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Abstract: We address the detection of material defects, which are inside a layered material structure
using compressive sensing-based multiple-input and multiple-output (MIMO) wireless radar. Here,
strong clutter due to the reflection of the layered structure’s surface often makes the detection of the
defects challenging. Thus, sophisticated signal separation methods are required for improved defect
detection. In many scenarios, the number of defects that we are interested in is limited, and the signal-
ing response of the layered structure can be modeled as a low-rank structure. Therefore, we propose
joint rank and sparsity minimization for defect detection. In particular, we propose a non-convex
approach based on the iteratively reweighted nuclear and `1-norm (a double-reweighted approach) to
obtain a higher accuracy compared to the conventional nuclear norm and `1-norm minimization. To
this end, an iterative algorithm is designed to estimate the low-rank and sparse contributions. Further,
we propose deep learning-based parameter tuning of the algorithm (i.e., algorithm unfolding) to
improve the accuracy and the speed of convergence of the algorithm. Our numerical results show
that the proposed approach outperforms the conventional approaches in terms of mean squared
errors of the recovered low-rank and sparse components and the speed of convergence.

Keywords: algorithm unfolding; clutter suppression; defects detection; compressive sensing;
reweighted norm

1. Introduction

The electromagnetic (EM) waves-based remote sensing has many potential appli-
cations such as behind the wall object identification [1], multi-layer target detection [2],
material characterization [3], defect detection [4–7], and many more. In EM and radio
frequency (RF) waves-based detection of objects/defects which are behind or inside a
layered structure, the EM waves that reflect from the object/defect are analyzed. Here,
one major challenge is the presence of strong unwanted reflections, i.e., clutter [1,8]. In
this context, the main source of the clutter is the reflection from the surface of the layered
material structure.

The state-of-the-art clutter suppression methods such as background subtraction (BS),
time-gating, and subspace projection (SP) [9] are not able to suppress the clutter in the
context of object/defect detection. This is due to the fact that in BS, it requires the reference
data of the scene, and this reference data is not available most of the time. Moreover, in
the SP, prior knowledge is required to determine the perfect threshold for clutter removal.
On the other hand, in time-gating, the time window in which clutter resides needs to
be determined for successful clutter removal. However, this time window cannot be
determined exactly. Clutter suppression becomes even more challenging if objects and
clutter are closely located. This occurs regularly in the detection of defects which are inside
a layered structure. Then, due to the small delay spread, the signaling responses of defects
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and clutter superimpose each other. In order to overcome these challenges, advanced signal
processing methods are required for clutter suppression [1,8,10].

In many scenarios, the responses of the material defects are weak and, thus, difficult
to detect. Even if there is no clutter, due to very low signal amplitude, it may be difficult to
detect material defects in the presence of noise. In this context, the weak signal detection in
the presence of noise has drawn attention in the defect detection research field. Therefore,
we briefly discuss the weak signal detection in the following. Stochastic resonance has
been widely used in weak signal detection [11–13]. In [11], to improve upon the weak
signal detection by stochastic resonance, the relationship between the current and the
previous value of the state variable of the system has been utilized. It is worth noticing
that weak signal detection plays an important role in other applications such as health
monitoring. Similar to defect detection, health monitoring aims to detect weak signals in
the presence of strong noise. In [14], a comparative study of well-known adaptive mode
decomposition approaches that are used for the aforementioned task is reviewed. Here, the
advantages, limitations, and the performance comparison of adaptive mode decomposition
approaches, namely empirical mode decomposition, Hilbert vibration decomposition,
and variational mode decomposition, have been given. Other than signal detection, the
extraction of features of the detected signal is important in many applications as these
features are used for classification and clustering. In this context, it is important to select
the most important features as the accuracy and speed of the classification depend on
the features that are used. The impact of the feature selection for electromyographic
signal decomposition is studied in [15]. Moreover, in this study, various feature extraction
methods are compared, and a guide to select the most important features that improve the
signal decomposition is provided [15]. As we discussed above, weak signal detection in
the presence of disturbances like noise or clutter is challenging, therefore, advanced signal
procession methods are required. Next, we discuss clutter suppression in more detail.

In many scenarios, the number of defects is limited. Therefore, the signaling response
of the defect is sparse in nature. By exploring this, compressive sensing (CS) [16] based
approaches have shown promising results in object/defect detection with clutter [1,8].
In addition, the CS-based approaches do not require a full measurement data set, which
results in fast data acquisition and less sensitivity to sensor failure, wireless interference,
and jamming. In CS-based approaches, it is considered that the clutter resides in a low-rank
subspace and the response of the objects is sparse [1,8].

To this end, we present a general data acquisition model where the received data
vector y ∈ CK is modeled as a combination of a low-rank matrix L ∈ CM×N and a sparse
matrix S ∈ CM×N with M ≤ N:

y = Alvec(L) + Asvec(S) + n, (1)

in which Al , As,∈ CK×MN with K � MN, n ∈ CK are compression operators/measurement
matrices and measurement noise, respectively. Here, the compression ratio is defined as
K/MN. Further, vec(·) denotes the vectorization operator, which converts a matrix to a
vector by stacking the columns of the matrix. Given the received data vector y, our aim is
to estimate the signals of interest, L and S, using a small number of linear measurements
by minimizing the rank and sparsity as{

L̂, Ŝ
}
= arg min

L, S
λl rank(L) + λs‖S‖0,

s.t. ‖y− Asvec(S)− Alvec(L)‖2
2 ≤ ε,

(2)

where λl , λs are regularization parameters and ε is a small positive constant (noise bound).
Here, ‖·‖0 is the `0-norm, i.e., sparsity (the number of non-zero components). Note that the
problem given in (2) is also known as robust principal component analysis (RPCA) [17].
The RPCA problem has different types as follows: (a) standard/classical RPCA in which
both Al and As in (1) are identity matrices [17], (b) the matrices Al = As = A and A is a
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selection operator which select a random subset of size K from MN entries [18], (c) both Al
and As are K×MN matrices which map the vector space CMN to the vector space CK [18].

The problem given in (2) is an NP-hard problem and, thus, difficult to solve. To this
end, convex relaxations of sparsity and rank in terms of `1-norm of a matrix (absolute sum
of elements) and nuclear norm of a matrix (sum of singular values) are utilized, respec-
tively [19–21]. However, enjoying a rigorous analysis, the convex relaxations of sparsity and
rank cause disadvantages in many applications. In addition to that, in many applications,
the important properties of the signal are preserved by the large coefficients/singular values
of the signal [22]. However, the `1-norm/nuclear norm minimization algorithms shrink all
the coefficients/singular values with the same threshold. Thus, to avoid this weakness, we
should shrink less the larger coefficients/singular values. To address aforementioned draw-
backs, non-convex approaches such as reweighted nuclear norm and reweighted `1-norm
minimization have been considered [22–25]. These non-convex approaches have shown
better performance over the convex relaxations by providing tighter characterizations of
rank and sparsity, yet their behavior and convergence have not been fully studied [26].

Generally, RPCA problems are numerically solved by means of iterative algorithms
based on the alternating direction method of multipliers (ADMM) [17,27,28] or accelerated
proximal gradient (APG) [29,30]. In iterative algorithms, the accuracy of the recovered
signal component and the convergence rate depends on the proper selection of param-
eters (e.g., regularization/thresholding/denoising parameters). Generally, parameters
are chosen by handcrafting, and it is a time-consuming task. In this context, machine
learning-based parameter tuning using training data has shown promising results in many
applications such as sparse vector recovery [31–33] and image processing [34]. For instance,
as shown in [31], the unfolded iterative soft-thresholding algorithm (LISTA) converges
twenty times faster than the conventional iterative soft-thresholding algorithm (ISTA).
This approach is known as algorithm unrolling/unfolding, and an overview can be found
in [35].

In this work, we formulate the detection of material defects as a RPCA problem.
This RPCA problem is solved based on the reweighted nuclear norm and reweighted
`1-norm minimization. However, most of the time, RPCA problems are solved by using
the convex relaxation or with the single reweighting, i.e., either reweighted `1-norm or
reweighted nuclear norm [22,30,36,37]. Next, our objective is to jointly estimate the low-
rank matrix and the sparse matrix from few compressive measurements. It is worth
noticing that most of the work in the literature focuses on the standard RPCA problem,
where Al and As are identity matrices [22,36]. To the best of our knowledge, the full doubly
reweighted (joint reweighted nuclear norm and reweighted `1-norm) approach has not yet
been studied comprehensively in the literature for the compressive case. Then, we propose
an iterative algorithm for (locally) minimizing the objective, i.e., reweighted nuclear norm
and reweighted `1-norm, which is based on the alternating direction method of multipliers
(ADMM) [38,39]. Further, we propose deep learning-based parameter tuning to improve
the accuracies of the recovered low-rank and sparse components and the convergence rate
of the ADMM-based iterative algorithm.

In addition to the EM-based defect detection, there are many applications where
the data generated by the application can be modeled as a combination of low-rank plus
sparse contributions. For instance, in video surveillance, the static background results in a
low-rank contribution, and moving objects result in a sparse contribution [40]. Further, in
human face recognition from a corrupted face image, the human face can be approximated
as a low-rank structure while self-shadowing and specularities are modeled as sparse
contributions [40,41]. Therefore, RPCA can be applied to the aforementioned applications
and other applications as long as the data/measurements are combinations of low-rank and
sparse contributions. It is worth noticing that our proposed full doubly reweighted (joint
reweighted nuclear norm and reweighted `1-norm) approach with deep learning-based
parameter tuning for RPCA is not limited to EM-based defect detection and can be applied
to other applications that are solved using RPCA.
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In the context of the algorithm unfolding for the RPCA, the convolutional robust
principal component analysis (CORONA) [30,37] are the closest studies to our work. There
are fundamental methodological differences between our work and [30,37]: (a) Both [30,37]
considered the standard convex relaxation (`1,2-norm and nuclear norm) to solve the RPCA
problem, while we propose the reweighted `1-norm and reweighted nuclear norm. (b) In
this work, the RPCA problem is solved by an iterative algorithm based on ADMM, while
the iterative algorithm in [30,37] is based on fast ISTA (FISTA). The motivation to propose
ADMM over ISTA/FISTA for RPCA is as follows. As shown in [17,27] for RPCA, the
ADMM-based approach is able to achieve the desired solution with a good recovery error
with few iterations for a wide range of applications compared to APG-based approaches
like ISTA/FISTA. Further, the performances of the APG-based approaches are heavily
dependent on the good continuation schemes [17]. This condition may not be satisfied for
a wide range of applications. (c) Different from [30,37], our focus is on defect detection
based on the stepped-frequency continuous wave (SFCW) radar, while [30,37] focus on
ultrasound imaging application. Moreover, experimental measurement data of [30,37] have
considered that Al = As = A in (1) is an identity matrix, while we consider both scenarios
where A is an identity matrix and it is a compression operator. Further, for the SFCW radar
application, we consider that Al 6= As. Further, we have studied the performance of our
approach with a generic real-valued Gaussian model for different compression ratios.

The CORONA focuses on ultrasound imaging applications where sparse matrix has
row-sparse structure. Thus, there is a strong relationship between measurement to mea-
surement, and there is a common sparsity structure. Therefore, `1,2-norm minimization
is more suitable than `1-norm minimization to estimate sparse matrix S. Further, the
CORONA is based on a convolutional deep neural network to learn spatial invariance
features of data, which is more suitable for ultrasound imaging applications than a dense
deep neural network (DNN). However, we assume that there is no strong relationship of a
data element to its neighboring elements, nor is there a specific sparsity structure. Thus, we
consider a dense DNN in this work. It is straightforward to modify our ADMM approach
with convolutional DNN and the `1,2-norm minimization. In CORONA [30], customized
complex-valued convolution layers and singular value decomposition operations are uti-
lized. In our work, we have implemented a dense DNN which supports complex-valued
data and singular value decomposition (SVD) operation. The contributions of this work
are summarized as follows:

1.1. Contribution

• We propose a generic approach based on the non-convex fully double-reweighted
approach, i.e., both reweighted `1-norm and reweighted nuclear norm simultaneously
to solve the RPCA problem. To this end, we propose an iterative algorithm based on
ADMM to estimate the low-rank and sparse components jointly.

• In contrast to standard/classical RPCA, we consider the compressive sensing data
acquisition model, which reflects more on the practical problem at hand. Next, to
improve the accuracy and convergence speed of the ADMM-based iterative algorithm,
we propose a deep neural network (DNN) to tune the parameters of the iterative
algorithm (i.e., algorithm unfolding/unrolling) from training data.

• We intensively evaluate our proposed approach for a generic Gaussian data acquisition
model with Al = As = A. In addition to that, the defect detection by SFCW radar from
compressive measurements with Al 6= As is considered. To compare our approach, we
consider the standard convex approach (i.e., nuclear norm and `1-norm minimization)
and the untrained ADMM-based iterative algorithm for different compression ratios.
In both the generic Gaussian data acquisition model and SFCW-based defect detection,
our numerical results show that the proposed approach outperforms the conventional
approaches in terms of mean squared errors of the recovered low-rank and sparse
components and the speed of convergence.
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• In the context of algorithm unrolling for RPCA, we compare our approach with the
approach given in [30] (CORONA). It turns out that our proposed approach shows
similar performance as CORONA for experimental ultrasound imaging data used
in [30], and our approach outperforms CORONA for generic Gaussian data. It is worth
noticing that there is a row-sparse nature of the experimental ultrasound data. That is
the reason CORONA uses `1,2-norm minimization to estimate sparse matrix S. Our
approach is generic, yet our approach is able to achieve similar results as CORONA by
learning. This shows the applicability of our approach to different types of use cases
and data (defect detection, ultrasound imaging, generic Gaussian data).

• We numerically analyze the robustness of our proposed approach for the generic
Gaussian data acquisition model. Here, we consider the deviation in the measurement
matrices (Al , As) and testing signal-to-noise ratio (SNR) uncertainty. It was observed
that the proposed approach is robust for a small deviation in the measurement matrices.
Further, it was observed that training with the SNR like 5 dB is favorable when SNR
of the testing data is unknown.

The remainder of the paper is organized as follows. We introduce the SFCW radar-
based defect detection and the low-rank plus sparse recovery with reweighting in Section 2.
In Section 3, we discuss the DNN-based low-rank plus sparse recovery algorithm unfolding.
In Section 4, we provide an evaluation of the proposed DNN-based low-rank plus sparse
recovery algorithm unfolding approaches and provide interesting insights. Section 5
concludes the paper.

1.2. Notation

In this paper, the following notation is used. A vector is denoted in boldface lower-case
letter, while the matrices are denoted in boldface upper-case. The `0-norm (the number
of nonzero components), `1-norm (absolute sum of elements) of a matrix/vector, and
nuclear norm of a matrix (sum of singular values) are denoted by ‖·‖0, ‖·‖1, and ‖·‖∗,
respectively. Further, the Frobenius norm of a matrix and `2-norm is given by ‖·‖F and
‖·‖2, respectively. The Hermitian and transpose of the matrix A are represented by AH

and AT , respectively. In addition, the Moore–Penrose pseudo inverse is denoted by (·)†.
A matrix of size M× N with all elements equal to zero and one are denoted by 0M,N and
1M,N , respectively. Moreover, a vector of size M with all elements equal to zero and one are
denoted by 0M and 1M, respectively. In addition, identity matrix is denoted by I. The main
variable list and abbreviations that are used in this manuscript are listed at the end of the
manuscript.

2. System Model

First, we briefly present the system model of the mono-static SFCW radar-based defect
detection. Next, we discuss the ADMM -based iterative algorithm for the low-rank plus
sparse recovery.

2.1. SFCW Radar Based Defect Detection

We consider an SFCW radar with M transceivers which are placed in parallel to the
single-layered material structure while maintaining an equal distance between transceivers,
as shown in Figure 1. In SFCW radar, each transceiver transmits a stepped-frequency signal
containing N frequencies which are equally spaced over the bandwidth of B Hz. To this
end, the received signal corresponding to all M transceivers and N frequencies Y ∈ CM×N

are given by
Y = Y l + Yd + Z. (3)

Note that Y consists of two main components, the reflection of the layered material
structure (Y l) and the reflection of the defects (Yd). Here, Z is the additive Gaussian noise
matrix. Next, we discuss in detail the modeling of the received signal of the defects by
using the propagation time delay. To this end, the scene shown in Figure 1 is virtually
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partitioned into a rectangular grid of size Q. Suppose that the round-travel time of the
signal from the m-th antenna location to the p-th defect and back is given by τm,p. Then,
the received signal of the defects yd

m,n in m-th transceiver corresponding to n-th frequency
band fn is given by [1]

yd
m,n =

P

∑
p=1

αp exp(−j2π fnτm,p). (4)

Here, j=
√
−1, αp ∈ C is the complex reflectivity coefficient of the p-th defect, and P is

the total number of defects. To this end, vec(Yd) ∈ CMN×1 is given by

vec(Yd) = Ds, (5)

where s ∈ CQ×1 contains all the αp values of the defects. Since there are P defects, the vec-
tor s only contains P non-zero entries. The matrix D is given by
[(D1)

T , . . . , (Dm)T , . . . , (DM)T ]T ∈ CMN×Q. Note that the (n, q)-th element of the ma-
trix Dm ∈ CN×Q is given by exp(−j2π fnτm,q), where τm,q is the propagation time delay
between the m-th antenna to the q-th grid location. We assume that the propagation time
delays τm,p of the defects are exactly matched with the propagation time delays of the
grid locations. If this condition does not satisfy, it is known as grid mismatch. The grid
mismatch degrades the performance of the sparse signal estimation [42]. There are several
approaches proposed to rectify this problem, e.g., Bayesian learning-based approach [43],
iterative dictionary updates [3], and many more. Similar to the received signal of the
defects yd

m,n, the received signal of the layered material structure yl
m,n in m-th transceiver

corresponding to n-th frequency band fn is given by [1]:

yl
m,n =

P̄+1

∑̄
p=1

αla p̄ exp(−j2π fnτm,p̄). (6)

Here, αl ∈ C is the complex reflectivity of the layered material structure. a p̄ and τm,p̄
are the propagation loss and the propagation delay of the p̄-th return of the layered material
structure. The number of internal reflections within the layered material is given by P̄.

Antenna Array (M Transceivers)

Defects

Layered structure

y axis
(Crossrange)

x axis (Downrange)

Grid (size Q)

Figure 1. Getting the measurements of a single-layered material structure using an SFCW radar with
M transceivers. The received signal consists of two main components, the reflection of the layered
material structure (Y l) and the reflection of the defects (Yd), where Y l is the main clutter source. Here,
defects are shown as red circles.

2.2. Compressed Sensing (CS) Approach

In the compressed sensing (CS) setup, only a subset of antennas/frequencies are
available or selected. Now, the reduced data vector ycs ∈ CK×1 of size K (� MN) is
given by

ycs = Φ(vec(Y)) = Φvec(Y l) + ΦDs + Φvec(Z), (7)

where Φ ∈ RK×MN is the selection matrix. The matrix Φ has a single non-zero element
of value one in each row to indicate the selected frequency of a particular antenna if that
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antenna is selected. Here, our main objective is to recover Y l and s from the reduced data
vector ycs using the low-rank plus sparse recovery approach as detailed below.

2.3. Low-Rank Plus Sparse Recovery Algorithm

From now on we consider the general data acquisition model given in (1) in Section 1,
i.e., y = Alvec(L) + Asvec(S) + n. Note that the SFCW radar model given in (7) is
mapped to the generic measurement model by considering As = ΦD, Al = Φ, Y l = L,
s = vec(S), and ycs = y, respectively. Our objective is to recover the low-rank matrix L
and the sparse matrix S from the compressive measurements y. Thus, the estimation of L
and S from y is done by minimizing rank and the sparsity (`0-norm). Note that rank and
`0-norm minimization problems are usually NP-hard. Thus, one may use instead convex
relaxations based on the nuclear norm of a matrix and `1-norm of a matrix as follows:{

L̂, Ŝ
}
= arg min

L, S
λl‖L‖∗ + λs‖S‖1,

s.t. ‖y− Asvec(S)− Alvec(L)‖2
2 ≤ ε.

(8)

The resulting convex problems, i.e., `1-norm and nuclear norm minimization, are
well studied in the literature, and there are several non-convex approaches to improve
over the standard convex relaxation. One well-known approach is iterative reweighting
of the `1-norm [23,32,44] and nuclear norm [22,45–47]. Alternating direction method of
multipliers (ADMM) is used to solve the problem given in (8). First, we formulate the
problem given in (8) based on ADMM approach, and then we introduce the non-convex
double-reweighted approach, i.e., both reweighted `1-norm and reweighted nuclear norm
simultaneously. Let the signal component value of S and L at the t-th iteration be denoted
as (·)t. Now, based on the ADMM, S and L are estimated by

Lt+1 = arg min
L

λl‖L‖? +
ρ

2

∥∥∥∥Asvec
(
St)+ Alvec(L)− y +

1
ρ

ut
∥∥∥∥2

2
, (9)

St+1 = arg min
S

λs‖S‖1 +
ρ

2

∥∥∥∥Asvec(S) + Alvec
(

Lt+1
)
− y +

1
ρ

ut
∥∥∥∥2

2
, (10)

ut+1 = ut + ρ
(

Asvec
(

St+1
)
+ Alvec

(
Lt+1

)
− y

)
. (11)

Here, u, ρ > 0 are auxiliary variables and a penalty factor. Let
σ(L) = [σ1, . . . σm, . . . , σM] ∈ RM be the singular values of L. The nuclear norm of L
is given by ‖L‖? = ‖σ(L)‖1. Now, we are going to introduce the weighted `1-norm and
weighted nuclear norm to the sub-problems given in (9) and (10) as follows:

Lt+1 = arg min
L

λl
∥∥wt

l � σ(L)
∥∥

1 +
ρ

2

∥∥∥∥Asvec
(
St)+ Alvec(L)− y +

1
ρ

ut
∥∥∥∥2

2
, (12)

St+1 = arg min
S

λs
∥∥wt

s � S
∥∥

1 +
ρ

2

∥∥∥∥Asvec(S) + Alvec
(

Lt+1
)
− y +

1
ρ

ut
∥∥∥∥2

2
. (13)

The operator� denotes element-wise multiplication. Here, wt
l ∈ RM and wt

s ∈ RMN

are non-negative weight vectors in t + 1-th iteration. To this end, wt
l and wt

s are calculated
based on the previous estimation of the L and S, i.e., Lt and St.

wt
l = gl

(
σ
(

Lt)) and wt
s = gs

(
|St|
)
. (14)

Here, gl(·) and gs(·) are decay functions, applied component-wise, which are used
to calculate the weights. There are several decay functions proposed in the literature,
and an overview of the nuclear norm is given in [47]. In this work, motivated by [32],
we consider element-wise (adaptive) soft-thresholding as the proximal operator of the
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weighted `1-norm. In addition, inspired by [48], element-wise (adaptive) singular value
soft-thresholding (i.e., element-wise soft-thresholding on the singular values of a matrix)
is used as a proximal operator of the weighted nuclear norm. Now, Lt+1 and St+1 are
given by

Lt+1 = SVTλt
LT

(
A∗l

(
y− Asvec

(
St)+ ut

ρ

))
, (15)

St+1 = STλt
ST

(
A∗s

(
y− Alvec

(
Lt+1

)
+

ut

ρ

))
, (16)

where SVT(·) and ST(·) are the element-wise singular value soft-thresholding and
element-wise soft-thresholding operators [32,48], respectively. Note that (·)∗ is a linear
operator which back projects the vector into the target matrix subspace. There are two
options for (·)∗: (a) Hermitian transpose (·)H , as done in [32], or (b) Moore–Penrose pseudo
inverse (·)†, as done in [1]. Next, we are going to discuss the element-wise (adaptive)
soft-thresholding and the element-wise (adaptive) singular value soft-thresholding.

2.4. Element-Wise Soft-Thresholding and Singular Value Soft-Thresholding

In (16), λt
ST = [λ1,1

ST , . . . , λm,n
ST , . . . , λM,N

ST ] contains the element-wise thresholds for S for
the t + 1-th iteration. These thresholds are derived based on the previous estimate S, i.e.,
St,

λm,n
ST = λS gs(|st

m,n|). (17)

Here, λS is a positive constant (soft-thresholding parameter), and st
m,n is the m-th row

and n-th column element of the t-th estimation of S, i.e., St. The same concept is also
applied to the singular value soft-thresholding which is used in (15), as discussed next. In
this work, we consider the same decay function for both sparsity and rank, i.e., gs(·) = gl(·).
In (15), λt

LT = [λ1
LT , . . . , λm

LT , . . . λM
LT ] contains the different thresholds calculated from the

singular values of the previous estimate of L as given below:

λm
LT = λL gl(σ

t
m). (18)

Here, σt
m is the m-th singular value of Lt, and λL is a positive constant (singular-

value-soft-thresholding parameter). For completeness, definitions of the element-wise
soft-thresholding and singular value soft-thresholding are given in Appendix A.1. Our
objective is to tune the parameters λS in (17) and λL in (18) by using a deep neural network,
as discussed next.

3. Unfolding ADMM-Based Low-Rank Plus Sparse Recovery Algorithm

In this section, we are going to discuss the ADMM algorithm unfolding using a
dense DNN. The iterative algorithm given in Algorithm 1 utilizes the ADMM steps given
in (15), (16), and (11), and previous estimates are used in the next iteration. Thus, this kind
of iterative algorithm can be considered as a recurrent neural network. The t-th iteration
of the iterative Algorithm 1 is modeled as the t-th layer of the deep neural network as
shown in Figure 2. Each matrix multiplication given in the ADMM steps (15), (16), and
(11) are implemented as linear layers without biases. Here, our main objective is to learn
the per iteration weights of the network and thresholding parameters λS and λL given
in (17) and (18) from training data. To this end, the t-th layer of the neural network is
represented by the following equations:

Lt+1 = SVTλt
LT

(
W t

1

(
y−W t

2vec
(
St)+ ut

ρt

))
, (19)

St+1 = STλt
ST

(
W t

3

(
y−W t

4vec
(

Lt+1
)
+

ut

ρt

))
, (20)
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ut+1 = ut + ρt
(

W t
2vec

(
St+1

)
+ W t

4vec
(

Lt+1
)
− y

)
. (21)

Here, W t
1, W t

2, W t
3, and W t

4 are the weights of the t-th layer as shown in Figure 2.
Their initial values are W t

1 = A∗l , W t
2 = As, W t

3 = A∗s , and W t
4 = Al to mimic the ADMM

Algorithm 1. Further, λt
LT and λt

ST are the thresholding vectors of the t-th layer as given
in (15) and (16). Note that λt

LT , and λt
ST depend on the previous estimates of the Lt, St

and two parameters (λS and λL). Here, we consider the weights W t
1, W t

2, W t
3, and W t

4 are
tied over all the layers, i.e., sharing weights. However, we do not consider thresholding
parameters (λS and λL) γ and ρ to be tied over all layers, i.e., each layer has its own
thresholding parameters. To this end, Θ =

{
λt

S, λt
L, γt, ρt, W1, W2, W3, W4

}
represents the

set of learning parameters. Here, λt
S and λt

L are the thresholding parameters of the t-th layer.

vec(St)

ut

y

W2 W1

1/ρt

SVTλt
LT

(
·
)

STλt
ST

(
·
)

W4

W3

W2

ρt

vec
(

Lt+1
)

vec
(
St+1

)

ut+1

λt
LT

λt
ST

+

+

+

+

−

−

−

y

Figure 2. Block diagram of the t-th layer of the DNN which mimics the low-rank plus sparse recovery
Algorithm 1. Weights of the linear layers (W1, W2, W3, W4) and other parameters (λt

T , λt
S, γt, ρt) are

learned from training data.

Algorithm 1: Low-rank plus sparse recovery algorithm.

Input: y, ε = 10−6, max iterations (J), Al , As.
Initialization: ρ = 10

/√
max(M, N), ρo = 1.001, t = 0, L0 = S0 = 0M,N , u0 = 0K.

while ‖Alvec(L) + Asvec(S)− y‖2
2 > ε or t < J do

Get all the elements of λt
LT by (18), then estimate L by,

Lt+1 = SVTλt
LT

(
A∗l

(
y− Asvec(St) +

1
ρ

ut
))

.

Get all the elements of λt
ST by (17), then estimate S by,

St+1 = STλt
ST

(
A∗s

(
y− Alvec(Lt+1) +

1
ρ

ut
))

.

ut+1 = ut+ρ
(

Asvec
(

St+1
)
+Alvec

(
Lt+1)

)
−y
)

.

ρ = min(ρo × ρ, ρm), and t = t + 1.

L̂← Lt+1 and Ŝ← St+1.

Output: L̂, Ŝ.

3.1. Training Phase

In the training phase, the DNN is trained in a supervised manner. Here, the DNN
learns the parameters given in Θ =

{
λt

S, λt
L, γt, ρt, W1, W2, W3, W4

}
. Suppose that the DNN

has T layers, then the outputs of the DNN in the training phase for the i-th sample are
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given by L̂i and Ŝi, respectively. Note that, in the training phase, the DNN minimizes the
normalized mean squared error

NMSE =
1
Ts

Ts

∑
i=1

(
1
2

∥∥L̂i − Li
∥∥2

F

‖Li‖2
F

+
1
2

∥∥Ŝi − Si
∥∥2

F

‖Si‖2
F

)
, (22)

where Si and Li are i-th ground-truth low-rank and sparse matrices, and Ts is the number
of training samples.

In this work, in the context of DNN-based parameter tuning, we consider three ver-
sions of the ADMM-based iterative algorithm to solve the RPCA problem as follows: (a) Pa-
rameter tuning with non-adaptive thresholding (i.e., gs(x) = gl(x) = 1). This approach is
named as ADMM-based trained RPCA with thresholding (TRPCA-T). For the parameter
tuning with adaptive thresholding, we consider two versions based on two decay functions
as described in Section 2.4. These two approaches are named as follows: (b) ADMM-based
trained RPCA with adaptive thresholding based on logarithm heuristic (TRPCA-AT(log)).
(c) ADMM-based trained RPCA with adaptive thresholding based on exponential heuristic
(TRPCA-AT(exp). Among above versions, in this work, we propose parameter tuning with
adaptive thresholding approaches TRPCA-AT(log) and TRPCA-AT(exp) to solve the RPCA
problem with the compressive sensing data acquisition model.

To have a comparison with our proposed approaches, we consider two approaches.
In the first approach, we consider the untrained ADMM approach to solve the convex
low-rank plus sparse recovery as given in Algorithm 1 with non-adaptive thresholding
(i.e., gs(x) = gl(x) = 1). This method is named as ADMM-based untrained RPCA with
thresholding (URPCA-T). As a second option, we consider the low-rank plus sparse
recovery problem given in (8). This method is named as low-rank plus sparse recovery
with convex relaxation (LRPSRC).

3.2. Computation Complexity

In this subsection, the computational complexity of the proposed DNN is briefly
discussed. Detail breakdown is given in Appendix A.2. The training complexity of the DNN
is the addition of the feed-forward and the back propagation complexities. For Ts, number
of training samples, Ep, number of epochs, and for M = N, the training computational
complexity for the DNN with T layers is given by O(TTsEp(N2K + N3)). The testing
computational complexity is the feed-forward propagation complexity of data through the
DNN. It is given by O(TNs(N2K + N3)); here Ns is the number of testing samples. The
O(·) is the Big O notation for asymptotic computational complexity analysis [49].

4. Results and Discussion

In this section numerical results are presented. First, the performance of deep learning-
based trained ADMM adaptive thresholding is evaluated with a generic real-valued Gaus-
sian model, and next, a complex-valued SFCW radar model given in Section 2.1 is used.

4.1. Generic Gaussian Model

In this subsection, our proposed approach is evaluated using the generic Gaussian
data. The order of this subsection is summarized as follows. First, the performance of the
proposed approach is compared with state-of-the-art approaches for 50% and 25% com-
pression ratios. Second, the Cramér–Rao bound (CRB) of unbiased estimation of low-rank
and sparse matrices is used to evaluate the proposed approach. Third, to investigate the
robustness of the proposed approach, two scenarios are used: (a) testing SNR uncertainty
and (b) deviation in measurement matrices Al and As between training and testing. Fourth,
the performance comparison between ADMM- and FISTA-based approaches for RPCA is
evaluated. Here, the approach given in [30] (CORONA) is used as unfolded FISTA-based
approach for RPCA.
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In the generic Gaussian model, the elements of Al =As =A ∈ RK×MN are generated
once from an i.i.d. Gaussian with zero mean and unit variance. In this work, training and
testing data are synthetically generated based on the system model given in (1). Therefore,
ground-truth low-rank and sparse matrices are available in the training phase. In case only
the received data vector y in (1) is available, in general, Algorithm 1 or LRPSRC given
in (8) can be used to generate low-rank and sparse matrices in the training phase. Let the
received signal, noise vector, and low-rank and sparse matrices for the i-th data sample as
given in (1) be denoted by yi ∈ RK, ni ∈ RK, Li ∈ RM×N , and Si ∈ RM×N , respectively. We
generate a low-rank matrix Li with rank r as Li = Gi HT

i with Gi ∈ RM×r and Hi ∈ RN×r.
Here, elements of Gi, Hi and non-zero entries of Si are generated independently from an
i.i.d. Gaussian with zero mean and unit variance. The fixed number of non-zero locations
of each Si are selected uniformly. We normalized Si and Li to have a unit Frobenius
norm (i.e., ‖Li‖2

F = ‖Si‖2
F = 1). For better readability, we introduce a parameter set as

P = {M, N, Ts, Ns, Lp, Lw, Ep, r, ‖Si‖0, SNRtr, SNRt}. Here, Ts, Ns, Ep, r, ‖Si‖0, SNRtr, and
SNRt are the number of training samples, number of testing samples, number of epochs,
rank of the low-rank matrix, number of non-zero elements of the sparse matrix, SNR of the
training data, and SNR of the testing data, respectively. The signal-to-noise ratio (SNR) of
the i-th data sample for given A is defined as SNR := ‖Avec(Li + Si)‖2

2
/
‖ni‖2

2. First, we
generate a Gaussian noise vector ni, then re-normalize ni to reach a given target SNR, and
we set the same SNR for all samples.

In the training stage, we set different learning rates denoted by Lw and Lp for the
weights of the linear layers (W1, W2, W3, W4) and other parameters (λt

S, λt
L, γt, ρt) given

in Θ. The main objective for setting different learning rates is to reduce over-fitting to
training data. Generally, many training samples are required to train a deep neural network.
However, due to the specific architecture of the iterative algorithm, we are able to train the
DNN with a small data set with the number of training samples Ts = 500. In the training
phase, the adaptive moment estimation (Adam) optimizer [50] is used to train the DNN.
Here, we initialize W t

1 = A†
l , W t

2 = As, W t
3 = A†

s , and W t
4 = Al to mimic the ADMM

Algorithm 1 and γ = 1. In the inference phase, to evaluate the performance of the DNN,
the normalized average root mean squared error is used. For the low-rank and sparse
matrix, it is given by

NRMSEL =
1

Ns

Ns

∑
i=1

(∥∥L̂i − Li
∥∥

F
‖Li‖F

)
, (23)

NRMSES =
1

Ns

Ns

∑
i=1

(∥∥Ŝi − Si
∥∥

F
‖Si‖F

)
. (24)

The outputs of a DNN with T layers for the i-th testing sample are given by Ŝi and L̂i,
respectively. The CRB given in (A4) is based on the combined recovery error of both low-
rank and sparse matrices. The combined average mean squared error and the combined
average normalized root mean squared error for both low-rank and sparse matrices are
given by

MSELS =
1

Ns

Ns

∑
i=1

(
‖xi − x̂i‖2

2

)
, (25)

NRMSELS =
1

Ns

Ns

∑
i=1

(
‖xi − x̂i‖2
‖xi‖2

)
, (26)

in which xi = [vec(Li)
T vec(Si)

T ]T and x̂i = [vec(L̂i)
T vec(Ŝi)

T ]T .
Both Algorithm 1 and LRPSRC given in (8) are implemented using Matlab [51], and

LRPSRC is solved using the CVX package [52]. Notice that, in the LRPSRC, λl and λs are
set to 1 and 1

/√
max(M, N), respectively, as suggested by [17]. Note that for Algorithm 1,

there is no specific rule to select the λl and λs and ρ, thus they are manually tuned based on
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data. When A is identity matrix, there is a specific rule to select λs as 1
/√

max(M, N) [17].
Note that, as a rule of thumb, thresholding parameters λS and λL given in (17) and (18)
are initialized as λS = λs/ρ and λL = λl/ρ, respectively [17]. The ADMM penalty factor ρ
has an important impact on the convergence of the Algorithm 1. Usually, as ρ increases,
the algorithm converges faster. However, ρ cannot be arbitrarily large, as it may overshoot
the algorithm. Furthermore, ρ should not be too big or too small. However, finding an
optimal value for ρ is an open problem, and it depends on the application/data. As a rule
of thumb, ρ can be set as 0.25MN/‖y‖1 [27]. In this work, we set ρ = 10

/√
max(M, N), as

we observed that the value suggested in [27] is not optimal for our data. Note that, unless
otherwise stated, for all the simulation with Gaussian data, aforementioned parameter
settings are used throughout this paper. The Pytorch package was used to implement the
DNN [53].

First, we analyzed the performance of the proposed approach for different compression
ratios (K/MN) with respect to the number of layers of the DNN. For this simulation, the
parameter set P is given by P = {30, 30, 500, 1200, 0.1, 0, 500, 2, 5, 20 dB, 20 dB}. Here, DNN
only learns λt

S, λt
L, and ρt instead of all the parameters given in Θ, i.e., Lw = 0. This is due

to the fact that the performance gain improvement by learning all the parameters given in
Θ is very small compared to learning only λt

S and λt
L. The average normalized RMSEs for

the different number of layers of the DNN are, for compression ratio (K/MN) 50% and 25%,
shown in Figures 3 and 4, respectively. Figures 3 and 4 show that the proposed DNN-based
thresholding (TRPCA-AT(log) and TRPCA-AT(exp)) outperforms the URPCA-T and the
LRPSRC. Further, it is observed that as the number of layers increases, the average NRMSE
decreases. For 50% compression ratio, the average NRMSE does not show a large variance
after ten layers. However, for 25%, this is not the case. This is due to the fact that, as
the compression increases, recovering of the low-rank and the sparse matrices becomes
more challenging.
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Figure 3. Average recovery error of low-rank (a) and sparsity (b) contributions for compression ratio
K/MN = 50% for ADMM-based trained RPCA with thresholding (TRPCA-T), proposed ADMM-
based trained RPCA with adaptive thresholding based on logarithm heuristic (TRPCA-AT(log)),
proposed ADMM-based trained RPCA with adaptive thresholding based on exponential heuristic
(TRPCA-AT(exp)), low-rank plus sparse recovery with convex relaxation (LRPSRC), and ADMM-
based untrained RPCA with thresholding (URPCA-T).
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Figure 4. Average recovery error of low-rank (a) and sparsity (b) contributions for compression ratio
K/MN = 25% for ADMM-based trained RPCA with thresholding (TRPCA-T), proposed ADMM-
based trained RPCA with adaptive thresholding based on logarithm heuristic (TRPCA-AT(log)),
proposed ADMM-based trained RPCA with adaptive thresholding based on exponential heuristic
(TRPCA-AT(exp)), low-rank plus sparse recovery with convex relaxation (LRPSRC), and ADMM-
based untrained RPCA with thresholding (URPCA-T).

Further, the TRPCA-AT outperforms the TRPCA-T. This performance improvement
is mainly due to the iterative reweighting of `1-norm and nuclear norm minimization. In
addition, the improvement over unweighted to iterative reweighting is more visible as the
compression increases (i.e., as the problem gets more challenging). As an example, for 25%
compression ratio, the average NRMSE improvement between the TRPCA-T with twenty
layers and TRPCA-AT(exp) with twenty layers for the low-rank and sparse components are
32.93% and 50.77%, respectively. However, for 50% compression ratio, this improvement
for the low-rank and sparse components are 9.31% and 26.21%, respectively. Further, we
observe slight performance gains as the decay function is changed from log-determinant
to exponential.

Next, we analyzed the convergence speed of the proposed TRPCA-AT(exp) and
TRPCA-AT(log) with URPCA-T. For 50% of compression ratio, TRPCA-AT with ten lay-
ers outperforms URPCA-T with 150 iterations. Therefore, in the testing phase (inference
phase), our proposed approaches (TRPCA-AT(exp) and TRPCA-AT(log)) are fifteen times
faster than the conventional untrained approach URPCA-T. Moreover, for 25% of com-
pression ratio, TRPCA-AT with twenty layers outperforms URPCA-T with 150 iterations.
Thus, our approach is 7.5 times faster than the untrained approach URPCA-T. It is worth
noticing that one layer of the DNN of our proposed approach is equivalent to one it-
eration of the conventional untrained approach URPCA-T. Therefore, the proposed ap-
proaches (TRPCA-AT(exp) and TRPCA-AT(log)) achieve lower NRMSE than the untrained
approach URPCA-T with a much lower number of iterations. In Table 1, NRMSEs of
recovered low-rank and sparse matrices with the corresponding number of iterations are
listed for comparison.

To further demonstrate the advantage of non-convex iterative reweighting of `1-
norm and nuclear norm minimization, histograms of the non-zero singular values of
the low-rank matrix and non-zero element of the sparse matrix are shown in Figure 5
for the DNN with 20 layers. Here, these histograms correspond to the simulation given
in Figure 3, i.e., 1200 testing samples and compression ratio K/MN = 50%. Based on
Figure 5, for the sparse matrix S, the proposed non-convex iterative reweighted approaches
(TRPCA-AT(exp) and TRPCA-AT(log)) closely follow the histogram of the true sparse
matrix. Moreover, for a given value range, the number of occurrences of the recovered
sparse matrix by the unweighted approach TRPCA-T is less than the true number of
occurrences of that value range as shown in Figure 5a. However, this is not the case for
the non-convex iterative reweighted approaches (TRPCA-AT(exp) and TRPCA-AT(log)).
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These results validate that the important features preserved by the large coefficients are well
recovered by the iterative reweighted approaches. This is the reason for the performance
improvement of the iterative reweighted approaches compared to the unweighted approach
TRPCA-T. In addition, recovered sparse matrices by the unweighted approach TRPCA-T
have many small values compared to the iterative reweighted approaches. This indicates
that the iterative reweighted approaches achieve more sparse solution than the unweighted
approach.

As seen in Figure 5, histograms of the non-zero singular values of the low-rank matrix
by the proposed non-convex iterative reweighted approaches are less spread out compared
to the histogram of the unweighted approach TRPCA-T. This also validates the afore-
mentioned argument that important features preserved by the large coefficients are well
recovered by the iterative reweighted approaches TRPCA-AT(exp) and TRPCA-AT(log).
Note that in the histograms, the number of occurrences of zero value is not shown. This
is due to the fact that the number of occurrences of zero value is much larger than occur-
rences of other values. In Figure 5, histograms corresponding to the compression ratio
K/MN = 50% are shown, and for the compression ratio K/MN = 25%, similar results
were observed.
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Figure 5. Histograms of the non-zero singular values of L (top) and non-zero elements of S (bottom)
for K/MN = 50%. (a) TRPCA-T, (b) TRPCA-AT(log) (proposed) and (c) TRPCA-AT(exp) (proposed).
Note that, In the figure, true histograms are shown in red color and the recovered histograms are
shown in black color. It is noticeable that the proposed non-convex iterative reweighted approaches
(TRPCA-AT(exp) and TRPCA-AT(log)) closely follow the histograms of the true non-zero elements
of S and non-zero singular values of L compared to the unweighted approach TRPCA-T. In addition,
the recovered S by the unweighted approach TRPCA-T has many small values compared to the
iterative reweighted approaches, i.e., the iterative reweighted approach achieves a more sparse
solution than the unweighted approach.
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Table 1. Comparison of convergence speeds for ADMM-based trained RPCA with thresholding
(TRPCA-T), proposed ADMM-based trained RPCA with adaptive thresholding based on logarithm
heuristic (TRPCA-AT(log)), proposed ADMM-based trained RPCA with adaptive thresholding based
on exponential heuristic (TRPCA-AT(exp)), and ADMM-based untrained RPCA with thresholding
(URPCA-T). The proposed approaches TRPCA-AT(log) and TRPCA-AT(exp) are 15 and 7.5 times
faster than URPCA-T for compression ratios 50% and 25%, respectively.

Method Compression Ratio
(K/MN) % Number of Iterations

NRMSE =
1

Ns
∑Ns

i=1

(∥∥Xi− X̂i
∥∥

F

/
‖Xi‖F

)
Low-Rank Matrix L Sparse Matrix S

TRPCA-AT(log) 50% 10 8.36× 10−2 2.78× 10−2

TRPCA-AT(exp) 50% 10 8.20× 10−2 2.66× 10−2

TRPCA-T 50% 10 8.99× 10−2 3.69× 10−2

URPCA-T 50% 150 9.14× 10−2 4.72× 10−2

TRPCA-AT(log) 25% 20 1.81× 10−1 9.85× 10−2

TRPCA-AT(exp) 25% 20 1.57× 10−1 9.16× 10−2

TRPCA-T 25% 20 2.35× 10−1 1.38× 10−1

URPCA-T 25% 150 2.33× 10−1 1.61× 10−1

4.1.1. Cramér–Rao Bound (CRB) Analysis

To further evaluate the performance of the proposed approach, the Cramér-Rao bound
(CRB) of unbiased estimation of low-rank and sparse matrices given in [18] (Equation (A4))
is used. For completeness, the CRB and recovery guarantees of the RPCA are given in
Appendix A.3. Note that in [18], the measurement matrices Al and As are assumed to be a
selection operator. Therefore, to have a fair comparison, first we consider that both Al and
As are identity matrices, i.e., standard RPCA problems. Now, the data acquisition model
(Equation (1)) is simplified as

Y = L + S + N, (27)

where Y and N are received signal matrix and noise matrix of size M× N, respectively. For
this simulation, parameter set P is given by {30, 30, 500, 1200, 1 × 10−2,
5× 10−4, 10, 2, 5, [−5 : 5 : 20] dB, [−5 : 5 : 20] dB}. In this simulation, we set the number of
layers of the DNN as 10.

Figure 6 shows the CRB and average MSE of the combined low-rank and sparse
matrices for 1200 testing samples for different SNR levels ranging from −5 dB to 20 dB in
steps of 5 dB. Here, we consider same SNR in both training and testing. As an example, if
the testing SNR (SNRt) is 20 dB, then training SNR (SNRtr) is 20 dB. As per Figure 6, it can
be seen that the non-convex approach TRPCA-AT has the best performance compared to
other approaches in higher SNR regime. Note that, here, the performance gap between the
non-convex approach TRPCA-AT and the non-convex approach TRPCA-T is small. This is
due to the fact that, as observed in Figures 3 and 4, when compression decreases, the gain
achieve by the non-convex approaches decreases.

Next, we compare the results shown in Figures 3 and 4 with the CRB given in [18]
(Equation (A4)). In [18], the measurement matrix A is assumed to be a selection operator
which selects a random subset of size K from MN entries. Since this is the closest matching
CRB to our model given in (1), we have considered this formulation as a benchmark.
Further, we consider that A is fixed over all testing samples. Figure 7 shows the CRB of the
combined low-rank and sparse matrices for compression ratios 50% and 25%. It can be seen
that the non-convex approach TRPCA-AT has the closest performance to the CRB. As the
compression increases, the estimation of low-rank and sparse matrices from compressive
measurements becomes more challenging. This can be seen by the increase of CRB as the
compression ratio changes from 50% to 25%.
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Figure 6. Average combined recovery error of low-rank and sparse matrices as given in (25) and
Cramér-Rao bounds as given in (A4) for compression ratio K/MN = 100% for ADMM-based
trained RPCA with thresholding (TRPCA-T), proposed ADMM-based trained RPCA with adaptive
thresholding based on logarithm heuristic (TRPCA-AT(log)), proposed ADMM-based trained RPCA
with adaptive thresholding based on exponential heuristic (TRPCA-AT(exp)), low-rank plus sparse
recovery with convex relaxation (LRPSRC), and ADMM-based untrained RPCA with thresholding
(URPCA-T).
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Figure 7. Average combined recovery error of low-rank and sparse matrices as given in (25) and
Cramér-Rao bounds as given in (A4) for compression ratio K/MN = 50% (a) and K/MN = 25%
(b) for ADMM-based trained RPCA with thresholding (TRPCA-T), proposed ADMM-based trained
RPCA with adaptive thresholding based on logarithm heuristic (TRPCA-AT(log)), proposed ADMM-
based trained RPCA with adaptive thresholding based on exponential heuristic (TRPCA-AT(exp)),
low-rank plus sparse recovery with convex relaxation (LRPSRC), and ADMM-based untrained RPCA
with thresholding (URPCA-T).

4.1.2. Robustness of the Proposed Approach

We considered two scenarios to analyze the robustness of the proposed trained ADMM
adaptive thresholding approaches TRPCA-AT and TRPCA-T. First, motivated by [54], we
analyzed the performance with respect to the test SNR uncertainty, i.e., the SNRs of training
phase and testing phase are different. Second, we analyzed the effect of deviations in the
measurement matrices Al and As in (1) between training and testing.

To this end, to evaluate the effect of testing SNR uncertainty, training SNR (SNRtr) is
changed from −10 dB to 20 dB with a step size of 5 dB. In addition, testing SNR (SNRt)
is changed from −5 dB to 20 dB with a step size of 5 dB. For this simulation, P is given
by {30, 30, 500, 1200, 1× 10−1, 5× 10−4, 20, 2, 5, [−10 : 5 : 20] dB, [−5 : 5 : 20] dB}. The
cumulative average NRMSELS (where NRMSELS is defined in (26)) over all testing SNRs
for each training SNR is shown in Figure 8. Here, we set K/MN = 50% and number of
layers of the DNN as 10. We trained the DNN for 20 epochs using the Adam. Based on
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the results shown in Figure 8, we observed that, for all three approaches (TRPCA-AT(log),
TRPCA-AT(exp), TRPCA-T), the cumulative average NRMSELS decreases as training SNR
increases to some extent, and then, again, the cumulative average increases as training
SNR further increases. Hence, these results show the importance of knowing the testing
SNR, and as a simple rule, training SNR should be same as testing SNR to achieve the best
performance. On the other hand, training with an SNR ≈ 5 dB is favorable in the presence
of uncertainty about testing SNR.
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Figure 8. Average combined recovery error of low-rank and sparse matrices for compression ratio
K/MN = 50% for training at a single SNR and testing with different SNRs for (a) ADMM-based
trained RPCA with thresholding (TRPCA-T), (b) the proposed ADMM-based trained RPCA with
adaptive thresholding based on logarithm heuristic (TRPCA-AT(log)), and (c) the proposed ADMM-
based trained RPCA with adaptive thresholding based on exponential heuristic (TRPCA-AT(exp)).
In the presence of uncertainty about testing SNR, then training with an SNR ≈ 5 dB is favorable.

Next, we evaluate the performance of the proposed approaches for different measure-
ment matrices Al and As in (1) during training and testing. For simplicity, we assume that
Al = As = A ∈ RK×MN . In the training phase, y = Avec(L + S) + n while in the testing
phase y = Āvec(L + S) + n. Here, Ā = A + E ∈ RK×MN is the measurement matrix with
error and E ∈ RK×MN . To quantify the effect of E, SNRA := ‖vec(A)‖2

2
/
‖vec(E)‖2

2 is used
as a metric. We evaluate the performance of the proposed approaches while changing
SNRA from 0 dB to 20 dB in steps of 5 dB. For this simulation, parameter set P is given
by {30, 30, 500, 1200, 1× 10−1, 1× 10−6, 50, 2, 5, 20 dB, SNRt}. Note that testing SNR varies
as SNRA changes, therefore, it is shown as SNRt in parameter set P. Figure 9 shows the
average NRMSEs of the combined low-rank and sparse matrices K/MN = 50% and 25%.
In Figure 9, solid lines represent the NRMSEs for the model with measurement matrix error
(Ā = A + E); we also include a prefix “-E” in the legend of the figure to indicate it. In
Figure 9, the dotted line shows the NRMSEs without error in the measurement matrix.
Based on the results shown in Figure 9, the proposed approaches are robust for smaller
deviations like SNRA = 20 and 15 dB. However, for higher deviations SNRA ≤ 10 dB,
the proposed approaches are not robust enough and additional measures are required
to rectify the matrix deviation. As a countermeasure, we assume that the model error
distribution is available in training as well. Here, both i-th sample of training and testing
data are generated by yi = Āvec(Li + Si) + ni. For training, Ā = A + Etr,i, and for testing,
Ā = A + Et,i. Here, for each training and testing sample, Etr,i and Et,i are generated inde-
pendently from an i.i.d. Gaussian with zero mean and unit variance. For comparison, we
include results with training without error distribution, i.e., training data are generated as
yi = Avec(Li + Si) + ni while keeping testing data the same, i.e., yi = Āvec(Li + Si) + ni.
Note that this result is shown as solid lines in Figure 10. As shown in Figure 10, when
model error distribution is included in training (dotted line in Figure 10), the NRMSEs
show improvement over training without distribution of E when SNRA is in the range
of 0 dB to 15 dB. Moreover, as SNRA increases, i.e., deviation decreases, training without
distribution of error E provides similar results as training with distribution of E. As a
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conclusion, when there is high deviation in the measurement matrix, a robust training
approach, i.e., training with distribution of E, provides an advantage.
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Figure 9. Average combined recovery error of low-rank and sparse matrices for compression ratio
K/MN = 50% (a) and K/MN = 25% (b) with different model error levels for ADMM-based
trained RPCA with thresholding (TRPCA-T), proposed ADMM-based trained RPCA with adaptive
thresholding based on logarithm heuristic (TRPCA-AT(log)), and proposed ADMM-based trained
RPCA with adaptive thresholding based on exponential heuristic (TRPCA-AT(exp)). Here, model
error means that the train and testing samples are generated with different measurement matrices.
For training, y = Avec(L + S) + n; for testing, y = Āvec(L + S) + n with Ā = A + E. The results
with model error are represented by solid lines, whereas dotted lines indicates the results without
model error (E = 0K,MN).
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Figure 10. Average combined recovery error of low-rank and sparse matrices for compression ratio
K/MN = 25% with different model error levels for ADMM-based trained RPCA with thresholding
(TRPCA-T), proposed ADMM-based trained RPCA with adaptive thresholding based on logarithm
heuristic (TRPCA-AT(log)), and proposed ADMM-based trained RPCA with adaptive thresholding
based on exponential heuristic (TRPCA-AT(exp)). Here, model error means that the training and
testing samples are generated with different measurement matrices. For training, y = Avec(L + S) +
n; for testing, y = Āvec(L + S) + n with Ā = A + E. The results with model error are represented
by solid lines, whereas dotted lines indicates the results when model error distribution is included
in training.

4.1.3. ADMM or FISTA to Solve RPCA Problem

In this work, we consider an iterative algorithm based on the ADMM [39] to solve the
RPCA problem. Alternatively, other methods such as ISTA and FISTA can be used [30,37].
In the following, we first compare the performance of the untrained ADMM-based
Algorithm 1 with gs(x)= gl(x)=1 (URPCA-T) and the untrained algorithm based on FISTA
as given in [30,37]. Further, we consider three different combinations for the rank of L and
sparsity of S with ‖S‖0 = MNps. The aforementioned three combinations are given by
rank(L) = {1, 2, 2} and ps = {0.1, 0.1, 0.2}. Here, we consider 250 test samples in each com-
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bination. It turns out that for all three combinations, the ADMM-based approach achieves
lower NRMSEs with fewer numbers of iterations compared to the FISTA, as shown in
Figure 11. In this simulation, we consider standard RPCA where Al , As in (1) are equal to
the identity matrix. We chose this scenario because it is the simplest non-compression sce-
nario. Note that, for FISTA, soft-thresholding and singular value thresholding parameters
are set as 0.05 and 0.1max(σ(Y)), in which σ(Y) are the singular values of Y.
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Figure 11. Average NRMSE of low-rank and sparsity contributions for K/MN = 100% for
ADMM- and FISTA-based approaches. (a) rank(L) = 1 and ps = 0.1, (b) rank(L) = 2 and
ps = 0.1 and (c) rank(L) = 2 and ps = 0.2. The ADMM-based approach achieves a lower NRMSE
with a lower number of iterations compared to the FISTA-based approach.

4.1.4. Performance Evaluation for Experimental Ultrasound Imaging Data

To further assess the performance of ADMM- and FISTA-based approaches in the
context of algorithm unfolding, we consider the FISTA-based unfolded approach in [30]
(CORONA). For fair comparison, we consider two types of data: (a) experimental ul-
trasound imaging data used in [30] (available at https://www.wisdom.weizmann.ac.il/
yonina accessed on 20 December 2021) and (b) complex-valued generic Gaussian data.
Note that for the generic data, we set M = 1024 and N = 20 to match the same di-
mension as ultrasound data in [30]. Moreover, real and complex valued entries of both
low-rank and sparse matrices are generated independently from an i.i.d. Gaussian with
zero mean and unit variance. Further, the fixed number of non-zero locations of each Si are
selected uniformly. The rank of each Li is set as 2, and the number of non-zero elements
of each Si is set as 0.01MN. We normalized Si and Li to have a unit Frobenius norm (i.e.,
‖Li‖2

F = ‖Si‖2
F = 1). Further, SNR during training and testing is 20 dB. To have a fair

comparison, we use the same number of layers as in CORONA. Both CORONA and our
approaches are trained using the Adam with 20 epochs. For CORONA, the same settings
as in [30] were used. We utilized the CORONA implementation from the author’s website
(https://www.wisdom.weizmann.ac.il/yonina accessed on 20 December 2021). Note that
experimental ultrasound data in [30] follows the standard RPCA problem: Al , As in (1)
are equal to identity matrix. Therefore, for comparison, our ADMM-based approach is
implemented without linear layers, i.e, all W t

1, W t
2, W t

3, and W t
4 are identity matrices, i.e.,

aforementioned linear layers are omitted from the DNN. Thus, our proposed approach only
learns the thresholding parameters λt

S, λt
L, γt, and ρt with a learning rate of Lp = 5× 10−4.

Note that in this setting, our proposed approach is only required to learn the four parame-
ters per layer, i.e., 40 parameters for a DNN with ten layers. However, in CORONA, for
a single layer, six convolutional weights matrices and two thresholding parameters have
to be learned. Based on convolutional filter sizes given in [30], CORONA with ten layers
is required to learn 6× {3× (5× 5) + 7× (3× 3)}+ 20 = 848 parameters compared to
40 parameters in our approach.

First, we compared our proposed approach with CORONA for experimental ultra-
sound data, and corresponding results are shown in Table 2. The experimental ultrasound
data in [30] consists of 2400 training samples and 800 testing samples. For performance

https://www.wisdom.weizmann.ac.il/yonina
https://www.wisdom.weizmann.ac.il/yonina
https://www.wisdom.weizmann.ac.il/yonina
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comparison, similar to [30], average MSE is utilized as a metric for ultrasound data. Note
that for experimental ultrasound data, CORONA shows slightly better performance in
recovering S, compared to the proposed approaches. For the low-rank matrix L recovery,
our proposed approaches and CORONA show similar performance levels. For the sparse
matrix S recovery, our proposed approaches show slightly worse performances compared
to the CORONA. This is to be expected since, in CORONA, `1,2-norm minimization is
used for S, which reflects the row-sparse nature of the experimental ultrasound data. Our
approach is formulated for plain unstructured sparsity in the matrix, and it is, therefore,
not that optimized for sparsity patterns in experimental ultrasound data. Note that it is
also straightforward to modify our ADMM approaches for soft-thresholding related to the
`1,2-norm.

Next, we compared CORONA and our approach for the generic Gaussian data. For
the Gaussian data set, we consider 2400 training samples and 1600 testing samples. Here,
our proposed approach outperforms the CORONA, as shown in Table 3. This is due to the
fact that the data acquisition model given in (27) follows an unstructured sparsity model
and does not include convolution operation. Thus, since the generic Gaussian data does
not follow the sparsity model as the ultrasound data in [30], the performance of CORONA
is degraded compared to our approach. As discussed above, the ultrasound data follows
the standard RPCA where there is no compression, i.e., Al , As in (1) are equal to identity
matrix. In order to evaluate our approach on compressed data, we manually applied the
compression on ultrasound data as discussed next.

Table 2. Comparison with CORONA [30] for experimental ultrasound imaging data from [30].
CORONA shows slightly better performance compared to the proposed approaches TRPCA-AT(log)
and TRPCA-AT(exp) because CORONA is optimized for the structure of the ultrasound data. How-
ever, our approaches are not optimized for the structure of the experimental ultrasound data.

Method
Average Recovery Error =

1
MNNs

∑Ns
i=1
(∥∥Xi− X̂i

∥∥
F
)

Low-Rank Matrix L Sparse Matrix S

CORONA [30] 3.23× 10−4 3.431× 10−4

TRPCA-AT(log) 3.26× 10−4 6.641× 10−4

TRPCA-AT(exp) 3.37× 10−4 7.101× 10−4

TRPCA-T 9.95× 10−4 7.35× 10−4

Table 3. Comparison with CORONA [30] for generic Gaussian data. Our proposed approach
TRPCA-AT(log) outperforms the CORONA. This is due to the fact that the CORONA is optimized
for structured sparsity of ultrasound data, which is not present in generic Gaussian data.

Method
Average Recovery Error NRMSE =

1
Ns

∑Ns
i=1

(∥∥Xi− X̂i
∥∥

F

/
‖Xi‖F

)
Low-Rank Matrix L Sparse Matrix S

CORONA [30] 4.45× 10−1 4.08× 10−1

TRPCA-AT(log) 6.56× 10−2 3.29× 10−2

The received signal matrix of ultrasound data Y ∈ CM×N is given by Y = L + S + N,
where L, S, and N are low-rank, sparse, and noise matrices of size M× N, respectively. In
ultrasound data, a single measurement consists of twenty frames of size 32× 32; this results
in M = 20 and N = 1024. Lets denote the frame size as m× n. In order to evaluate our
approach to compressed data, we manually applied the compression on ultrasound data by
using a Gaussian matrix A which compresses a 32× 32 frame to a 16× 16 frame, i.e., 50%
compression. In more detail, the matrix A is a linear operator which maps the vector space
Cmn to vector space Ck. We set mn = 1024 and k = 512. Now, after the compression, the
received signal for a single measurement is given by Ycs ∈ CM×k, i.e., 20× 512. Here, we
consider 1800 training samples and 400 testing samples. We train our proposed approach
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using the Adam optimizer with 20 epochs with learning rate of 1× 10−4. The average
normalized RMSEs for the different numbers of layers of the DNN for k/mn = 50%
is shown in Figure 12. As shown in Figure 12, our proposed approach TRPCA-AT(log)
outperforms the untrained approach URPCA-T in terms of NRMSE as well as the number of
iterations. The proposed approach TRPCA-AT(log) is able to achieve much lower NRMSE
by only using 15 layers compared to the 200 iterations in the untrained approach URPCA-T.
Therefore, our approach is 13 times faster than the untrained approach.
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Figure 12. Average NRMSE of low-rank (a) and sparsity (b) contributions for experimental ultra-
sounds data with 50% compression ratio for the proposed ADMM-based trained RPCA with adaptive
thresholding based on logarithm heuristic (TRPCA-AT(log)) and ADMM-based untrained RPCA
with thresholding (URPCA-T).

4.2. SFCW Radar Model

In this subsection, the performance evaluation of the ADMM-based trained RPCA with
adaptive thresholding is now performed for the SFCW radar model given in Section 2.1.
In the simulations, we set the carrier frequency fc of 300 GHz and bandwidth B as 5 GHz.
Here, we consider two types of simulations: (a) small scale and (b) large scale. For the small
scale, we consider N = M = 30, i.e., 30 antennas and 30 frequency bands. Both height and
length of the layered structure are 0.5 m. In the simulations, we consider six defects, and
the scene is partitioned into a 16× 16 grid with equal grid size (i.e., Q = 256). The grid size
is selected according to the Rayleigh resolution of the radar. For the large scale, we consider
N = M = 100, i.e., 100 antennas and 100 frequency bands. In addition to that, we have
increase both height and length of the layered structure to 2.5 m. This results in an increase
of the grid size, and the grid size for this scenario is 83× 83, (i.e., Q = 6889). Moreover,
here we consider nine defects in the radar scene.. The inter-antenna spacing is chosen as
half of the wavelength of fc. We consider a single-layered structure, and the distance to the
front surface of the layered structure is 1.0 m. Denote the reflection of the layered material
structure, noise matrix, and sparse vector for the i-th data sample, given in (7), by Y l

i , Zi
and si ∀ i, respectively. In the simulations, the signal-to-noise ratio of the i-th data sample

for given Φ and D is defined as SNR:=
∥∥∥Φvec(Y l

i )+ΦDsi

∥∥∥2

2

/
‖Φvec(Zi)‖2

2=20 dB. Here,
we set same SNR for all samples. Note that the SFCW data consists of complex numbers,
thus, in this work, we implemented the DNN which supports complex numbers by using
the PyTorch version 1.8.1 [53]. Here, we initialize W t

1 = AH
l , W t

2 = As, W t
3 = AH

s , and
W t

4 = Al to mimic the ADMM Algorithm 1.
Interestingly, in contrast to the generic Gaussian model, only learning the λt

S and λt
L

does not achieve satisfactory average NRMSEs of the low-rank and sparse components.
Therefore, we enable learning all parameters given in Θ. Further, we notice that the
stochastic gradient descent (SGD) [55] performs better than the Adam in learning all the
parameters given in Θ together. Therefore, we consider a three-stage training process
for better learning. A detailed breakdown of this three-stage training process is given in
Appendix A.4.

For defect detection by SFCW radar, we considered a data set of 600 samples. Here,
500 data samples are used for training and validation, and 100 data samples are used for
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testing. We used Matlab [51] to generate the SFCW data based on (7). First, we present
the results related to the small-scale simulations. Next, results related to the large-scale
simulations are presented.

4.2.1. SFCW Small-Scale Simulations

Here, we present the results for M = N = 30 configuration, i.e., 30 antenna elements
and 30 frequency bands. The average normalized RMSEs for the different numbers of layers
of the DNN for K/MN = 20% is shown in Figure 13. The figure shows that the proposed
TRPCA-AT outperforms both URPCA-T and the LRPSRC given in (8). Further, in terms of
the average RMSE, the TRPCA-AT and TRPCA-T with five layers outperform URPCA-T
with 200 iterations. Therefore, as we compare the number of layers of the TRPCA-AT to
the number of iterations of the URPCA-T, the TRPCA-AT achieves a 1 : 40 improvement
for the SFCW radar data, i.e., our proposed approach (TRPCA-AT) is forty times faster
than the conventional untrained approach (URPCA-T). Moreover, based on the results
shown in Figure 13, the TRPCA-AT shows better performance compared to the TRPCA-T.
In addition, note that with 20% compression ratio, the estimation of Y l and s from ycs
in (7) is more challenging. Therefore, the average RMSE of the LRPSRC is higher than 0.5.
However, the DNN-based TRPCA-AT is able to achieve average RMSE in the range of 0.1
for both sparse and low-rank components. Since As and Al are unequal in the SFCW radar
model, we did not consider the CRB benchmark given in (A4).

Next, to further illustrate defect detection, images of the recovered defects are formed,
as shown in Figure 14 for a single data sample. As a benchmark, we consider the state-
of-the-art subspace projection (SP) [9] method with the full data set, K/MN = 100%.
Further, for SP, it is assumed that the number of defects is known. Figure 14a shows the
actual defect locations. The recovered locations of the defects for the ADMM-based trained
RPCA TRPCA-AT(log), TRPCA-AT(exp), TRPCA-T, LRPSRC, ADMM-based untrained
RPCA with thresholding URPCA-T, and the SP are shown in Figure 14b–g, respectively.
It can be seen that the proposed TRPCA-AT approaches are able to identify all six defects.
Further, the proposed TRPCA-AT approaches are even able to estimate amplitudes of the
recovered defects (vector s) closer to the actual defects. Therefore, the proposed TRPCA-AT
approaches outperform state-of-the-art SP even with 20% of data.
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Figure 13. Average NRMSE of low-rank (a) and sparsity (b) contributions of SFCW Radar model
for K/MN = 20% with M = N = 30 for ADMM-based trained RPCA with thresholding (TRPCA-T),
proposed ADMM-based trained RPCA with adaptive thresholding based on logarithm heuristic
(TRPCA-AT(log)), proposed ADMM-based trained RPCA with adaptive thresholding based on expo-
nential heuristic (TRPCA-AT(exp)), low-rank plus sparse recovery with convex relaxation (LRPSRC),
and ADMM-based untrained RPCA with thresholding (URPCA-T).
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Figure 14. Object recovery for a single case with compression ratio K/MN = 20% with M = N = 30.
(a) Ground-truth, (b) TRPCA-AT(log) (proposed), (c) TRPCA-AT(exp) (proposed), (d) TRPCA-
T, (e) LRPSRC, (f) URPCA-T, and (g) SP with 100% of data. The proposed TRPCA-AT approaches are
able to identify all six objects successfully by only utilizing 20% of data compared to the unweighted
approach TRPCA-T.

4.2.2. SFCW Large-Scale Simulations

Here, we present the results for M = N = 100 configuration, i.e., 100 antenna
elements and 100 frequency bands. In small-scale simulations, our proposed approaches
TRPCA-AT(log) and TRPCA-AT(exp) achieve similar results, therefore, we chose one of
them for the large-scale simulations to compare with the untrained approach URPCA-T.

The average normalized RMSEs for the different numbers of layers of the DNN for
K/MN = 20% are shown in Figure 15. The figure shows that the proposed TRPCA-AT(log)
outperforms the untrained approach URPCA-T. Further, in terms of the average RMSE, the
proposed TRPCA-AT(log) with five layers outperforms the untrained approach URPCA-T
with 200 iterations. Therefore, our proposed approach (TRPCA-AT) is forty times faster
than the conventional untrained approach (URPCA-T). In addition, note that with 20%
compression ratio, the estimations of low-rank and sparse matrices are more challenging.
However, the DNN-based TRPCA-AT(log) is able to achieve a lower average NRMSE by
parameter tuning compared to the conventional untrained approach (URPCA-T) with the
fewer numbers of iterations.
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Figure 15. Average NRMSE of low-rank (a) and sparsity (b) contributions of SFCW Radar model
for K/MN = 20% with M = N = 100 for the proposed ADMM-based trained RPCA with adaptive
thresholding based on logarithm heuristic (TRPCA-AT(log)) and ADMM-based untrained RPCA
with thresholding (URPCA-T).

The recovered sparse matrix S contains all the complex reflection coefficients (αp) of
the defects. Therefore, to further illustrate the defect detectability, we show the total power
of the recovered sparse matrix. Here, we consider two metrics: (a) total power of the true
locations of the defects and (b) total power of the false detection. Here, the power of the
false detection is the power of elements in the sparse matrix S that does not belong to the
true locations of the defects. In addition, the total power of the true locations of the defects
is the power of elements in the sparse matrix S that belong to the true locations of the
defects. These results are shown in Table 4, and it is observed that the proposed approach
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TRPCA-AT(log) is able to achieve much higher total power of the true locations of the
defects than the untrained approach (URPCA-T). Further, it is observed that our approach
achieves lower power in false detection, too.

Table 4. Total power of the true defects and false detection for 100 simulations with M = N = 100.
Here, the total true power of the defects for all simulations is 100.

Method
Total Power = ∑Ns

i=1‖Si‖2
F

True Locations of the Defects False Detection

URPCA-T 27.8565 2.0247
TRPCA-AT(log) 44.727 1.3537

Next, to illustrate defect detection, images of the recovered defects are formed for two
scenarios as shown in Figure 16. In Figure 16, (Aa) and (Ba) show the actual locations of
the defects. The recovered locations of the defects by the proposed ADMM-based trained
RPCA TRPCA-AT(log), ADMM-based untrained RPCA with thresholding URPCA-T, and
the classical subspace projection (SP) are shown in Figure 16b–d, respectively. It can be
seen that the proposed TRPCA-AT(log) approach is able to identify all defects while only
utilizing 20% of data. Further, the proposed TRPCA-AT(log) approach has fewer false
detections than the untrained RPCA with thresholding (URPCA-T) approach for these two
scenarios. It is worth noticing that the conventional SP approach utilizes 100% of data, and
for the SP, it is required to know the number of the defects prior.
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(B) Object recovery in single case-scenario 2.

Figure 16. Object recovery for a single case with compression ratio K/MN = 20% with
M = N = 100. (a) Ground-truth, (b) TRPCA-AT(log) (proposed), (c) URPCA-T and (d) SP with
100% of data. The proposed TRPCA-AT(log) approach is able to identify all nine objects success-
fully by only utilizing 20% of data. True locations of the objects are shown inside ellipses and false
detections are shown in squares.

5. Conclusions

This paper presents a deep learning-based parameter tuning for the low-rank plus
sparse recovery (RPCA). To this end, an iterative algorithm was developed based on ADMM
to estimate the low-rank and sparse contributions with iterative reweighted nuclear and
`1-norm minimization. Next, to improve the accuracies of the recovered low-rank and
sparse components and the speed of convergence of the algorithm, we proposed a DNN to
tune the parameters of the iterative algorithm, i.e., algorithm unrolling/unfolding. Our
proposed approach was evaluated for two types of data. As a standard benchmark, a
generic Gaussian data acquisition model was used, and for practical application, the defect
detection by SFCW radar from compressive measurements was considered. For both cases,
our proposed approach performed substantially better compared to the untrained iterative
algorithms in terms of low-rank and sparse recovery and convergence speed. In particular,
for compression ratios (K/MN) 50% and 25%, our proposed approach was 15 and 7.5 times
faster than the untrained algorithm. In addition to that, we have compared our proposed
approach with the state-of-the-art RPCA unfolding approach (CORONA). Our approach
achieveed a similar performance level as CORONA for experimental ultrasound imaging
data, and our approach outperformed CORONA for generic Gaussian data. Moreover, we
analyzed the robustness of our approach for testing signal-to-noise ratio (SNR) uncertainty
and the deviation in the measurement matrices (Al , As). It was observed that the knowl-
edge of testing SNR is an important factor, and for unknown testing SNR, it is better to train
the DNN with SNR like 5 dB. Furthermore, the robust training approach (training with
the distribution of deviation) decreased the impact of the deviation in the measurement
matrices on the performance. In this work, we considered a model-based unfolding ap-
proach where unfolded DNN strictly follows the structure of the optimization steps/rules.
As possible future work, it would be interesting to study a model-free unfolding approach
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which is able to learn new optimization steps/rules from data. Moreover, validation of
our approach for experimental/real measurements based on defect detection is subject to
future work.
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Abbreviations
The following abbreviations and variables are used in this manuscript:

Abbreviations
ADMM Alternating direction method of multipliers
APG Accelerated proximal gradient
BS Background subtraction
CORONA Convolutional robust principal component analysis
CRB Cramér–Rao bound
CS Compressive sensing
DNN Deep neural network
EM Electromagnetic
FISTA Fast iterative soft-thresholding algorithm
GHz Gigahertz
ISTA Iterative soft-thresholding algorithm
LISTA Learned iterative soft-thresholding algorithm
LRPSRC Low-rank plus sparse recovery with convex relaxation
MSE Mean squared error
NRMSE Normalized average root mean squared error
MIMO Multiple-input and multiple-output
RADAR Radio detection and ranging
RF Radio frequency
RPCA Robust principal component analysis
SFCW Stepped-frequency continuous wave
SGD Stochastic gradient descent
SNR Signal-to-noise ratio
SP Subspace projection
SVD Singular value decomposition

TRPCA-AT(exp)
Trained RPCA with adaptive thresholding based on exponential
heuristic

TRPCA-AT(log) Trained RPCA with adaptive thresholding based on logarithm heuristic
TRPCA-T Trained RPCA with thresholding
URPCA-T Untrained RPCA with thresholding
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Variable
γ ∈ R A positive constant used in decay functions
u ∈ CK ADMM auxiliary variables
ρ ∈ R ADMM penalty factor
B ∈ R Bandwidth of the SFCW radar
fc ∈ R Carrier frequency of the SFCW radar
αp ∈ C Complex reflectivity coefficient of the p-th defect
αl ∈ C Complex reflectivity of the layered material structure
Al , As, A ∈ CK×MN Compression operators/measurement matrices
K/MN ∈ R Compression ratio
Lp ∈ R Learning rate of the parameters (λt

L, γt, ρt) of the DNN

Lw ∈ R Learning rate of the weights (W1, W2, W3, W4) of the linear layers of the
DNN

L ∈ CM×N Low-rank matrix
fn ∈ R n−th frequency band
P ∈ R Number of defects
Ep ∈ R Number of epochs
N ∈ R Number of frequency bands in SFCW radar system
Ns ∈ R Number of testing samples
Ts ∈ R Number of training samples
M ∈ R Number of transceivers in SFCW radar system
Θ Parameters set that DNN learns (W1, W2, W3, W4,λt

S, λt
L, γt, ρt)

r ∈ R Rank of the low-rank matrix L

Y ∈ CM×N Received signal matrix corresponding to all M transceivers and N
frequencies

y, ycs ∈ CK Reduced received data vector

Yd ∈ CM×N Reflection of the defects corresponding to all M transceivers and N
frequencies

Y l ∈ CM×N Reflection of the layered material structure corresponding to all M
transceivers and N frequencies

λl , λs ∈ R Regularization parameters
Φ ∈ RK×MN Selection matrix
λL ∈ R Singular value soft-thresholding parameter
σ(L) ∈ RM Singular values of L
Q ∈ R Size of the rectangular grid of the radar scene
λS ∈ R Soft-thresholding parameter
S ∈ CM×N Sparse matrix
D ∈ CMN×Q The grid matrix of the radar scene
s ∈ CQ×1 Vector that contains all the αp values of the defects

λt
LT ∈ RM Vector that contains all the singular-value threshold values for L in

the t + 1-th iteration

λt
ST ∈ RMN Vector that contains all the soft-threshold values for S in

the t + 1-th iteration
W t

1 , W t
2 , W t

3 , W t
4 Weights of the t-th layer of the DNN

Appendix A

Appendix A.1. Element-Wise Soft-Thresholding and Singular Value Soft-Thresholding

The element-wise or adaptive soft-thresholding operation is applied to each element
of the vector or matrix individually. Here, the main difference of the element-wise or
adaptive soft-thresholding compared to the non-adaptive soft-thresholding is that in the
element-wise or adaptive soft-thresholding, threshold value is different from one element
to another element. However, in non-adaptive or standard soft-thresholding, the same
threshold value is applied to all elements. Let us consider a matrix X ∈ CM×N . To this end,
the value after the element-wise or adaptive soft-thresholding Xst is given by

Xst = STλST (X). (A1)
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Here, λST = [λ1,1
ST , . . . , λm,n

ST , . . . , λM,N
ST ] contains the element-wise thresholds for X.

Now, the m-th row and n-th column element of Xst (xst
m,n) is given by

xst
m,n = STλm,n

ST
(xm,n) = exp(jθ) max

(
|xm,n| − λm,n

ST , 0
)
. (A2)

The m-th row and n-th column element of X is xm,n. Further, θ is the phase angle of
the xm,n in radians.

In the element-wise or adaptive singular value soft-thresholding, the same concept
is applied to the singular values of the matrix as discussed next. The singular value
decomposition (SVD) of X ∈ CM×N with M ≤ N is given as X = UΛVH . Here, U ∈
CM×M and V ∈ CN×N are the matrices of the left and right singular vectors. Λ ∈ RM×N

is a rectangular diagonal matrix with σ(X) = [σ1, . . . σm, . . . , σM] on the diagonal and
zeros elsewhere. Next, the value after the element-wise or adaptive singular value soft-
thresholding Xsvt is given by

Xsvt = SVTλLT (X) = Udiag
(
STλLT (σ(X))

)
VH . (A3)

Note that diag(·) takes a vector and returns the corresponding diagonal matrix. Here,
λLT = [λ1

LT , . . . , λm
LT , . . . λM

LT ] contains the different thresholds for each singular value of the
X. Next, we briefly discuss the relationship between the adaptive and non-adaptive/non-
uniform soft-thresholding. Interestingly, as given in [48], the non-uniform soft-thresholding
of a vector a ∈ RM is equivalent to the uniform soft-thresholding (same threshold for
all elements) of another vector b ∈ RM. Here, b = sign(a)� (|a|+ w01M −w). w ∈
RM is the non-negative weight vector, and equivalent uniform soft-thresholding value
is given by w0 = max(w). A similar statement is valid for element-wise singular value
soft-thresholding, and more detail can be found in [48]. Next, we discuss the computation
complexity of the proposed approach.

Appendix A.2. Computation Complexity

The computational complexity of the proposed DNN is discussed in this subsec-
tion. Note that the t-th iteration of Algorithm 1 is shown in Figure 2. Here, a single
layer of the DNN consists of four dense linear layers, and their weight matrices are given
by W t

1, W t
3 ∈ CK×MN and W t

2, W t
4 ∈ CMN×K. In the feed-forward propagation, data

propagation is given in Equations (19)–(21). Now, for Ts, number of training samples
and Ep, number of epochs, the computational complexity of the feed-forward propa-
gation is O(6TsEp(MNK) +O(TsEp(M2N + MN2 + N3)) +O(TsEp(M2N + N2M)) ≈
O(TsEp(MNK + M2N + N2M + N3)). When M = N, the computational complexity of
the feed-forward propagation is given by O(TsEp(N2K + N3)). Here, O(·) is the Big O
notation for asymptotic computational complexity analysis [49].

For the back propagation, the computational complexity of the linear layers is given by
O(6TsEp(MNK), and for the back propagation through SVD, it is given byO(TsEp(M2N +
MN2 + N3)) +O(TsEp(M2N + N2M)). Hence, the training complexity of the DNN is the
addition of the feed-forward and the back propagation complexities. Now, for M = N, the
training complexity of the DNN is given byO(2TsEp(N2K + N3)) ≈ O(TsEp(N2K + N3)).
This computational complexity corresponds to the single iteration of the Algorithm 1. Now,
for T iterations/layers, the training computational complexity is given by O(TTsEp(N2K +
N3)). The testing computational complexity is the feed-forward propagation complexity of
data through the DNN. It is given by O(TNs(N2K + N3)); here Ns is the number of testing
samples. Next, for completeness, we discuss the recovery guarantees of the standard RPCA
problem in the following.

Appendix A.3. Cramér–Rao Bound (CRB) and Recovery Guarantees of RPCA

We briefly discuss recovery guarantees of the standard RPCA problem
(Al = As = I in (1)) in this subsection. We consider the above scenario because it is well
studied in the literature and well understood, i.e., when the separation of the low-rank ma-
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trix L and sparse matrix S is possible. Based on [17], informally, if L is sufficiently low-rank
but not sparse and S is sufficiently sparse but not low-rank, the matrices L and S can be
estimated exactly with a high probability of success. Here, to solve the RPCA problem,
convex relaxations of sparsity and rank in terms of `1-norm of a matrix and nuclear norm
of a matrix as given in (8) is utilized with λl = 1 and λs = 1

/√
max(M, N) [17]. Let K̄ =

max(N, M), K = min(N, M) and positive constants co, ps and pr. We consider the following
theorem from [17].

Theorem A1. It is possible to recover L and S from noiseless observation L + S with a probability
at least 1− coK̄−10 when rank(L) ≤ prK(µ)−1(log(K̄))−2 and ‖S‖0 ≤ psK̄K.

Note that K̄K = MN. Moreover, µ is an incoherence condition parameter of the
low-rank matrix L [17]. As discussed in [56–58], when µ is small, the singular value vector
of the matrix L is spread out.

Further results are known in terms of the Cramér–Rao bound (CRB) for the RPCA
given in [18]. Here, similar to [17], the RPCA problem is solved using the `1-norm and
nuclear norm minimization. Let the received data vector y in (1) follows y ∼ N (Avec(L +
S), σ2 IK). Here, the matrix A = Al = As is assumed to be a selection operator which
selects a uniformly random subset of size K from MN entries. Now, the CRB of unbiased
estimation for L and S is bounded by [18]. Since this is the closest matching CRB to our
model given in (1), we have considered this formulation as a benchmark:{

s0 − N0 +
1
3

KN0

K− s0
+

2
3

MNN0

K− s0

}
σ2 ≤ CRB(L, S) ≤

{
s0 − N0 +

3KN0

K− s0
+

2MNN0

K− s0

}
σ2, (A4)

with a probability higher than 1 − 10 exp(−c1/ε2
1), where ‖vec(L̂ − L)‖2

2 + ‖vec(Ŝ −
S)‖2

2 ≤ ε1, and estimated low-rank and sparse matrices are given by L̂ and Ŝ, respectively.
Here, N0 = (M + N)r− r2 with rank(L) ≤ r and ‖S‖0 ≤ s0. As discussed in [18], when
M = N and A is an identity matrix, r and s0 are given by rank(L) ≤ r = pr N(log(N))−5

and ‖S‖0 ≤ s0 = psN2, respectively.

Appendix A.4. Three-Stage Training Process for SFCW Data

Here, we describe the three-stage training process that was used to train the DNN for
SFCW data. In the first stage, we only learn the λt

S and λt
L for 50 epochs using Adam. In

the second stage, we learn all parameters given in Θ using SGD optimizer for 50 epochs.
Finally, we only learn the λt

S and λt
L for 15 epochs using Adam. In addition, we slightly

adjusted the learning rate as the number of layers of the DNN increased. For the first stage,
we employed learning rates 1× 10−1, 5× 10−2, and 5× 10−3 for the DNN with 5/10, 15/20,
and 25/30 layers, respectively. Here, the only exception is the TRPCA-T. For the TRPCA-T,
we considered a learning rate of 5× 10−2 for the DNN with 25/30 layers as well. This is
due to the fact that the non-adaptive thresholding based TRPCA-T is less sensitive to the
change of parameters compared to the adaptive thresholding based TRPCA-AT. For the
second and third stages, we employed learning rates 1× 10−3, 2.5× 10−4 for all layers
combinations of the DNN, respectively. The main reason to consider the third training
stage is that it achieves higher performance gains with respect to continuation of the second
training stage for another 15 epochs. In addition, note that there is a specific reason to use
the first stage without directly using the second stage. This is due to the imbalance of As
and Al of the SFCW model compared to the generic Gaussian model. Note that As = ΦD
and Al = Φ where Φ is the selection matrix. This matrix has a single non-zero element of
value 1 in each row to indicate the selected frequency of a particular antenna if that antenna
is selected. However, As = ΦD is a combination of the selection matrix and D, where D is
generated based on the time delays of the grid (as described in Section 2.1). Therefore, As
has a very specific structure compared to Al and is more difficult to learn. This results in
an imbalance in the training phase if we directly start with the stage two, since the NRMSE
of the low-rank component tends to be much smaller compared to the sparse component.
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