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Abstract: Resilient cities incorporate a social, ecological, and technological systems perspective
through their trees, both in urban and peri-urban forests and linear street trees, and help promote and
understand the concept of ecosystem resilience. Urban tree inventories usually involve the collection
of field data on the location, genus, species, crown shape and volume, diameter, height, and health
status of these trees. In this work, we have developed a multi-stage methodology to update urban tree
inventories in a fully automatic way, and we have applied it in the city of Pamplona (Spain). We have
compared and combined two of the most common data sources for updating urban tree inventories:
Airborne Laser Scanning (ALS) point clouds combined with aerial orthophotographs, and street-level
imagery from Google Street View (GSV). Depending on the data source, different methodologies
were used to identify the trees. In the first stage, the use of individual tree detection techniques in
ALS point clouds was compared with the detection of objects (trees) on street level images using
computer vision (CV) techniques. In both cases, a high success rate or recall (number of true positive
with respect to all detectable trees) was obtained, where between 85.07% and 86.42% of the trees
were well-identified, although many false positives (FPs) or trees that did not exist or that had been
confused with other objects were always identified. In order to reduce these errors or FPs, a second
stage was designed, where FP debugging was performed through two methodologies: (a) based
on the automatic checking of all possible trees with street level images, and (b) through a machine
learning binary classification model trained with spectral data from orthophotographs. After this
second stage, the recall decreased to about 75% (between 71.43 and 78.18 depending on the procedure
used) but most of the false positives were eliminated. The results obtained with both data sources
were robust and accurate. We can conclude that the results obtained with the different methodologies
are very similar, where the main difference resides in the access to the starting information. While the
use of street-level images only allows for the detection of trees growing in trafficable streets and is a
source of information that is usually paid for, the use of ALS and aerial orthophotographs allows for
the location of trees anywhere in the city, including public and private parks and gardens, and in
many countries, these data are freely available.

Keywords: street level imagery; deep learning; LiDAR; urban trees

1. Introduction

In September 2015, the United Nations adopted the 2030 Agenda for Sustainable
Development, which includes 17 Sustainable Development Goals (SDGs) that are achieved
through 169 targets. In this 2030 Agenda, environmental sustainability is a key component
that depends on the sustainable management of the earth’s natural resources. On the
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other hand, it is unclear how the SDG targets relate to urban ecosystems. Maes et al. [1]
define what changes in urban ecosystem management are needed and describe how urban
ecosystem management can reinforce or undermine action to achieve the 169 Agenda
2030 targets. Resilient cities incorporate a social, ecological, and technological systems
perspective through their trees, both in urban and peri-urban forests and linear street trees,
and help promote and understand the concept of ecosystem resilience [2,3].

In the public landscape of cities, trees have been used in two main areas. First,
they have been used in spaces for public activities, such as recreational areas, pedestrian
walkways, and plazas or parks. Secondly, trees have been used as extensions of the
private garden, and more often as street trees in front of houses [4]. Street trees are
public resources that complement urban forests and provide numerous benefits to people.
However, the value of these urban trees to wildlife is not well understood, which is a gap in
our knowledge of urban ecosystem conservation [5,6]. One of the most important and most
studied effects of urban trees is their ability to sequester carbon and reduce house cooling
energy consumption, due to the shade generated by these trees [7,8]. In short, urban trees
play an essential role in making our cities more sustainable, livable, and resilient to climate
change. To maximize the benefits of urban trees, city managers need to know where these
trees are located and how the different species are distributed in our cities [9].

Urban tree inventories usually involve the collection of field data on the location,
genus, species, crown shape and volume, diameter, height, and health status of these
trees [10]. Nielsen et al. [11] identify four main ways of acquiring and updating urban tree
inventories: satellite-based methods, aircraft-supported methods, digital field inventory
through photography or laser scanning, and finally, field surveys. On the other hand, the
two most current trends for large-area, low-cost urban tree inventories are [12]: first, the
use of Convolutional Neural Networks (CNN) for abstract feature and object extraction in
imagery [13], and second, the use of increasingly available, low-cost, and detailed street-
level imagery [14], such as Google Street View (GSV) imagery. Moreover, Light Detection
and Ranging (LiDAR), aerial photography, and multispectral and hyperspectral imaging
have become widely used for earth observation and large-scale analysis of forest ecosystems.
Such new remote sensing technologies, in conjunction with novel computer vision (CV)
algorithms, allow for the semi-automated identification of urban trees and the automatic
identification of their main metrics, such as crown width or total height [15–20], which
can result in being more time-efficient and less costly when compared to field inventory.
These methods have already made it possible to analyze forests at different temporal and
geographic scales, progressing from the stand level to the plot level and down to the
individual tree level [21–23]. In that sense, both active and passive remote sensing are
robust alternatives for estimating forestry variables and can also be used for urban trees.
Optical data is useful for providing spectral information on species and tree condition [16],
while active remote sensing technologies, such as Airborne Laser Scanning (ALS), provide
very accurate estimation of individual tree height [24], allowing precise canopy height
modeling (CHM) and, therefore, individual tree detection (ITD).

Originally, ITD was performed by using photogrammetric point clouds, whereas ALS
is now the main technology for the 3D mapping of trees [25]. Hence, numerous methods
for individual tree detection developed for optical imagery have been expanded to LiDAR
data. Algorithms for ITD can be divided into those using CHM raster data and those using
LiDAR point cloud directly [26]. Most of these algorithms for individual tree detection are
based on tree canopies representing the highest part of the landscape and therefore find
local maxima (LM) of height within the data at individual tree canopies [17,27]. In addi-
tion, given some spurious local maxima might be generated by individual tree branches,
smoothing filters are often applied to remove them [28]. As a result, the parameterization
of LM algorithms is centered on two parameters: a Smoothing Window Size (SWS) and
a Tree Window Size (TWS), which defines a fixed boundary within which the algorithm
searches for treetops [28]. Following this treetop detection, segmentation is performed
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to delineate the canopy boundary of individual trees, which is most commonly based on
region growth [29,30], watershed delineation [6], or clustering [31–34].

A data source that has recently received much attention from the urban forest research
community due to its low cost and global coverage is general street-level imagery, where
the best-known service is GSV [14]. In addition to GSV, other digital platforms have
launched street-level panoramic imagery products, such as Apple Look Around (some US
and international cities), Microsoft Bing StreetSide (US and some European cities), Baidu
Total View and Tencent Street View (Chinese cities), Kakao/Daum Road View and Naver
Street View (South Korea), and Yandex (Russia and some Eastern European countries), as
well as the corporate crowdsourcing platforms KartaView (formerly OpenStreetCam) and
Mapillary (acquired by Facebook) [35]. These street-level images have great potential for
researchers as a large repository of panoramic images as a source of urban big data [36].
GSV has been used successfully to assess urban trees on streets and highways [14] and even
to assess the state of tree health [37]. GSV is a geospatial platform with extensive worldwide
coverage that provides standardized, geocoded street-level imagery in different formats
and resolutions at a relatively low cost [9]. GSV Street-level imagery is collected through a
panoramic camera, which records single snapshots in time covering a 360-degree range of
view, spaced every 15 m, meaning that one tree can be seen in multiple images [38]. GSV
data can be accessed online through an official API. In addition to street-level data, another
interesting source of data, usually freely available on government geospatial portals, are
RGB and near-infrared (NIR) orthoimages. There is a strong correlation between RGB
and NIR values of tree pixels and certain parameters such as their leaf area, biomass, or
phenotypic activity [39] that is usually addressed through spectral signature. This approach
can be further improved by merging NIR and RGB data with other sources of information
such as ground-level images or ALS data and applying machine learning (ML) algorithms
to them [34].

Computer vision is the field that deals with the development of techniques that al-
low computers to evaluate and analyze images or videos (sequences of images). The
most common tasks in computer vision of images include object detection and object
classification [40,41]. Deep learning (DL) is a subset of machine learning based on neural
networks of multiples layers that attempt to emulate how the brain perceives and under-
stands multimodal information. The multiple processing layers of DL methods are able
to learn and represent data at multiple levels of abstraction, thus capturing the intricate
structures of large-scale data [42]. Advances in the combination of computer vision [43]
and deep learning are enabling automation in street-level data collection in urban environ-
ments [44]. These computer vision-based algorithms have been applied to assess urban
change [45], building types [46], and urban morphology [47]. With respect to urban tree
inventory, street-level imagery in combination with CV has been successfully applied in
three key areas: (1) urban tree mapping [4,38], (2) quantification of perceived urban canopy
cover [5,12,48–50], and (3) estimation of shade provision [51–53]. In this work, we have
combined (and compared) three of the most common data sources: we have used ALS
information, RGB and NIR orthomosaics, and GSV street-level imagery. This information
has been used to solve the main objective of an urban tree inventory, which is to locate
all trees accurately and inexpensively, based on remote data and without the need for
field work. The developed method is novel because it compares (and also combines) a
methodology based on CV on GSV images, with another methodology based on ITD in ALS
data. Finally, in both cases a filtering of the results is performed through a ML algorithm
trained with RGB and NIR orthomosaics.

2. Methodology
2.1. Study Area and Validation of Results

This work was carried out in the city of Pamplona (Spain). Pamplona is located in
northern Spain and is the capital of the region of Navarra (Figure 1). It has a population of
203,944 inhabitants, spread over an area of 25,098 km2. It also has 63,962 trees according to
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its official tree inventory. This city has been selected because it has the three sources of data
contrasted in this study: (i) high density ALS data (14 points per square meter), (ii) different
complete coverages of GSV images (from 2009 to the present), (iii) several coverages of
RGB and NIR orthophotos (from 2005 to the present), and (iv) a complete collection of
thematic cartography of the municipality (Figure 2). Another important reason is that
Pamplona has a free access database with all the urban trees, where the trees are geolocated
with high precision and where their main attributes (genus, species, health status, etc.)
are included. This database substantially reduced the field work to collect “ground truth”
in the city. Finally, as Pamplona is a large city, it was decided to reduce the study area
to different random circles of 300 m radius in which to evaluate the different method-
ologies proposed. To randomize these eight points, the QGIS software research tool [54]
“Vector -> Research tools -> Random points inside polygons” was used to create eight ran-
dom points separated by a minimum distance of 300 m so that there would be no inter-
section between their circles. To create the circles, the “Vector -> Geoprocessing -> Buffer”
tool of the QGIS software [54] with a radius of 150 m was used. These circles were classified
according to three zone typologies: (i) most of the trees are in streets (suitable for vehicles),
(ii) most of the trees are in parks (pedestrian only), and (iii) a mix between trees in streets
and in parks. Figure 1 shows the 8 selected circles.
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2.2. Remote Data Sources

In this work, we have used three data sources: (i) Street-level images, (ii) ALS LiDAR
cloud-point data, and (iii) RGB and NIR digital orthophotos. Regarding street-level images,
these can be downloaded from Google Street View (GSV), OpenStreetMap, Bing Maps,
or we can obtain them ourselves. These images are georeferenced, and we know their
heading, pitch, and field of view (FOV). In our case, we have used Google Street View with
its corresponding API. Since not all areas were covered at the same time, we had to use
images from different years. In total, we used 77 images from 2015, 37 images from 2017,
1100 images from 2018, and 1888 images from 2019. ALS data came from the National
Geographic Institute of Spain (IGN). In this case, data were acquired between September
and November 2017, with a LEICA SPL100 sensor, obtaining an average point density of
14 first returns per square meter, and with an XY precision of 20 cm and a Z precision of
15 cm. Finally, the orthophoto coverage was also obtained from the IGN. Two coverages
were used, one only in RGB carried out in 2014 and another in RGB and NIR captured
in 2017. Both coverages provided a pixel size of 0.25 m, a planimetric accuracy in XY
of less than 50 cm, an ETRS89 geodetic reference system, and a TIFF file format with its
corresponding georeferencing TFW file. In this way, the three data sources were acquired
on reasonably similar dates. Figure 2 shows the data sources used in this study.

2.3. Geolocation of Urban Trees

Regardless of the database used to geolocate all urban trees, we have designed a
methodology based on two stages: (1) detect all possible trees, even knowing that there may
be many false positives, and (2) debug those false positives from the previous step. After
each stage, we always performed a merging of the trees that were too close to each other
(distance less than 4 m), thus eliminating artifacts caused by branches or mispositioning
of LiDAR and GSV images. This merging was performed based on the methodology
proposed by Picos et al. [55]. In the first stage, two methodologies have been contrasted:
(1A) individual tree detection (ITD) through computer vision (CV) on Google Street View
(GSV) images, and (1B) ITD from LiDAR point clouds (ALS). In the second stage, two other
techniques were again used: (2A) false positive debugging through CV using GSV imagery,
and (2B) false positive debugging through ML using RGB and NIR orthophotos. Therefore,
four combinations (two in each of the first two stages) were performed and compared to
evaluate the accuracy and efficiency of the different results. Results were also included
using only the first stage where false positives are not filtered out, as is usual in other
investigations consulted [56–60]. It is important to note that the GSV-based techniques
are only used to analyze transited street trees (circles 1, 2, 3, 6, and 8), while the LiDAR
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and orthophoto-based techniques are used to analyze all urban trees. The results were
compared with the official data on urban trees, which are freely available on the Pamplona
City Council website (https://www.pamplona.es/la-ciudad/geopamplona/descargas, last
access on 13 March 2022). Figure 3 shows a scheme of the procedure followed.
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2.3.1. ITD through Computer Vision, Using GSV Images (Stage 1A)

Each image captured from GSV is associated with an identifier called PanoID. Each
PanoID has a 360◦ panoramic image associated with it. These images are georeferenced,
and we know their heading, pitch, and field of view (FOV). In two-way streets, images
are available in both directions of the street. Google API [61] was used to download the
images. The acquisition of GSV images consisted of 3 steps: (1) detecting the areas where
GSV images are available, (2) selecting the most suitable images based on date and image
parameters, and (3) downloading the images through the GSV API. To detect the presence of
trees in each of the images, a model based on MASK R-CNN convolutional neural network
(available in the DETECTRON2 library [62]) was retrained. The model was pre-trained
with the public database IMAGENET [52]. From this pre-trained model, the model was
improved to be able to distinguish between the tree stem and the tree crown. We performed
a fine-tuning of the same model using 2000 images manually segmented with LABELME
software [53] from other areas of the city of Pamplona. This model was then applied to
all the downloaded images and the possible trees were identified. Through the image
parameters and based on trigonometric rules we were able to estimate the position of the
tree (azimuth and distance to the point where the image was taken). Each detected tree was
assigned a unique Id and geolocated based on the azimuth and distance from the origin of
the image. Usually, the same tree is detected in more than one image, so its positioning
from one or another point should be the same or very close. These possible duplicate
trees (if they were less than 4 m away) were eliminated (Section 2.3.5). This methodology,
being based on GSV street-level imagery, was only possible on vehicle-traversable streets.
Figure 4 shows a schematic of the process followed.
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2.3.2. ITD Using ALS Data (Stage 1B)

Algorithms for ITD can be divided into those that use raster data from the vegetation
canopy model (CHM) and those that use the ALS point cloud directly [26]. Most of these
algorithms are based on finding local maxima (LM) of height both in the point cloud and in
the MDAV [17,27]. Additionally, since individual tree branches can generate some false
local maxima, smoothing filters are often applied to remove them [63]. As a result, the
parameterization of LM algorithms focuses on two parameters: a smoothing window size
(SWS) and a tree window size (TWS), which defines a fixed limit within which the algorithm
searches for the tops of the trees [28,64]. Although there are many algorithms to perform
ITD, the most common in the forestry field are the packages used from the R software [65],
such as FORESTTOOLS [66], LIDR [67] and RLIDAR [68,69], as well as the algorithms inte-
grated in FUSION/LDV [70], such as TREESEG and CANOPYMAXIMA [71]. In this work,
a pre-selection was realized and finally the FORESTTOOLS package was chosen, based
on a smoothed CHM developed with FUSION [70]. In this way, the LIDAR point cloud
data was first downloaded from the IGN website. The smoothed CHM was then generated
using FUSION software (CANOPYMODEL procedure, cellsize = 0.25 and smooth = 3).
This CHM was clipped with the vector layer of buildings that can be downloaded from
the Pamplona City Council website. From this clipped CHM, treetops were found with
the R package FORESTTOOLS. Different parameterizations were evaluated, and it was
considered that the one that offered the best results was the following: “minHeight = 2;
winFun = 0.12 x + 0.5; maxWinDiameter = NULL; minWinNeib = queen”. Each of the
treetops had a unique Id and incorporated the height measured over the CHM. Figure 5
shows a schematic of the process followed.
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2.3.3. False Positive Debugging through CV Using GSV Imagery (Stage 2A)

In stage 1A, we selected all GSV images every 10–15 m and we applied the object
detection algorithm on all of them, identifying in each of them each tree (stem and crown)
with a unique Id. In stage 2A, the procedure was the other way around. First, we started
from the trees identified in stage 1, then we selected the three closest images to each of the
trees and downloaded them through the Google API. For each of the trees, we analyzed
whether that tree was detected in the three closest images. Then, we positioned it using
trigonometry and checked if all three positions obtained were less than 4 m away from
each other. When this happened, we considered it to be a single tree and positioned it at
the centroid of the three positions. Figure 6 shows a schematic of the process followed.
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2.3.4. False Positive Debugging through ML Using RGB and NIR Orthophotos (Stage 2B)

For each tree detected in stage 1, a buffer of 50 cm radius was generated and the zonal
statistics (mean and standard deviation) of each of the bands of the different orthophotos
(RGB-2017, RGB-2014, and NIR-2017) were calculated. A ML algorithm was then trained
using a ground truth of 15,766 points sampled from orthophotos to determine whether
points detected corresponded to the classes TREE or NOT TREE. To reduce the training
processing time, a variable selection was performed using the VSURF procedure [72]. The
four most used algorithms in ML for this type of training were evaluated [73]; ANN, SVML,
SVMR, and RF, executing the NNET, SVMLINEAR, SVMRADIAL, and RF methods using
the CARET package in R software [74]. Finally, a cross-validation was performed using
three replicates to control for overfitting. As in the previous method, trees that were less
than 4 m away from each other were grouped.

2.3.5. Merging Nearby Trees

The method is based on the methodology proposed by Picos et al. [55] to perform
ITD in Eucalyptus. This false positive debugging starts by creating a 2D buffer around
the detected and projected treetop. The width of the buffer should be above the X-Y point
spacing and below the tree spacing. As the spacing between urban trees is usually larger
than in the forest, we tested higher distances than Picos et al. [55], starting at 2 m and
ending at 5 m, obtaining the best results for a distance of 4 m. This distance of 4 m coincides
with the distance threshold selected by Wegner et al. [38] for considering a tree as a TP. As
a result, the point cloud was transformed into a polygon cloud. The intersecting treetops
were then combined into a single polygon. These centroids approximate the geospatial
position of each individual tree.

2.3.6. Accuracy Evaluation

To validate our results, we have calculated the distance from the suggested point with
respect to the closest ground truth point applying the following criteria: (i) if the suggested
point is less than 5 m away and there is no other suggested point closer to the ground truth
point, we considered it a true positive (TP), (ii) if the suggested point is less than 5 m away
from the reference point, but there is another TP point closer, or if the suggested point is
more than 5 m away, we considered it a false positive (FP), while (iii) if the ground truth
point has no suggested point less than 5 m away, we considered it a false negative (FN).

To explore the influence of the different methods used, an evaluation of the per-
formance in terms of relative error rate was carried out to evaluate the precision of the
proposed method three statistics were used: recall (r), precision (p), and F1 score. These
statistics are widely used to assess the detection error of individual trees [63,75,76]. Recall
gives us a measure of trees detected and is inversely related to error of omission, precision
implies a measure of trees correctly detected and is inversely related to error of commission,
and the F1 score allows us to combine precision and recall in a single value through a
modification of its mean. The formulation of these statistics is shown below:

r = TP/(TP + FN) (1)

p = TP/(TP + FP) (2)

F1 = (2 × r × p)/(r + p) (3)

Precision is a great measure when the data are symmetric (similar number of FPs
and FNs), and where both errors have the same influence. In our case, the FPs have less
influence since in stage 2, debugging, and our goal is to minimize them, so it is better to use
F1. On the other hand, recall refers to the number of TPs with respect to all detectable trees
(n), and it is the most important statistic when your aim is to have the maximum number
of TPs, even if the FPs are also numerous. For this work, we have assessed the trade-off
between the three statistics.
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3. Results

Table 1 shows the results obtained in each of the combinations of stages. In order to
compare methodologies, we focused only on the areas where GSV imagery is available
(areas trafficable by vehicles). The results obtained in the first stage are very satisfactory,
identifying more than 86% of urban trees. Once the FP debugging is performed (second
stage), recall decreases to 78%, given that this process removes some true positives, while
eliminating a large number of FPs. Figure 7 shows an example of four of the six methodolo-
gies tested in one of the areas of the city. The left column shows the first stage (ITD through
computer vision (A) or ALS (C)), while the right column shows the combination of stages
(ITD and false positive debugging).
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Figure 7. Example of the methodology in one of the areas of the city. (A) ITD through GSV imagery
and (C) ITD through ALS. In this first stage, the white dots indicate the trees from the municipality’s
database, while the red dots indicate the trees detected by the methodology. The images on the right
show the combination of stages. (B) ITD through GSV and FP debugging through GSV, (D) ITD
through ALS and FP debugging through ML. Green dots indicate well-identified trees (TPs) and red
dots indicate incorrectly detected trees (FPs).
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Table 1. Results obtained in the urban tree inventory for the different combinations of stages in the
circles (only trafficable by vehicles) of the city of Pamplona (n is the official number of trees, TP is the
true positives detected, FP is the false positives detected, FN is the false negatives detected, p is the
precision, r is the recall, and F1 is the overall precision). The highest rated combination of methods is
identified in bold.

Zone Method n TP FP FN p (%) r (%) F1 (%)

1

GSV

700

635 911 51 41.07 92.57 56.90

ALS 608 655 64 48.14 90.48 62.84

GSV + GSV 581 271 95 68.19 85.95 76.05

GSV + ML 581 304 95 65.65 85.95 74.44

ALS + GSV 542 146 141 78.78 79.36 79.07

ALS + ML 509 51 186 90.89 73.24 81.12

2

GSV

215

112 351 73 24.19 60.54 34.57

ALS 164 205 36 44.44 82.00 57.64

GSV + GSV 91 104 104 46.67 46.67 46.67

GSV + ML 98 120 92 44.95 51.58 48.04

ALS + GSV 102 66 103 60.71 49.76 54.69

ALS + ML 141 68 66 67.46 68.12 67.79

3

GSV

652

461 420 177 52.33 72.26 60.70

ALS 490 367 132 57.18 78.78 66.26

GSV + GSV 409 137 227 74.91 64.31 69.20

GSV + ML 421 142 221 74.78 65.58 69.88

ALS + GSV 421 87 219 82.87 65.78 73.34

ALS + ML 393 55 251 87.72 61.02 71.98

6

GSV

366

306 345 44 47.00 87.43 61.14

ALS 341 314 20 52.06 94.46 67.13

GSV + GSV 282 97 75 74.41 78.99 76.63

GSV + ML 278 102 77 73.16 78.31 75.65

ALS + GSV 308 82 52 78.97 85.56 82.13

ALS + ML 298 76 61 79.68 83.01 81.31

8

GSV

839

759 1228 54 38.20 93.36 54.21

ALS 772 718 50 51.81 93.92 66.78

GSV + GSV 707 358 105 66.38 87.07 75.33

GSV + ML 711 389 98 64.64 87.89 74.49

ALS + GSV 707 270 113 72.36 86.22 78.69

ALS + ML 612 207 217 74.73 73.82 74.27

mean
zones

GSV

2.772

2.273 3.255 399 41.12 85.07 55.44

ALS 2.375 1.541 252 50.99 86.42 64.13

GSV + GSV 2.070 967 606 68.16 77.35 72.47

GSV + ML 2.089 1.057 583 66.40 78.18 71.81

ALS + GSV 2.080 651 628 76.16 76.81 76.48

ALS + ML 1.953 457 781 81.04 71.43 75.93
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If we focus on recall, a higher value indicates that we have more true positives
(regardless of the false positives we found). We have obtained very similar results in the
ITD with both ALS and GSV. Regarding FPs in this first stage, we generally found more
when using GSV. Therefore, if we are not conditioned by FPs, we always detect more TPs
using only the first stage than by combining stages. While the results obtained with both
GSV and ALS are similar, they are slightly higher when using ALS.

Considering the second stage to debug FPs, GSV- and ML-based methods are both
equally valid. The combination of all stages is somewhat better when starting from an
ITD performed with ALS, although differences are not significant. In general, the best
result is obtained by performing the first stage with ALS and the second with GSV. Even
so, the advantage of the ALS + ML method is that it works for any place where ALS and
orthophoto data exist, which allows the inventory to be performed also in public and
private parks and gardens and in pedestrian areas.

4. Discussion

The use of street-level imagery through CV techniques has recently been employed
for mapping urban trees [4,38]. Berland and Lange [14] used GSV and obtained 93% of
recall on urban trees and discovered that it was possible to assess genus, species, location,
diameter at breast height, and tree health. Rousselett et al. [37] were capable of identifying
trees affected by pine processionary with a 96% success rate. However, these studies and
many others were not automated, so they were limited by costly manual effort. In addition,
Li et al. [5] estimated a factor to quantify tree shade provision and assessed the percentage
of vegetation on streets by measuring the number of green pixels observed in a GSV image.
As for Seiferling et al. [48], they quantified urban tree canopy cover using GSV and ML.
These methodologies were the origin of the Green Vision Index [5]. Wegner et al. [38]
designed a workflow for automatic detection and geolocation of street trees from GSV and
Google Maps images, based on the convolutional neural network model Faster R-CNN.
They obtain a recall of 0.706 in tree detection, but also perform a Tree species classification
with an average recall of 0.79 (varying as a function of the species classified). This study is
more complete than ours, since it identifies the species, but it is the most comparable to
ours, in terms of methodology and results.

Methodologies based on ALS data for urban tree detection are less abundant but have
also been implemented and automated in some major cities. Tanhuanpää et al. [59] were
able to detect 88.8% of urban trees using an automated mapping procedure in the city of
Helsinki (Finland). They also measured their height, obtaining a Root Mean Squared Error
(RMSE) of 1.27 m, and the diameter at breast height (RMSE = 6.9 cm). Holopainen et al. [60]
used a non-automated methodology and found that Vehicular LIDAR (VLS) obtained
higher recall than ALS (79.22% versus 68.04%, respectively) on a sample of 438 trees located
in parks and urban forests of the city of Helsinki (Finland). After automating their method-
ology, recall dropped significantly for VLS (26.94%) but not so much for ALS (65.53%).
Matasci et al. [77] evaluated the urban tree inventory in Vancouver with ALS on a sample
of 22,211 trees, obtaining a recall of 76.6%. Furthermore, they estimated their respective
heights (RMSE = 2.6 m) and crown diameters (RMSE = 3.85 m) on a subsample of trees. In
Munich (Germany), Wu et al. [78] compared VLS and ALS, obtaining a better percentage
of detected trees (83.36%) with ALS, compared to VLS (77.2%). Finally, Hanssen et al. [79]
performed a comprehensive analysis of urban tree canopy cover in Oslo (Norway) using
ALS, obtaining a recall of 73.6%. Finally, although the use of orthophotography is not com-
mon in urban tree mapping, some authors report its potential. For instance, Juel et al. [80]
combined RGB and NIR orthoimages with data acquired by ALS to train a Random Forest
algorithm that was used to map semi-natural coastal vegetation.

In our case, using a fully automated methodology, we located over 86% of the trees
(results of the first stage of the methodology, not debugging false positives). After removing
false positives during the remaining stages, our recall decreased to 78%, which is com-
parable to that obtained by other researchers. Moreover, we obtained quite a balanced
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proportion of TPs, FNs, and FPs, regardless of the data source used during the first stage.
We believe that the most important challenge in this study is to achieve a fully automated
methodology that allows us to perform an urban tree inventory with the minimum cost of
error correction, either through photointerpretation or tree identification at street level. If
we included a third phase of photointerpretation in our study, we would certainly be able
to clean up almost all the FNs and include almost all the TNs (originally omitted trees).

Furthermore, we have observed that GSV-based methods perform worse in streets
where we find different parallel rows of trees, as they cover each other, hence increasing
the error rate. This allows for the use of different combinations of methods to perform
low-cost and automated urban inventories depending on the available data source (ALS,
GSV and/or orthophotos). It should be noted that GSV-based methods only work in areas
passable by vehicles, while ALS-based methods work for all areas with a similar error
rate, including parks and gardens. In many parts of the world there are open access ALS
coverages that can allow for the implementation of this methodology. On the other hand,
GSV is available (under license) in almost the whole world.

Something that has not been evaluated in this work is the measurement of tree
crown metrics. If we use ALS data during the first stage of our method, we can seg-
ment the tree crown boundary through the usual algorithms [6,29–33], while if we use
GSV we can perform tree crown measurements applying semantic segmentation and
trigonometry [53,81–83]. The difference between the two methods is that when relying on
ALS data we can perform measurements on the horizontal axis (crown width), whereas
when relying on GSV data we can include measurements from both axes (crown width and
crown length).

5. Conclusions

This study evaluates, in a cost-effective and accurate way, different methods to detect
and geolocate trees in urban environments using several data sources (airborne LiDAR
point clouds, street level imagery, and digital orthophotos). In many countries, these
sources are freely available, so that all the combinations of methodologies evaluated in this
study can be carried out, allowing the inventory of both public and private areas as well as
pedestrian areas. Thanks to this inventory, public administrations can have much more
precise data on the amount of vegetation in a city, as well as the benefits it generates (e.g.,
their ability to sequester carbon and reduce house cooling energy consumption, due to the
shade generated by these trees).

In this research, we use an innovative approach by prioritizing the detection of the
maximum possible number of trees (TPs), even if this also implies a higher number of
FPs, since we refine these FPs in a second stage. In these two stages, we combine data
and techniques based on object detection, such as the use of street-level imagery, and
unsupervised classification data and techniques, which are more common in remote sensing.
Although GSV images have been used in this study, any street-level image is valid to
replicate the proposed methodology. The same is valid for ALS data, although ALS
captured from an aircraft has been used, point clouds captured with unmanned aerial
vehicle (UAV) LiDAR systems or even point clouds generated by UAV-photogrammetry
integrated with structure from motion (SfM) techniques can be equally valid.

Finally, street-level images can allow us to identify some qualitative (species, genus,
health status) and quantitative (height, crown width, etc.) characteristics of trees, and this
should be our next challenge, as well as the use of semantic segmentation techniques.
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