a certain degree of reproducibility of the real characteristics present on the roads. To
this end, driving simulators have been developed, which are devices used to simulate the
driving of a vehicle in an environment with conditions similar to the real characteristics
of road traffic. These devices are an effective tool in the training and study of driver
behavior, but they also play a very important role in the design and improvement of the
HMI elements present in vehicles.

Among the many advantages of using these devices, we can mention the possibility of
studying the driver’s behavior in situations that may arise while driving and even emulate
this behavior in situations that are legally prohibited, such as when driving under the
influence of alcohol, or using a cell phone while driving. Another advantage of using
simulators corresponds to the reduction of the economic costs associated with carrying
out tests in real environments, allowing the generation of high volumes of data from very
diverse situations for the training of artificial intelligence models, which guarantees the
conditions of reproducibility necessary for statistical analysis of these situations. However,
the main limitation is that in these scenarios, drivers are not exposed to a fundamental
element: the real risks present on the roads. This can distort the analysis and modeling of
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the behavior of drivers in real situations. In the same way, other elements of distraction and
influence that are only present in real scenarios are not considered within the simulators,
which shape the behaviors of drivers and their reactions to risky situations.

Musa et al. [137] point out that vehicle manufacturers develop and test ADAS tech-
nologies following the V-model, which is conventionally used for automotive electronics.
The development steps consider the model-in-the-loop and software-in-the-loop tests,
while in the validation, the hardware-in-the-loop, vehicle-in-the-loop, and driving tests can
be performed. In addition, model predictive control (MPC)-based strategies represent inter-
esting solutions for ADAS evaluation. Vehicle-in-the-loop tests may be useful to evaluate
the effective responses of vehicles in safety-critical scenarios and to test it with real-V2X
systems, while the combination between hardware-in-the-loop and driving simulators is
useful for taking into account human error.

7.2. Performance Metrics

The overall performance of a C-ADAS system must consider not only the precision
in estimating the location of remote vehicles, but also the impact of the communication
schemes used and the performance of the communication network. The first step in
determining this performance is to define a metric that can directly indicate how the security
algorithm is performing quantitatively. Generally, for the evaluation of this type of situation,
classification metrics are used. Table 6 summarizes the most used metrics in the review of
the literature consulted, grouping them fundamentally in regression, classification, and
communication performance metrics. The accuracy of hazard detection algorithms to
classify situations as dangerous is one such metric [138]. The security algorithm generally
runs periodically and at each run-time instance it determines whether a threat exists. The
ratio between true positives plus true negatives within the total number of execution
instances of the algorithm is defined as the precision. Position-tracking error (PTE), which
describes the mean or 95th percentile of the error in tracking a remote vehicle’s position,
is used to ensure accuracy in position estimation, which is an independent metric of the
C-ADAS that is running. Warning detection is performed at the same time as position
tracking. The overall performance of C-ADAS depends on the accuracy of the alerts, which
depends on the accuracy of tracking the position of the remote vehicles, and this, in turn,
depends on the performance of the communications. To analyze this performance, metrics
such as the packet error rate (PER) are used, which is the number of packets received
incorrectly divided by the total number of packets received. Another metric that can
be used to model the robustness of the communications network is the packet loss ratio
(PLR), equal to the number of packets not received divided by the total number of packets
sent. In this sense, we analyze the evaluation metrics employed in the surveyed works,
grouping them into: (i) regression metrics, (ii) classification metrics, and (iii) communication
performance metrics. The fulfillment of this task requires the use of evaluation metrics that
consider all the elements of the system, focused on the requirements associated with RSA,
described mainly in terms of road safety. The robustness of the information is referred to as
guaranteeing the reliable delivery of the road safety information required by the RSA (low
rates of losses and transmission errors). The freshness of the information meets the delay
requirements to guarantee the usefulness of the same in terms of road safety.

Through the analysis shown in Table 6, we can observe as a flaw present in most of the
analyzed works, that the consideration, and even more so the evaluation of the behavior
of the communications, has not been sufficiently addressed. We assume that this is due
to the fact that currently there is a majority trend in the automotive industry to bet on
the use of different sensor technologies in vehicles, which are capable of self-supporting
the development of the ADAS implemented in these without considering the cooperative
operation of these systems between different vehicles and/or with the road infrastructure.
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Table 6. Classification of the consulted works according to the evaluation metrics used.

Articles Regression Classification Communication

[82] 90 percentile position error Packet loss rate

[55,57,58,63] RMSE position error

[68]
Total euclidean error sum, horizon
euclidean error, and modified
Hausdorff distance [139]

[69] Mean absolute error

[59] Collision risk probability

[60,70,104,108,116,121,123,131] Accuracy

[61] Accuracy, true positive rate, and
true negative rate

[62] Recall, accuracy, precision, and
F1-score

[83] Absolute position error Accuracy

[71] 95 percentile of velocity and
acceleration error Accuracy PER, transmission rate

[65] 95 percentile of absolute position error

[84] Spacing position error and velocity
tracking error

[76,77] 95 percent cutoff Euclidean position
error

Transmission rate, percentage of
packet losses

[78] 90 percentile position tracking error Transmission rate, PER

[79] 90 percentile position tracking error,
average model persistency Packet length, transmission rate

[81] Probability of safe breaking Maximum communication delay,
BER

[101] Accuracy, sensitivity, and
specificity

[102] Tracking position error

[106] Accuracy; premature, timely, and
late warning rate

[109] Accuracy, false positive rate, and
false negative rate

[103] Tracking position error Accuracy

[105] Driver’s behavior volatility Calinski–Harabasz, silhouette,
and Dunn’s index

[119] Average error of eye-openness Detection rate

[129] Precision, recall, and accuracy

[126] Abnormal driver behavior index

[122] Normalized mean squared error Accuracy, precision, recall, and
F1-score

[127] Accuracy, precision, and recall

[125] Precision, recall, and F1-score

[120] Mean and standard deviation of yaw
angle absolute error Detection rate, success rate

7.3. Current Challenges

An important aspect in the evaluation of the C-ADAS systems is the fact of considering
their operation and degree of customization as a continuous process. In this sense, systems
designed to operate in real time must be capable to adjust dynamically with the new real
data. Together with this, it is also important to consider the use of real databases obtained in
field measurement campaigns to provide the system with a priori knowledge, which can be
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complemented with the processing of data obtained in real time during the tests of system
operation. Currently, there is a lack of development of integral evaluation systems in order
to be able to evaluate our proposal. Note that, it is impossible for a current simulator to fully
replicate real-world driving scenarios, especially from a vehicle and traffic perspective, since
there are a set of events and random variables that are difficult to model, such as catastrophic,
climatic, environmental, and political–social–cultural events, however, these events have a
high incidence on vehicular traffic, the environment, and drivers. Moreover, several of the
interactions should be evaluated beforehand, such as the interaction of vehicles to each other
as a result of collaborative actions and the communication delays between them. Besides, we
consider that it is essential for the effective implementation of the proposed C-ADAS to run
as many tests as possible in controlled scenarios, but to make them as real as possible. In the
short or medium term, these tests must be executed in hybrid environments where there are
vehicles with sensing and communication capabilities and others with the absence of some
or none of these capabilities. The latter shows the current relevance of the driving assistance
systems, even though there is a growing development in the area of autonomous driving.

8. Conclusions

In this survey, we describe the main points related to the design of a C-ADAS from a
holistic and systemic perspective. It is reinforced that the premise of a C-ADAS must take
into consideration the three fundamental elements described, namely the driver, vehicle,
and environment, and must be designed on an abstraction layer higher than the interaction
plane of these elements, which supports the principal module of the C-ADAS system. The
main challenges that this industry must set itself must be focused on understanding the
current challenges present in each of the three areas of interaction described throughout
this work:

• From the point of view of vehicle–environment interaction, we can highlight the
standardized incorporation of sensing and communication devices in new vehicles,
the reduction in the cost of sensor technologies, and the development of the necessary
infrastructure to support the networks of vehicular communication;

• In relation to the vehicle–driver interaction, work should be done to achieve an increase
in the degree of customization of the ADAS system, considering the particularities
with which each driver acts on the vehicle’s driving elements, as well as the way in
which it reacts individually to the notices and alerts issued by the system;

• Work must also be done on the design of a flexible HMI interface that adapts continu-
ously to the behavior of the driver in various situations that arise on the road, which
is capable of switching between the driver assistance function or taking control of the
vehicle before a situation of danger that the driver is not able to resolve favorably;

• One of the areas where greater action is required is in relation to the driver–environment
interaction, and the detection of the driver’s intention remains today a latent challenge
in the design of ADAS systems. To do this, the study of the explicit and implicit
characteristics of the driver’s behavior must be promoted through the use of devices
attached to the interior of the vehicle, which must act in a minimally invasive way so
as not to distract or cause general annoyance to the driver, while being able to capture
the greatest amount of relevant information from them.

We consider that the necessary future work is the design of a C-ADAS oriented to
a higher level of cooperative systems, where cooperation goes beyond the exchange of
information provided by the use of communications. We refer to the fact of considering
the risk-estimation and decision-making process as a consensual act between different
road users. In this approach, the C-ADAS of a vehicle includes, as an additional input in
its decision making, the results of the decisions of C-ADAS implemented in neighboring
vehicles. The concept of the IoV, a cloud-based service, and the emerging technologies such
as the fifth generation of mobile communications can play a crucial role in the sensing and
exchange of the information associated with the three main interactions described in this
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work, namely driver–vehicle, driver–environment, and vehicle–environment, managing
the integration of many data sources, which are sometimes very different from each other.
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Abbreviations
The following abbreviations are used in this manuscript:

ABS Anti-block system
ACC Adaptive cruise control
ADAS Advanced driver assistance system
AEB Autonomous emergency breaking
BNCPD Bayesian non-negative canonical polyadic decomposition
BSW Blind-spot warning
C-ADAS Cooperative advanced driver assistance system
CAN Controller area network
CARLA CAR Learning to Act
CAV Connected and autonomous vehicle
CNN Convolutional neural network
DSRC Dedicated short-range communication
EAS Electronically assisted steering
ECU Electronic control unit
EEG Electroencephalogram
ESC Electronic stability control
ETSI European Telecommunication Standards Institute
FCW Forward collision warning
GMM Gaussian mixture model
GP Gaussian processes
GPS Global positioning system
GRU Gated recurrent unit
HAD Highly automated driving
H-M human–machine
HMI human–machine interface
HMM Hidden Markov model
IMU Inertial measurement unit
IoT Internet of Things
ITS Intelligent transport system
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LCA Lane change assistance
LDW Lane departure warning
LED Light-emission diode
LIDAR Light detection and ranging
LIN Local interconnect network
LKA Lane-keep assistance
LSTM Long–short-term memory
MPC Model predictive control
NGSIM Next generation simulation
NIR Near infrared
NTSC National transportation safety council
OBD On-board diagnostic
OGF Occupancy grid filtering
PER Packet error rate
PLR Packet loss rate
PTE Packet tracking error
RGB Red green blue
RMSE Root mean squared error
RNN Recurrent neural network
RSA Road safety applications
RSS Road safety system
SAE Society of Automotive Engineering
SDT Signal detection theory
SPMD Safety pilot model deployment
SVM Support vector machine
TTC Time to collision
V2V Vehicle-to-vehicle communication
V2X Vehicle-to-everything communication
VRU Vulnerable road users
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