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Abstract: Long Range (LoRa) systems have recently attracted significant attention within the research
community as well as for commercial use due to their ability to transmit data over long distances
at a relatively low energy cost. In this study, new results for the bit error rate performance of Long
Range (LoRa) systems operating in the presence of Rayleigh, Rice, Nakagami-m, Hoyt, η-µ and
generalized fading channels are presented. Specifically, we propose novel exact single integral
expressions as well as simple, accurate expressions that yield tight results in the entire signal-to-noise
ratio (SNR) region. The validity of our newly derived formulas is substantiated by comparing
numerically evaluated results with equivalent ones, obtained using Monte-Carlo simulations and
exact analytical expressions.

Keywords: bit error rate; fading channels; Internet of things; LoRa; performance evaluation

1. Introduction

In recent years, the exponential growth in the number of inexpensive, Internet-
connected devices has given birth to the Internet of things (IoT) and its numerous ap-
plications, including autonomous farming, wearable health monitoring, smart homes and
cities. Nevertheless, the increasing number of connected devices in conjunction with
memory, bandwidth and energy availability constraints has revealed the limits of tradi-
tional connectivity technologies, namely ZigBee, Bluetooth and WiFi, in terms of energy
consumption, scalability and throughput [1].

In order to fulfill the communication requirements of the IoT, the so-called Low-Power
Wide Area Networks (LPWAN) have recently attracted significant attention within the
research community as well as for commercial use, due to their ability to complement
traditional cellular and short-range wireless technologies in an efficient manner [2–5].

Among all available LPWAN protocols, the so-called LoRa (Long Range) technol-
ogy [6] has emerged as a promising candidate for smart sensing technology for civil (e.g.,
environment and health monitoring, smart metering, precision agriculture) and industrial
applications, in urban and rural environments, due to its long-range and low-power capa-
bilities. LoRa modulation is a 3GPP standard based on the chirp spread-spectrum (CSS)
technology [7–20] and uses the industrial, scientific and medical (ISM) frequency bands at
433 MHz, 868 MHz or 915 MHz with data rates of up to 50 kbps.

Although the LoRa technology is well documented in [6], there are still relatively few
studies on its theoretical performance. A summary of related works is presented in Table 1.
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Table 1. Related works on theoretical performance of LoRa systems in the presence of fading
and noise.

Authors Title Source Findings

Vangelista, L.
Frequency shift chirp

modulation: The LoRa
modulation

[7]

Introduced the LoRa modulation system
and provided initial results on its

performance over AWGN channels by
means of a single integral.

Elshabrawy, T.; Robert, J.

Closed-form
approximation of LoRa

modulation BER
performance

[21]
Provided simple closed-form expressions of

LoRa systems in the presence of AWGN
and Rayleigh fading.

Dias, C.F.; Lima, E.R.D.;
Fraidenraich, G.

Bit error rate closed-form
expressions for LoRa

systems under Nakagami
and Rice fading channels.

[22]

Provided an exact closed-form expression
for the BER of LoRa systems under

Rayleigh fading as well as analytical
expressions for the BER under Nakagami-m

and Rice fading in terms of a finite sum.

Courjault, J.; Vrigenau, B.;
Berder, O.; Bhatnagar, M.

A Computable Form for
LoRa Performance

Estimation: Application
to Ricean and Nakagami

Fading.

[23]

Authors elaborate on the properties of the
generalized Marcum Q-function to provide
accurate expressions for the BER of LoRa

systems in the presence of Rice and
Nakagami-m fading.

Hoeller, A.; et al.

Analysis and
Performance

Optimization of LoRa
Networks With Time and

Antenna Diversity

[11]

Authors addressed the performance of
LoRa systems operating in the presence of
Rayleigh fading, enhanced with antenna

and time diversity techniques. The
optimization of the performance of such

systems has further been addressed.

Ma, H.; Cai, G.; Fang, Y.;
Chen, P.; Han, G.

Design and Performance
Analysis of a New
STBC-MIMO LoRa

System

[24]

Authors have proposed a new STBC MIMO
LoRa system architecture. Its theoretical

performance was analyzed in the presence
of Rayleigh fading. A closed-form
approximate BER expression of the
proposed system under perfect and

imperfect channel state information (CSI)
was proposed.

Xu, W.; Cai, G.; Chen,
Performance analysis of a

two-hop relaying LoRa
system

[25]

Authors studied a two-hop opportunistic
amplify-and-forward relaying LoRa system
employing a best relay-selection protocol
and operating over Nakagami-m fading.

Specifically, the mathematical representation of the LoRa modulation/demodulation
process and its performance in terms of the symbol and bit error rates for additive white
Gaussian noise (AWGN) and frequency selective fading channels were addressed in [7].
In [21], a moment matching method was employed to obtain accurate closed-form approx-
imations for AWGN and Rayleigh fading channels. Multi-antenna LoRa systems were
addressed in [11,24]. The performance of relay-based LoRa networks was addressed in [25].
A first attempt to provide exact BER expressions for Rayleigh, Rice and Nakagami-m fading
is available in [22]. Nevertheless, as was pointed out in [21,23], the proposed methodology
for channels other than Rayleigh may suffer from numerical stability issues, due to the
computation of large values of binomial coefficients. To this end, ref [23] leveraged the
properties of the Marcum Q-function to provide accurate approximations for the BER of
LoRa systems over Rice and Nakagami-m fading channels.

However, several results obtained using this method, i.e., for Nakagami-m fading,
require the computation of hypergeometric functions with two arguments [23], which in
turn are not available as built-in functions in standard mathematical software packages such
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as Matlab or Mathematica [26]. Moreover, for the numerical evaluation of the underlying
mathematical expressions, the computation of an approximation threshold parameter is
required. Nevertheless, the exact computation of this threshold is rather complicated and
therefore, a heuristic method for its computation was proposed by the authors in the same
work. The above facts motivate simpler, yet accurate expressions for the evaluation of the
BER of LoRa systems in the presence of noise and fading. On the other hand, analytical
results for the error performance of LoRa systems in the presence of fading channels other
than Rayleigh, Rice and Nakagami-m, are—to the best of our knowledge—not available in
the open technical literature. Indeed, as it was pointed out in [27], the above mentioned
classical fading models do not always fit well measured data, especially at the tail portion.
This motivates research on performance evaluation over generalized fading models that
include the classical ones as special cases.

Motivated by the above facts, in this study we present new analytical expressions
for the average bit error rate evaluation of LoRa systems in the presence of fading. More
specifically, the novel research contributions of this work can be summarized as follows.

1. Under the assumption of Nakagami-m and Rice fading channels, we present ap-
proximate analytical expressions for the SER performance of LoRa systems. These
expressions yield accurate results in the entire signal to noise ratio (SNR) region that
are practically indistinguishable from the exact solution;

2. For the special case of Nakagami-m fading, using a moment matching method, a
simple yet tight approximation to the SER is obtained in closed form;

3. For all fading scenarios, exact analytical SER expressions in terms of a single integral
are presented;

4. A novel, accurate analytical expression for the SER of LoRa systems operating in
the presence of Hoyt fading is presented. To this end, a new integral involving
exponentials, modified Bessel functions and the Marcum-Q function, whose second
argument is a linear function of the integration variable, is evaluated;

5. An exact single integral expression for the SER of LoRa systems operating over η-µ
fading channel is presented, assuming a propagation environment consisting of a
finite number of multi-path clusters;

6. An exact single integral expression for the SER of LoRa systems operating over
generalized fading channels is presented, by approximating the PDF of the SNR with
a mixture gamma distribution. As a test case, SER results of LoRa systems operating
in the presence of κ-µ fading channels are presented.

In order to validate the correctness of the proposed mathematical analysis, all analyti-
cal results are substantiated by means of Monte-Carlo simulations. Note that the proposed
analytical framework provides accurate results in the entire SNR range, thus circumventing
the need for evaluating system performance via time consuming Monte-Carlo simulations
(It is a common practice to use Monte-Carlo simulations in order to verify the correctness
of analytical results. Please note that although Monte-Carlo simulations may also be used
to obtain performance evaluation results, they suffer from two significant disadvantages,
as compared to analytical results. First, one has to specify the system model using soft-
ware defined components, i.e., to simulate channel, noise, modulation, demodulation and
detection. Although this process provides further insights on the system structure, it is
computationally very intensive, time consuming and requires large amounts of memory
to achieve a given accuracy. Specifically, as a rule of thumb, in order to obtain exact BER
results of the order of 10−6, random samples of two orders of magnitude larger, namely 108,
are required. Such large vectors are difficult to be handled by software tools such as Matlab.
On the other hand, analytical results in the form of equations yield accurate results within a
large range of system level parameters). The remainder of this work is structured as follows.
Section 2 presents an overview of the LoRa modulation and its BER performance. Section 3
presents the main results of this work. Numerical results are presented in Section 4 whereas
Section 5 concludes the work. Notations: A list of mathematical notations used in this work
is available in Table A1.
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2. Overview of the LoRa Modulation

In this section, an overview of the LoRa modulation and the corresponding bit error
probability are presented. LoRa systems employ the shift chirp modulation scheme, also
known as spread spectrum modulation. The number of samples within the duration of a
symbol, Ts, is determined by the spreading factor (SF). It holds that Ts = 2SF/B, where B is
the signal bandwidth. In typical applications, SF ∈ {6, 7, . . . , 12}. Note that the coverage of
LoRa is determined by SF. Specifically, increasing SF results in wider coverage but also in a
reduction in the data rate.

The modulation encoder maps a group of SF bits to a symbol, sk, k ∈ {0, 1, . . . L}
where L = 2SF − 1. The transmitted waveform can be expressed as [21]

sk(nT) = h
√

Esωk(nTs) (1)

= h

√
Es

N
exp

{
2π

n
N
[(k + n) mod N]

}
(2)

where N = 2SF, Ts = 1/B is the sampling period, n ∈ {0, 1, . . . L} is the sample index
at time nTs, Es is the signal energy, h is the fading channel coefficient and ωk(nTs) are
orthonormal basis functions.

Figure 1 depicts the main functional blocks of a LoRa non-coherent demodulator.
Specifically:

• The input signal is sampled at a period of Ts = 1/B;
• The resulting signal is then multiplied with a down chirp signal;
• A Fast Fourier Transform (FFT) is performed at the output of the previous block to

retrieve the symbol value;
• The information signal is estimated using maximum likelihood detection.

Figure 1. A simplified overview of the LoRa non-coherent demodulator.

Using the orthogonal properties of sk(nT), the correlator output at the demodulator is
given as [21]

L

∑
n=0

rk(nT)ω∗i (nT) =

{
h
√

Es + φi if k = i
φi if k 6= i

(3)

where rk(·) is the received signal and φi is the complex Gaussian noise. The decision rule
for the detected index symbol can be expressed as [21]

k̂ = {i| argi max
(
|δk,ih

√
Es + φi|

)
}. (4)
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The conditional symbol error probability given the squared channel coefficient h is
given as [21–23]

P(e|h) = Pr{ρ2 > |h
√

Es + φi|2} (5)

where ρ2 = max{|φi|}|i 6=k is the maximum of L independent and identically distributed
(i.i.d) exponential random variables with CDF given by

Fρ2(x) = [1− exp(−x/2)]L. (6)

Moreover, the RV R , |h
√

Es + φi|2 conditioned to h2 follows a non-central chi-square
distribution with PDF given by [21–23]

fR|h2(x) =
1
2

exp
(
− x + 2Nh2γ

2

)
I0

(√
2Nh2γx

)
, (7)

where γ = 1/E〈|φi|2〉 is the SNR. The CDF of R conditioned to h2 can be expressed in
terms of the Marcum Q-function as

FR|h2(x) = 1−Q1

(√
2Nh2γ,

√
x
)

. (8)

Finally, using (5)–(7), the average symbol error probability is given in terms of the
following two-fold integral [21–23]

Ps =
1
2

∫ ∞

0

∫ ∞

0

{
1− [1− exp(−x/2)]L

}
× exp

(
− x + 2Nyγ

2

)
I0

(√
2Nγxy

)
fh2(y)dxdy. (9)

The resulting bit error probability can be expressed as [21,23]

Pb =
2SF−1

2SF − 1
Ps. (10)

3. Main Results

In this section, exact analytical expressions for Ps in terms of a single integral as well
as accurate approximations will be obtained for Nakagami-m, Ricean and Hoyt fading
channels.

3.1. Symbol Error Probability for Nakagami-m Fading Channels

Under Nakagami-m fading, the RV h2 follows a gamma distribution with PDF given
as [28]

fh2(y) =
mm

Γ(m)
ym−1 exp(−my) (11)

where m > 0 is the fading parameter. For m = 1, i.e., for Rayleigh fading, (11) reduces to
the exponential distribution. An exact analytical expression for Ps is given in the follow-
ing proposition.
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Proposition 1. The exact symbol error probability of LoRa systems under Nakagami-m fading in
terms of a single integral is given as

PNak
s =

1
2

(
m

Nγ + m

)m ∫ ∞

0
e−x/2[1− (1− e−x/2)L]

× L−m

[
Nγx

2(Nγ + m)

]
dx (12)

Proof. By substituting (11) into (9) and changing the order of integration, a valid operation
according to the Fubini theorem because the resulting integrals are convergent, one obtains

Ps =
mm

2Γ(m)

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

×
[∫ ∞

0
ym−1e−(Nγ+m)y I0

(√
2Nxy

)
dy
]

dx. (13)

By employing [29] (Equation (3.15.1/2)) and [30] (Equation (8.972/1)), (12) is readily
obtained, thus completing the proof.

Note that (12) yields the exact value of Ps for arbitrary values of m. In addition, it
converges rapidly due to its exponentially decaying kernel and can be evaluated numer-
ically in an efficient manner using built-in routines available in popular mathematical
software packages such as Matlab or Mathematica. In what follows, we derive accurate
approximations for Ps, assuming both arbitrary and integer values of the fading parameter
m. The following result holds.

Proposition 2. For arbitrary values of m, an accurate approximation for the Ps of LoRa systems in
the presence of Nakgami-m fading is given as

PNak
s ≈

(
m

Nγ + m

)m
exp(−x̃N/2)

×
∞

∑
n=1

x̃n
N

2nΓ(n + 1) 1F1

[
m; n + 1;

Nγx̃N
2(Nγ + m)

]
(14)

where as for integer values of m

PNak
s ≈ 1− Nγ

Nγ + m
exp

[
− mx̃N

2(Nγ + m)

]
×

m−1

∑
n=0

εn

(
m

Nγ + m

)n
Ln

[
− Nγx̃N

2(Nγ + m)

]
(15)

where

εn =

{
1 if n < m− 1
1 + m

Nγ if n = m− 1
(16)

and

x̃N = 2
N−1

∑
n=1

n−1. (17)

Proof. Our starting point to the proof is (5) via which a generic expression for Ps can be
obtained. Observe that for large values of SF, i.e., for SF ≥ 6, the RV ρ2 can be replaced
with its mean with sufficient accuracy. Note that this observation has also been reported
in [21]. Consequently, using (5) and (8), Ps can be approximated as
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Ps ≈ 1−Eh2

〈
Q1

(√
2Nγh2,

√
x̃N

)〉
, (18)

where x̃N is the expectation of the RV ρ2, which, by employing the memoryless property of
the exponential distribution [21], can be deduced as (17). Using (11), the expectation in (18)
can be further written as

Ps ≈ 1− mm

Γ(m)

∫ ∞

0
ym−1e−myQ1

(√
2Nγy,

√
x̃N

)
dy (19)

Using [31] (Equation (10)) and [31] (Equation (11)) (Note that [31] (Equation (11)) has
a typo, i.e., N should be replaced with Γ(N)), (14) and (15) can be deduced for real and
integer values of m, respectively, thus completing the proof.

Next, using a moment matching method, a simpler closed-form expression for Ps will
be derived, which holds for arbitrary values of m. Specifically, we propose approximating
the statistics of the RV R with those of a gamma distribution with scale parameter a and
shape parameter b, using a moment matching method. The following result holds.

Proposition 3. A closed-form approximation for the Ps of LoRa systems under Nakagami-m fading
can be obtained as

PNak
s ≈ 1− Γ(a, bx̃N)

Γ(a)
. (20)

where x̃N is given by (17),

a = µ̃2
1/(µ̃2 − µ̃2

1), b = µ̃1/(µ̃2 − µ̃2
1), (21a)

µ̃1 = 2(1 + Nγ), (21b)

µ̃2 = 8(1 + 2Nγ) + 4γ2(1 + m)N2/m. (21c)

Proof. Observe that R2 follows a squared gamma-shadowed Rice distribution and thus,
using [32] (Equation (5)), its n-moment is readily obtained as

µ̃n = 2n
(

m
Nγ + m

)m
Γ(n + 1)

× 2F1

(
m, n + 1; 1;

Nγ

Nγ + m

)
. (22)

Using [33] (Equation (7.3.1/129)), µ̃1 and µ̃2 can be further simplified as (21). Finally,
Ps can be deduced as the CDF of a gamma distribution with parameters a and b that can
be obtained in closed form using a moment matching method [34] as (20) and (21), thus
completing the proof.

Using Proposition 2, a closed-form approximation for the Ps under Rayleigh fading
will be obtained. Specifically, the following result holds.

Corollary. Under Rayleigh fading, a closed-form approximation for Ps can be deduced as

PRay
s ≈ 1− exp

[
− x̃N

2(1 + Nγ)

]
(23)

Proof. The proof can be readily obtained by setting m = 1 to (15).
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3.2. Symbol Error Probability for Rice Fading Channels

Under Rice fading, the RV h2 follows a non-central chi-square distribution with PDF
given as [28]

fh2(y) =
1 + K

exp(K)
exp[−(1 + K)y]I0

[
2
√

K(1 + K)y
]

, (24)

where K is the Rice factor. For K = 0, (24) reduces to the exponential distribution, i.e.,
Rayleigh fading.

An exact analytical expression for Ps is given in the following proposition.

Proposition 4. The exact symbol error probability of LoRa systems under Rice fading in terms of a
single integral is given as

PRice
s =

(1 + K) exp(−K)
2(1 + K + Nγ)

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

× e
2K+2K2+γNx

2+2K+2γN I0

[√
2NK(1 + K)γx
1 + K + Nγ

]
dx (25)

Proof. The proof can be concluded by following a similar line of arguments as in the
proof of Proposition 1. Specifically, by substituting (24) into (9) and changing the order of
integration, Ps can be expressed as

Ps =
1 + K

2 exp(K)

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

×
[∫ ∞

0
e−(Nγ+K+1)y I0

[
2
√

K(1 + K)y
]

× I0

(√
2Nxy

)
dy
]
dx. (26)

The inner integral, i.e., with respect to y, can be evaluated in closed form by employ-
ing [29] (Equation (3.15.17/1)), yielding (25), thus completing the proof.

Again, (25) converges rapidly due to its exponentially decaying kernel and can be
evaluated numerically in an efficient manner. In what follows, an accurate approximation
for Ps will be derived. The following result holds.

Proposition 5. Under Rice fading, an accurate closed-form approximation for Ps can be deduced as

PRice
s ≈ 1−Q1

[√
2NγK

1 + K + Nγ
,

√
x̃N(1 + K)

1 + K + Nγ

]
(27)

Proof. Using (18) and (24), Ps can be approximated as

Ps ≈1− 1 + K
exp(K)

∫ ∞

0
e−(1+K)y I0

[
2
√

K(1 + K)y
]

×Q1

(√
2Nγy,

√
x̃N

)
dy (28)

By employing [35] (Equation (15)), the resulting integral can be evaluated in closed-
form yielding (27), thus completing the proof.
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3.3. Symbol Error Probability for Hoyt Channels

Under Hoyt (Nakagami-q) fading, the RV h2 follows a non-central chi-square distribu-
tion with PDF given as [28]

fh2(y) =

√
1
2
+

1
4η

+
η

4
exp

[
−
(

1
2
+

1
4η

+
η

4

)
y
]

× I0

[(
1

4η
− η

4

)
y
]

, (29)

where η = q2, with 0 < q ≤ 1 being a parameter related to the fade intensity. For q = 1, (29)
reduces to the exponential distribution (Rayleigh fading).

An exact expression for Ps can be deduced using the following proposition.

Proposition 6. Under Hoyt fading, Ps can be expressed in terms of a single integral as

PHoyt
s =

η + 1
2
√

A

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

× e
Nγx[(1+η)2+4Nηγ]

2A I0

[
N(η2 − 1)γx

2A

]
dx (30)

where

A = 1 + 2Nγ + η2(1 + 2Nγ) + 2η(1 + 2Nγ + 2N2γ2) (31)

Proof. The proof can be concluded by following a similar line of arguments as in the
proof of Proposition 1. Specifically, by substituting (29) into (9) and changing the order of
integration, Ps can be expressed as

Ps =
1
2

√
1
2
+

1
4η

+
η

4

∫ ∞

0
e−x/2[1− (1− e−x/2)L]

×
{∫ ∞

0
e−
(

Nγ+ 1
2+

1
4η +

η
4

)
y I0

[(
1

4η
− η

4

)
y
]

× I0

(√
2Nxy

)
dy
}

dx. (32)

The inner integral, i.e., with respect to y, can be evaluated in closed form by employ-
ing [29] (Equation (3.15.17/15)), yielding (30), thus completing the proof.

An accurate approximation for Ps can be obtained using the following proposition.
The following result holds.

Proposition 7. Under Hoyt fading, an accurate approximation for Ps can be deduced as

PHoyt
s ≈ 1− 1

γ

√
1

4η
+

η

4
+

1
2

× I
[√

2N,
√

x̃N ,
1
γ

(
1

4η
− η

4

)
,

1
γ

(
1

4η
+

η

4
+

1
2

)]
(33)
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where

I(a, b, c, p) =
a2

2p + a2 exp
[
− b2 p

2p + a2

]
×

∞

∑
k=0

2k

∑
n=0

Γ(2k + 1)c2k

p2k+1(k!)24k

× ζn,k

(
2p

2p + a2

)n
Ln

[
− b2a2

4p + 2a2

]
(34)

and

ζn,k =

{
1 if n < 2k
1 + 2p

a2 if n = 2k
(35)

Proof. Using (18) and (29), Ps can be approximated as

Ps ≈1−
√

1
2
+

1
4η

+
η

4

∫ ∞

0
e−
(

1
2+

1
4η +

η
4

)
y

× I0

[(
1

4η
− η

4

)
y
]

Q1

(√
2Nγy,

√
x̃N

)
dy (36)

which can be written as (33) with

I(a, b, c, p) =
∫ ∞

0
exp(−px)I0(cx)Q1(a

√
x, b)dx (37)

To the best of our knowledge, however, this integral is not available in related works
such as [31,35,36]. Nevertheless, as shown in the Appendix A, I(a, b, c, p) can be evaluated
as (34), thus completing the proof.

3.4. Symbol Error Probability for Physical η-µ Fading Channels

Under η-µ fading, the PDF of h2 is given by [27]

fh2(y) =
2
√

πµµ+0.5θµyµ−0.5

Γ(µ)Hµ−0.5 exp(−2µθy)Iµ−0.5(2µ`Hγ) (38)

where µ is related to the fading severity. The η-µ fading is quite general as it can accurately
model small-scale variations of the fading signal under non line-of-sight (NLOS) conditions
and includes as special cases both the Nakagami-m and the Hoyt fading models. The PDF
of h2 may be expressed in two formats, namely Format 1, where θ = (2 + η−1 + η)/4 and
H = (η−1− η)/4 with 0 < η < ∞ and Format 2, where θ = 1/(1− η2) and H = η/(1− η2)
with −1 < η < 1. As pointed out in [27], Format 1 can be converted into Format 2 by
employing a bilinear transformation. Thus and without loss of generality, Format 1 will
be assumed next. Moreover, the special case of integer µ, termed physical η-µ model,
assumes a finite number of multipath clusters and has been adopted in several works, e.g.,
see [27,37–39]

Using [30] (Equation (8.467)), the modified Bessel function I±(n+1/2)(z), with n > 0
being an integer, can be expressed as a finite sum, namely

I±(n+1/2)(z) =
1√
π

n

∑
k=0

(n + k)!
n!(n− k)!

[
(−1)kez ∓ (−1)ne−z

(2z)k+0.5

]
. (39)

Substituting (39) into (38) and employing [30] (Equation (8.353/7)), fh2(y) can be
expressed as
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fh2(y) =
µθ

HΓ(µ)

µ−1

∑
k=0

akyµ−k−1
[
(−1)ke−Ay + (−1)µe−By

]
(40)

where

ak =
(−1)k(µ + k− 1)!(4µH)−k

k!(µ− k− 1)!
(41a)

A = 2µ(θ − H), B = 2µ(θ + H). (41b)

An exact expression for Ps can be obtained using the following proposition.

Pη−µ
s =

0.5
Γ(µ)

(
µθ

Hγ

)µ
{

µ−1

∑
k=0

akγk(−1)kΓ(µ− k)2µ−k

[
(−1)k

(
λ +

2A
γ

)k−µ

×
∫ ∞

0
e−x/2[1− (1− e−x/2)L]Lk−µ

[
λγx

2(λγ + 2A)

]
dx

+ (−1)µ

(
λ +

2B
γ

)k−µ ∫ ∞

0
e−x/2[1− (1− e−x/2)L]Lk−µ

[
λγx

2(λγ + 2B)

]
dx ]}. (42)

Proposition 8. The exact symbol error probability of LoRa systems operating under physical η-µ
fading channels can be expressed in terms of a single integral as (42).

Proof. The proof can be readily deduced by following the same steps as in the proof of
Proposition 1.

3.5. Symbol Error Probability for Generalized Fading Channels Using a Mixture
Gamma Distribution

In what follows, we present analytical results for the SER of LoRa systems assuming
generalized fading channels for which the PDF of the SNR can be expressed as a mixture
gamma distribution. As was shown in [40], the proposed approach is valid for a plethora of
fading distributions, including the κ-µ, the η-µ and composite fading/shadowing channels
such as the generalized-K and the Suzuki ones. The PDF of h2 can be expressed as [40]
(Equation (1))

fh2(y) =
Nterms

∑
i=1

aiyβi−1e−ζiy, (43)

where Nterms is the number of terms required for a given accuracy, and ai, βi and ζi are
the parameters of the ith Gamma component. The parameter Nterms can be selected so
that the first k moments of the original and the approximate distributions are matched
or the Kullback–Leibler distance of the original and the approximate distributions is
minimized [40]. For such channels, an exact expression for Ps can be obtained using
the following proposition.

Proposition 9. The exact symbol error probability of LoRa systems operating under generalized
fading channels can be expressed in terms of a single integral as

Pgen
s =

1
2

Nterms

∑
i=1

ai(Nγ + ζi)
−βi Γ(βi)

∫ ∞

0
e−x/2

× [1− (1− e−x/2)L]L−βi

[
Nγx

2(Nγ + ζi)

]
dx (44)

Proof. The proof can be readily deduced by following the same steps as in the proof of
Proposition 1.
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4. Numerical Results

In this section, numerical results are presented to validate the proposed error rate
analysis. Analytical results are compared with equivalent ones obtained using Monte-
Carlo simulations. A number of random samples equal to 105 is used to ensure statistical
convergence. The simulation methodology is described in Algorithm 1. Unless otherwise
specified, values of SF of 7 and 12 have been assumed.

Algorithm 1 Monte-Carlo simulation methodology.

Require: Number of samples ≥ 0
Es ← SNR
errors← 0
Number of samples← 105

while Number of samples 6= 0 do
generate random channel coefficient h for a given fading distribution
generate noise coefficient φi from a normal distribution
generate ρ2 as the maximum of exponential random variables

if ρ2 > |h
√

Es + φi|2 then
errors← errors + 1

end if
Number of samples← Number of samples− 1

end while

Figures 2 and 3 depict the BER of LoRa modulation in the presence of Nakagami-m
fading as a function of γ for m ∈ {1, 1.5, 2, 3, 3.55}, and SF of 7 and 12, respectively. In
both figures, approximate BER results for m > 1 were obtained using the approximation
presented in Proposition 2 as well as the moment matching method in Proposition 3. The
exact BER values were obtained using the two-fold integral in (9), the single integral
expression in Proposition 1 and Monte-Carlo simulation based on (5), using 105 random
samples. For m = 1, i.e., Rayleigh fading, approximate results were obtained using (23). As
it can be observed, the approximate formulas obtained using Proposition 2 match well the
exact results in the entire SNR region. In addition, the moment matching method yields
accurate results for low values of m; nevertheless, deviations from the exact results are
observed for m > 2 and high SNR values. Finally, for Rayleigh fading, (23) yields very
accurate results that are practically indistinguishable from the exact ones.
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10-1

100
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 Approximation
 Moment Matching
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m = (1, 1.5, 2, 3, 3.55)

SF = 7

Figure 2. BER of LoRa systems operating in the presence of Nakagami-m fading as a function of the
SNR, γ, for SF = 7 and various values of m.
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Figure 3. BER of LoRa systems operating in the presence of Nakagami-m fading as a function of the
SNR, γ, for SF = 12 and various values of m.

Figures 4 and 5 depict the BER of LoRa modulation in the presence of Rice fading as a
function of γ for K ∈ {1, 5, 10}, and SF of 7 and 12, respectively. The exact BER values were
obtained using both the two-fold integral in (9) as well as the single integral expression in
Proposition 4. In both figures, approximate BER results have also been obtained using the
approximation presented in Proposition 5. As it can be observed, the approximate formulas
obtained using Proposition 2 match well the exact results in the entire SNR region for all
values of K.
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Figure 4. BER of LoRa systems operating in the presence of Rice fading as a function of the SNR, γ,
for SF = 7 and various values of K.
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Figure 5. BER of LoRa systems operating in the presence of Rice fading as a function of the SNR, γ,
for SF = 12 and various values of K.

Next, we estimate the BER of LoRa systems in an agricultural environment, described
in detail in [41]. In that work, an experimental test bed exploiting smartphone components
was utilized in a measurement campaign, performed under realistic, in terms of agriculture,
conditions. Specifically, part of the measurement campaign focused on measuring the
Received Signal Strength Indicator (RSSI) for various distances between the LoRa radio
modules participating in the experiments and for various transmit power level settings.
Both LoRa radios had their transmit power adjusted to 10 dBm, the SF was set to either
7 or 11 and the bandwidth (BW) was 125 kHz or 250 kHz. It has also further been assumed
that small scale fading is modeled by the Rice distribution with K = 2.63 dB, a typical
value encountered in rural environments [42]. The noise power equals −85 dBm. Figure 6
depicts the estimated BER of the considered propagation scenario as a function of the link
distance. Again, an excellent match of exact and approximate results was observed for all
test cases under consideration.
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 Approximation
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R
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Figure 6. BER estimation of LoRa systems operating in the presence of Rice fading in an agricultural
environment using a measurement campaign.
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Figures 7 and 8 depict the SER of LoRa modulation in the presence of Hoyt fading
as a function of γ for q ∈ {0.1, 0.5, 0.9}, and SF of 7 and 12, respectively. Again, the
exact BER values were obtained using both the two-fold integral in (9) and the single
integral expression in Proposition 6. The approximate BER results were obtained using
Proposition 7. In order to derive the approximate BER results, the corresponding infinite
series were truncated to N = 220 and N = 350 terms for q = 0.1 and SF of 7 and 12,
respectively whereas for q = 0.5 and q = 0.9, only 20 terms were sufficient to provide
a good match with the analytical results for both considered values of SF. Again, the
approximate formulas obtained using Proposition 7 match well with the exact results in
the entire SNR region for all values of q.
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Figure 7. BER of LoRa systems operating in the presence of Hoyt fading as a function of the SNR, γ,
for SF = 7 and various values of q.
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Figure 8. BER of LoRa systems operating in the presence of Hoyt fading as a function of the SNR, γ,
for SF = 12 and various values of q.
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Figure 9 depicts the SER of LoRa modulation in the presence of η-µ fading as a
function of γ for SF ∈ {7, 9, 10}. The fading parameters are assumed to be µ = 2.065 and
η = 0.00847518, obtained through a measurement campaign in an indoor environment, as
reported in [27]. In order to apply the analytical results obtained in Proposition 8, a physical
η-µ model with µ = 2 was assumed. Exact results were obtained using Monte-Carlo
simulation. As can be observed, analytical results closely approximate exact ones, for all
considered values of SF, especially for low and medium values of γ, thus demonstrating
the usefulness of the proposed analysis.
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Figure 9. SER of LoRa systems operating in the presence of η-µ fading as a function of the SNR, γ, in
an indoor environment, as reported in [27] and various values of SF.

In the following, we consider LoRa systems operating in the presence of κ-µ fading as
a function of γ. Note that the κ-µ distribution is a two-parameter fading model that well
describes wireless propagation in the presence of a line-of-sight (LoS) component [27]. The
PDF of h2 is given by [27]

fh2(y) =
µ(1 + κ)0.5(µ+1)y0.5(µX,k−1)

κ0.5(µ−1) exp(µκ)

× exp[−µ(1 + κ)y]Iµ−1

[
2µ
√

κ(1 + κ)y
]

(45)

where κ and µ account for the intensity of the LoS component and the Nakagami-m
component, respectively. Note that the κ-µ distribution includes both the Nakagami-m
(κ = 0) and the Rice (m = 1) distributions as special cases.

Using [40] (Equation (19)), the parameters of its mixture gamma approximation can be
expressed as

ai = ψ(θi, βi, ζi), βi = µ + i− 1, ζi = µ(1 + κ) (46a)

θi =
µ(1 + κ)0.5(µ+1)

κ0.5(µ−1) exp(µκ)

µ2i+µ−3[κ(1 + κ)]0.5(2i+µ−3)

(i− 1)!Γ(µ + i− 1)
(46b)

ψ(θi, βi, ζi) =
θi

∑Nterms
j=1 θjΓ(β j)ζ

−β j
j

. (46c)
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Figure 10 depicts the SER of LoRa systems over κ-µ fading, assuming µ = 2.1, κ = 10
and SF ∈ {7, 9, 10}. The κ-µ distribution was approximated with a mixture gamma dis-
tribution using 37 terms. As it is evident, the results obtained using the mixture gamma
approximation match very well with the exact ones, obtained using (9) and (45), for all
considered values of SF.
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Figure 10. SER of LoRa systems operating in the presence of κ-µ fading as a function of the SNR, γ,
for κ = 10, µ = 2.1 and various values of SF.

Finally, it is worth pointing out that our newly derived formulae for Rice and Nakagami-
m fading were tested against the ones proposed in [23] and a close match was reported.
Nevertheless, as also mentioned in the introduction section, the proposed analytical frame-
work still provides accurate results with much lower complexity than those reported
in [23].

5. Conclusions

In this work, we elaborated the LoRa system model to include an extensive perfor-
mance analysis in the presence of various types of fading channels, using exact single
integral expressions as well as accurate approximations. The results presented herein are
valid for most of the well-known fading models available in the open technical literature.
Moreover, they are computationally efficient and thus they may serve as a useful tool for
system engineers for performance evaluation purposes.
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Appendix A. Evaluation of I(a, b, c, p)

In order to obtain an analytical expression for I(a, b, c, p), we first employ an infinite
series representation for the modified Bessel function, namely [30] (Equation (8.447/1))

I0(cx) =
∞

∑
n=0

c2kx2k

22k(k!)2 (A1)

Substituting (A1) into (37) and exchanging the series and integral operators—a valid
operation due to the uniform convergence of the resulting integrals—I(a, b, c, p) can be
written as

I(a, b, c, p) =
∞

∑
n=0

c2k

22k(k!)2

∫ ∞

0
x2k exp(−px)

Q1(a
√

x, b)dx. (A2)

Because 2k is always an integer, (A2) can be evaluated using [31] (Equation (11)),
yielding (A2), thus completing the proof.

Table A1. Mathematical Notations.

 =
√
−1 imaginary unit

z∗ conjugate of the complex number z
Pr{·} probability operator
EX〈·〉 expectation of the random variable (RV)
fX(·) probability density function of the RV X
FX(·) cumulative distribution function of the RV X
δi,k Kronecker delta function: δi,k = 1 for i = k and 0 otherwise

Ia(·) modified Bessel function of the first kind and order a [30] (Equation (8.431))
Γ(·) Gamma function [30] (Equation (8.310/1))

Γ(·, ·) incomplete Gamma function [30] (Equation (8.350/2))
pFq(·) generalized hypergeometric function [30] (Equation (9.14/1))

Qm(·)
generalized Marcum-Q function [35]:
Qm(a, b) = a1−m ∫ ∞

b xm exp
[
−(x2 + a2)/2

]
Im−1(ax), m ≥ 1

Lν(·)
The generalized Laguerre function of order ν [30] (Equation (8.972/1)):
Lν(z) = 1F1(−ν; 1; z)
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