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Abstract: Only with new sensor concepts in a network, which go far beyond what the current
state-of-the-art can offer, can current and future requirements for flexibility, safety, and security
be met. The combination of data from many sensors allows a richer representation of the observed
phenomenon, e.g., system degradation, which can facilitate analysis and decision-making processes.
This work addresses the topic of predictive maintenance by exploiting sensor data fusion and artificial
intelligence-based analysis. With a dataset such as vibration and sound from sensors, we focus
on studying paradigms that orchestrate the most optimal combination of sensors with deep learning
sensor fusion algorithms to enable predictive maintenance. In our experimental setup, we used raw
data obtained from two sensors, a microphone, and an accelerometer installed on a brushless direct
current (BLDC) motor. The data from each sensor were processed individually and, in a second
step, merged to create a solid base for analysis. To diagnose BLDC motor faults, this work proposes
to use data-level sensor fusion with deep learning methods such as deep convolutional neural
networks (DCNNSs) for their ability to automatically extract relevant information from the input
data, the long short-term memory method (LSTM), and convolutional long short-term memory
(CNN-LSTM), a combination of the two previous methods. The results show that in our setup,
sound signals outperform vibrations when used individually for training. However, without any
feature selection/extraction step, the accuracy of the models improves with data fusion and reaches
98.8%, 93.5%, and 73.6% for the DCNN, CNN-LSTM, and LSTM methods, respectively, 98.8% being
a performance that, according to our reading, has never been reached in the analysis of the faults
of a BLDC motor without first going through the extraction of the characteristics and their fusion
by traditional methods. These results show that it is possible to work with raw data from multiple
sensors and achieve good results using deep learning methods without spending time and resources
on selecting appropriate features to extract and methods to use for feature extraction and data fusion.

Keywords: accelerometer; brushless direct current motor; deep convolutional neural networks; deep

learning sensor fusion; faults detection; long short-term memory; microphone

1. Introduction

Cyber-physical systems directly support the agenda of Industry 4.0, which is a cru-
cial driver of the worldwide economy and growth in industrial production, industrial
automation, and related logistics. The leading industries in this area need novel solutions
to develop energy-efficient, highly flexible, robust, safe, and secure systems for the next
generation of factories in the age of Industry 4.0. The key elements here are to increase
efficiency, decrease time to market, and enhance flexibility. Industry 4.0 achieves very
promising improvements for production processes, including reducing cost, improving
quality, and manufacturing almost personalized products. All these benefits are related
to much more data about the status of a production process being available to react to
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a current situation or even predict a status in the future. Reducing production costs can also
be considered as a means to increase the sustainability of the production process. In other
words, if all the additional data provided by Industry 4.0 are available, the break-and-
replace cycles that can lead to high costs due to production downtime will be reduced
tremendously. An approach to predicting maintenance will save resources such as personal
costs and material, which may not be used for further production anymore (e.g., in metal,
chemical, or biological production processes). One step ahead in novel production environ-
ments is to predict maintenance cycles of machines so precisely that the machine downtime
can be scheduled optimally during time slots, where a production loss does not lead to
trouble in the overall production processes in a plant. Many industries still use time-based
maintenance, which is maintenance performed at fixed time intervals according to a sched-
ule. It is costly because it could lead to unnecessary maintenance when the machines do
not encounter any problem [1].

The challenge is to have resilient industries that implement predictive maintenance
(PM). This type of maintenance is scheduled according to prediction algorithms that can
determine the expected time of future damage to the machine. Therefore, it tries to achieve
the best trade-off between executing the maintenance too early (which could lead to losses
by replacing parts that are still functional) and too late (which could also lead to time losses
due to unexpected machine downtimes). To ensure success, it is preferable to have living
predictive models, i.e., models that will be able to adapt to changes in the environment
using real-time sensory data. According to [2], the appropriate technology to propel the per-
formance of such models would be data fusion, which facilitates the flow of information
from raw sensory data to high-level understanding and information. However, the choice
of machine learning algorithms that will be used to train the models with the raw data
must be careful. In accordance with [3], deep learning, which is a subdivision of artificial in-
telligence, is defined as a set of multi-layered network-building algorithms that allow them
to process raw data and extract certain patterns to perform complex and intelligent tasks.

This paper addresses the PM topic by artificial-intelligence-based analysis of signals
measured by sensors connected to brushless direct current (BLDC) motors. The scientific
literature counts numerous papers about fault diagnosis on applications with BLDC motors
associated with different types of sensor data and different ways to combine them, including
data-level, feature-level, and decision-level combinations; they deal with input data patterns
of distinct types. To the best of our knowledge, all the state-of-the-art works on PM of
BLDC have employed feature-level fusion [4-7]. The methods presented require extensive
knowledge of the application domain and signal processing. They usually yield good
precision in fault detection and diagnosis. For example, Shifat and Hur reached around
98% accuracy, with feature-level fusion [4].

In contrast to this approach, data-level fusion is more generic and requires less exper-
tise in signal processing. The reduced complexity of signal processing algorithms often
leads also to a reduced performance requirement in embedded systems, which is crucial
when the algorithms are implemented on a local sensor node. However, sensor values
come with disturbances or even interruptions, which can be handled with traditional signal
processing algorithms. The trade-off is to find a balance between the traditional algorithms
and the Al methods and which data are used as input data for the Al In general, all meth-
ods must deal with raw data imperfection, no matter how complex the data. The challenges
we address are showing that data-level fusion leads to a benefit with a similar structure
of the collected data, which deep learning algorithm is a promising candidate for sensor-
data-level fusion, and how a general paradigm can be extracted from our investigations
and experimental setup.

The main task in PM is the recognition of the health conditions of a system [8]. To ex-
plore different types of sensory data and their combination at the data level, we built
an experimental setup (described in Section 5.1) that allowed us to construct a new dataset
with vibration and sound data obtained from sensors connected to a BLDC motor. This new
dataset was used to perform the detection of different loads and weights that were used
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to emulate real tools such as drills and cutting heads that are mounted on a BLDC motor.
With this setup, three methods were evaluated and compared: deep convolutional neural
networks (DCNNs), the long short-term memory method (LSTM), and convolutional long
short-term memory (CNN-LSTM). Our main results are as follows:

* In our configuration, the sound signals performed much better than the vibration
signals when it came to assessing the condition of the machine, with an accuracy of
96.8% compared to 71.1% with vibration for the DCNN model.

¢  Using the data from both signals with deep learning sensor fusion, the three models
DCNN, CNN-LSTM, and LSTM achieved 98.8%, 93.5%, and 73.6% accuracy, respectively.

¢  The DCNN algorithm is the most promising deep learning sensor fusion algorithm
for BLDC motor fault diagnosis.

With these results, we show that our new dataset was well constructed and achieved
good results, such as those obtained with the public dataset mentioned in Section 6. We also
show that a robust algorithm can train strong models with single sensor data to perform
an accurate detection task. Finally, our experiments show that good results can be achieved
with less effort, resources, and time when sensor fusion is performed at the data level with
an appropriate deep learning sensor fusion method.

The remainder of this article is structured as follows: Section 2 reviews related work.
A background on predictive maintenance and sensor fusion is provided in Section 3.
The description of the proposed approach is presented in Section 4. Section 5 describes
the setup and the data collected from it. The different methods explored are presented
in Section 6. Section 7 provides the details of the training processes. The results and
discussion are presented in Section 8. Section 9 concludes and presents the future work.

2. Related Works

Various industrial applications of sensor fusion can be found in the literature, including
planning of production processes [9,10], identification of different parts [11], monitoring
the melting process of blast furnaces [12], and PM [13], among others. To present a broad
review of the different ways sensor fusion is implemented, this section is not only limited
to the application of PM to BLDC motors and its tools.

Regarding the BLDC motor’s fault diagnosis, the existing state-of-the-art works are
based on feature-level sensor fusion. In [14], frequency-domain features were extracted,
then fused from four sensors (one vibration sensor and three current sensors), and a back-
propagation neural network (BPNN) was used to classify six health states. The authors
showed that using a single current signal, the model achieved an accuracy of about 93.5%,
compared to 98.3% when using the fusion of three phases of current signals. A feature-level
sensor fusion of a vibration sensor and a current sensor was performed in [4,6,7]. In [6],
a discrete wavelet transform was applied to extract sensory features, then feature reduction
was performed by orthogonal fuzzy neighborhood discriminative analysis (OFNDA),
and a recurrent neural network (RNN) was used to classify four bearing states. In [4],
several features were extracted from the sensor signals in the time and frequency domains.
The most relevant features were then selected based on monotonicity and correlation,
and then, PCA was used for feature reduction. An artificial neural network (ANN) was
used to classify three health states. The authors in [7] studied the combination of three
techniques, fast kurtogram (FK), autogram, and motor current signature analysis (MCSA),
to classify three states.

The authors in [15] examined the single sensor case and all the sensor fusion cases (data,
feature, and decision fusion) of four sensors. The DCNN, support vector machine (SVM),
and back-propagation neural network (BPNN) were used for diagnosing a planetary gear-
box. The results indicated that using a single vibration signal, the DCNN, BPNN, and SVM
models achieved an accuracy of 81.45%, 42.56%, and 45.11%, respectively, compared to
99.8%, 53.28%, and 51.62% using a data-level fusion of four signals: the instantaneous
angular rate (IAS) signal, vibration, acoustic, and current signals. In addition, the authors
presented various results obtained with feature-level fusion. A multi-scale CNN-LSTM
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model was proposed in [16] to diagnose a rolling bearing using raw accelerometer signals.
Ten classes of the bearing health states were considered (a normal state and nine faulty
states). The results showed that the proposed method was able not only to achieve an aver-
age accuracy of 98.46%, but also to outperform some advanced intelligent algorithms based
on prior knowledge such as LSTM and SVM.

The authors in [17] performed a multi-sensor feature fusion to assess the health condi-
tions of rotating machinery. The autoencoder (SAE) neural network for feature fusion and
the deep belief network (DBN) for training demonstrated that the fusion of four vibration
signals recorded under different running speeds achieved higher accuracy compared to
the case of a single vibration signal. The authors in [18] developed a sensor-fusion-based
in-depth feature learning approach to identify the gear crack severity. Three stacked au-
toencoders were used to fuse features extracted manually from three sensors. The fused
features were then presented to the classifier, where four classes of crack severity were
considered. The experiments showed that the developed approach achieved an accuracy of
90.4% with the fusion of the three sensors’ signals, compared to about 80% with each signal.
A deep belief network was applied in [19] to predict the cutter wear out using three sensors.

The authors in [9] proposed a multi-stage deep learning classifier to determine
the other production processes based on the quality of products. At first, stacked LSTM
autoencoders were used to extract the features from the sensor signals, and then, a deep
feed forward neural network was used for three-class classification. In [12], a seven-class
RNN classifier was used to classify the variation trend of silicon content to monitor the blast
furnace. The inputs of the classifier were generated through a developed multi-level feature
fusion. Three feature sets were fused: basic features from the process, statistical features,
and abstract features learned through stacked denoising autoencoders (SDAEs). Acous-
tic emission (AE) is an effective non-destructive testing method used to detect failures.
To recognize and predict coal rock burst hazards, the authors of [20] proposed a new
multi-resolution feature fusion SVM (MRFF-SVM) recognition approach. Three improved
processes were included in the proposed approach: the coiflet wavelet transform (CWT)
to split AE waveforms into multiple perspectives for feature vector extraction, a multi-
resolution feature fusion (MRFF) method to merge these vectors into an improved MRFF
feature vector, and support vector machines (SVMs) to identify coal rock bursts. In [21],
the authors presented a fusion of vibration and acoustic emission features for tool condition
monitoring systems in metal cutting processes. Time domain, frequency domain, and time-
frequency domain features were extracted and merged to classify each tool condition using
a machine learning classifier.

The authors in [22] proposed a method to implement a sensor fusion with hetero-
geneous data. The technique was called multi-layer attribute-based conflict-reducing
observation (MACRO), and it aims to reduce the effect of conflicting input data on the fu-
sion result. Unlike the existing BLDC-related works that were mentioned above [4-7], our
work is not based on the feature-level sensor fusion. Similar to [15], our work is based on
data-level sensor fusion. It relies entirely on the capability of a deep learning model to
extract/fuse features from the combined sensor signals and make the classification decision,
as shown in the subsequent sections.

3. Background
3.1. Predictive Maintenance

The concept of predictive maintenance could be defined as a continuous monitoring
approach to anticipate system failures, which will lead to maximizing the time interval
between consecutive maintenance tasks and reducing the overall costs of production [23].
There are three main types of maintenance approaches capable of monitoring the condition
of equipment for diagnostic and prognostic purposes: statistical, artificial intelligence,
and model-based approaches. Since model-based approaches rely on mechanical knowl-
edge and the theory of the equipment to be monitored and statistical approaches require
mathematical expertise, artificial intelligence approaches in the field of predictive mainte-
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nance are becoming increasingly popular. With the increasing amount of industrial data
in the fourth industrial revolution, current works applied deep learning solutions such
as the autoencoder, convolutional neural network, deep belief network, and others for
predictive maintenance tasks, as reported in [24]. Bearings, blades, motors, valves, gears,
and cutting tools are key components commonly monitored. Common types of failures
detected include tool imbalances, fatigue, abrasive and corrosive wear, friction, defects,
and leakage detection, among others [25].

Industrial use cases face two major challenges: their behavior and the variability
of their data. Even equipment with the same specifications is likely to encounter these
problems, due to mechanical tolerances, assembly adjustments, environmental variations,
etc. The above factors make it difficult to reuse PM models on different machines and
equipment. Other significant challenges include collecting quality data, especially failure
data, and performing appropriate pre-treatment and feature engineering to obtain a dataset
that represents the problem [25].

The shortcomings of PM include the fact that systems can lead to false maintenance
requests, due to the misinterpretation of the data; predictive analysis may not take into
account contextual information, such as the age of the equipment or the weather. However,
PM systems need to combine several properties to ensure a minimum accuracy, including
robustness, adaptability, identifiability of multiple faults, etc. To this end, the use of
different sensors and the fusion of their data for equipment monitoring are a major asset as
this allows a diversified representation of information describing the environment.

3.2. Sensor Fusion

Sensor data are gradually driving the Internet of Things (IoT), with devices perform-
ing actions measured based on everything from sound, vibration, speed, temperature,
and more. Each datum is to be captured, sent, and finally used, which poses a constant chal-
lenge for companies. Understanding how to process sensor data can help developers and
decision-makers obtain the most from this powerful information. Data from one or more
sensors can be used individually or combined to assess the condition of a machine. Sensor
fusion refers to integrating data from two or more sensors to achieve a more consistent rep-
resentation of the observed phenomenon and reducing individual sensor limitations [14].
The main advantages of sensor fusion include increased reliability, robustness, and accuracy,
extending the system coverage, and reducing uncertainty [26]. According to the level at
which the fusion occurs, three main categories of data fusion techniques can be defined:

¢ Data-level fusion: This method of fusion combines raw data from different sensors to
build a data sample. The fused sensors’ data structures should be similar, and synchro-
nization between sensory signals should be achieved before fusing [14]. This fusion
has higher requirements for storage, communication, and computation resources
than the other two categories of sensor fusion. However, since the data-level fusion
occurs in an early stage of the processing chain, it does not cause any loss of the raw
data’s inherent details, which helps to achieve high accuracy in classification tasks.
Furthermore, it does not rely on signal analysis, which requires knowledge of signal
processing. These two advantages are beneficial in handling complex fault diagnosis
tasks [16].

e  Feature-level fusion: Here, the features are extracted from individual sensors and then
combined in one feature sample that can be input to a pattern recognition model [27].
This fusion level can be advantageous when the sensors to be fused have different
data formats. However, for feature extraction, some transformations of the raw sensor
signals are usually needed, e.g., fast Fourier transform and discrete wavelet transform.
Furthermore, it is essential to implement feature selection and reduction techniques,
e.g., principal component analysis (PCA), to reduce the dimension of the fused feature
sample [27]. These processes require knowledge of signal processing and mathematics,
and they are also time-consuming in terms of algorithmic complexity, which leads to
increased latency on computing systems [16].
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*  Decision-level fusion: This fusion involves separate decision-making for each sensor
and then combining those decisions to provide the final decision. Due to the pres-
ence of several separate decisions, this category is the most resilient compared to
the previous two methods when it comes to individual sensor data recognition such
as in healthcare applications [26]. However, considering the detection and identifi-
cation tasks, the improvement gained by this fusion is not significant compared to
the other two fusion methods reported above because each decision is only based
on the information provided by one sensor [28].

4. Description of the Proposed Approach

Fault detection is an important task to ensure the proper functioning and stability
of an industrial system. When present in equipment, motors are the main components
that allow the equipment to operate. However, it is very difficult to analyze the condition
of motors because they are usually installed in a hostile environment, generating noise-
filled data. The work presented in this paper focuses on BLDC motors. An experimental
setup that can be used as a basic model for small motor faults or speed measurements was
designed to record data in a real environment that were used for training. The investigations
carried out allowed us to draw a comparative figure between the approach used so far for
fault detection of a BLDC motor and the approach proposed in this work.

Figure 1 shows on the left the approach used by the authors as presented in the Related
Work Section and on the right the approach proposed in this paper. The former contains
four steps, whereas we propose a two-step approach. The first step when the raw dataset is
available is the same in each approach. This is the preprocessing of the data, which results
in the removal of noisy and redundant data. After this step, we propose to move directly to
training the detection model using deep learning methods or algorithms. Some of these
methods can extract important information, merge it, and then use it for training. This multi-
faceted approach combines the last three steps of the approach used so far by the authors
who have explored fault detection in a BLDC engine. This avoids the need to worry about
the selection/extraction of information and the choice of fusion algorithms, which often
require technical skills of the studied equipment to know the type of characteristics to be
extracted, but also skills in signal analysis. However, most of the time, machine learning
engineers have to deal with datasets without having the technical skills mentioned above.
The approach we propose saves time because it is summarized in two steps that avoid
machine learning researchers investing in understanding the technical details related to
the studied domain.

The approach in other BLDC motor

faults detection papers The approach proposed in this paper

Sensors (@) ) Sensors (@) )
Raw data / / ' \\ Raw data // . \\
Data pre-processing Data pre-processing

Featwres it "
extracted T Training
fromrawdata [l

[AN)
(hN)
Data fusion E i
(N
(RN)

Training

Figure 1. Comparison of the approach used so far with the proposed approach for the BLDC motor
fault detection task.
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The work carried out set up an experimental system for the collection of real data,
which were used to train by three deep learning methods, namely the DCNN, LSTM,
and CNN-LSTM.

5. BLDC Motor: Setup and Data

As mentioned earlier, in this work, we used a deep learning sensor data fusion for
identifying different tools attached to a BLDC motor by analyzing sound and vibration.
The experimental setup is presented in Figure 2a.

LAN-cable
shape 1 decentered: shape 2 decentered:
487¢g 6.15g shape 3 decentered: shape 4 decentered:

i 7.28¢ 861g

shape 4 centered:

Power supply
for BLDC motor ‘

)

= 2 amplifiers

Metal plate

(@) (b)
Figure 2. Experimental setup. (a) Setup. (b) Loads mounted on the motor.

5.1. Experimental Setup

The BLDC motor was attached to a bracket, which was fixed to a metal plate by
a suspension. The speed of the motor can be configured by the speed controller. The motor
was connected to a power supply, and a USB cable connected the controller and the com-
puter to display the speed of rotation. A microphone and an accelerometer were used to
measure sound and vibration, respectively. A hydraulically clamped magnetic stand was
used to place the microphone near the loads. The accelerometer was glued to the elastic
support of the motor. Both the microphone and the accelerometer were connected to
the Redpitaya-Board via an amplifier. The Redpitaya-Board is a small PC and uses a Xilinx
Zynq 7010 System-on-Chip. This system-on-chip combines a dual-core ARM Cortex-A9,
which runs a Linux distribution, and an FPGA, used for fast data acquisition and artifi-
cial intelligence acceleration. The board was deployed to acquire amplified signals via
an analog-to-digital converter (ADC). FPGAs allow close hardware collaboration and hard-
ware acceleration of algorithms. The board was needed because of the high sampling rates.
The board was used to collect the data and transmit the acquired data via Ethernet to a host
PC. In the next steps, the algorithms was implemented on the FPGA and the processor
on the system-on-chip with an HW/SW design process, where the artificial intelligence
algorithms specifically benefit from the acceleration offered by the FPGA.

Both the microphone and the accelerometer use a sampling rate of 1,953,125 Hz.
During recording, the data were stored in packets of 16,384 samples. The packets were
cached so that the recording frequency remained between 15 and 20 Hz. The Redpitaya-
Board was connected via a local network to the host computer, where the data were finally
stored. The data were recorded in simple text files.

5.2. Data

In this study, we chose a microphone and an accelerometer as sensors for fault diagno-
sis of the BLDC motor:
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* A microphone is an acoustic electrical transducer or sensor that detects and converts
sound pulses into electrical signals. In machine diagnostics, the acoustic signal is one
of the most important sources of information. Most of the events that are important
for the diagnosis of machines and processes can be detected and evaluated efficiently
using an acoustic signal. It requires significant computing capacity and significantly
higher sampling rates for signal processing [29].

*  An accelerometer is an electromechanical instrument that monitors acceleration forces.
There are several types of sensors that can detect the magnitude and direction of
the acceleration as a vector quantity and can be used to detect position, shock, etc. [30].
Accelerometers measure vibrations in rotating equipment. They are the most com-
monly used data sensors for fault detection and condition monitoring of rotating
machinery, as they are easy to handle and process [31].

These two sensors were selected for the various reasons mentioned above. Since
errors in industrial operations are unpredictable, for example the electrical and mechan-
ical signatures of a motor can vary greatly depending on the degree of stress to which
it is subjected [4], an effective condition monitoring system requires multi-sensor data.
Multi-sensor data involve sensor fusion, which suffers from two main challenges when
used in combination with complex tasks such as fault diagnosis. These are the selection
of the fusion level and the extraction of features from multi-sensor data, as the sensor
data evolve in different ways. These challenges are present due to increasing uncertainties
in measurements, increasing conflicts, noise, increasing data dimensions, etc. [15]. In addi-
tion, data from one sensor may indicate abnormal behavior, while the other may show no
detectable change in trend.

The experiments carried out in this work produced a large amount of data. Therefore,
taking into account the various concerns mentioned above, we developed fault diagnosis
models based on deep learning data fusion algorithms that can automatically merge
the input data and extract relevant features [15].

The experimental setup includes seven different tools to distinguish: Shape 1 de-
centered (S1D), Shapes 2, 3, and 4 centered and decentered (52C, S2D, S3C, S3D, S4C,
54D; see Figure 2b). The different weights with centered/decentered characteristics were
considered in this work as drivers of different types of faults. In each experiment, only
one of them was mounted on the motor and examined. During the experiment, the speed
of the motor varied between 4000, 6000, 8000, 10,000, 12,000, and 14,000 revolutions per
minute (rpm). Table 1 provides a detailed description of the data set. Six signals per data
type were acquired. The six signals correspond to the different speeds set after each run
of the system. Each signal was captured for five minutes. Figure 3 shows sample signals
captured from the accelerometer and microphone for each class.

Table 1. Data set.

. Signals Length
Classes Data Types Number of Signals (Number of Points)
. . 5
Classi;i=1:7 Vibration 6 0,000,000

Sound 6 20,000,000
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Figure 3. Sample of recorded accelerometer and microphone signals for each class.

6. Methods
6.1. Data Processing

The preprocessing step (see Figure 4) was based on Luyang et al. [15]. After removing
noises from the collected signals, they were divided into small segments of 1000 points each.
At the end of the segmentation step, the microphone and accelerometer signal segments
were combined to form the input vectors of the model. Each input vector was a vector of
2000 points.

Signals data Data Preprocessing: Signal segmentation Input signal

Vibrations — segment 1

segment n \

segment i
+
segment i

--- segment n /

Sounds — segment 1

Figure 4. Preprocessing.

6.2. Deep Learning Sensor Fusion

Often considered as an improvement of neural networks, deep learning is a component
of artificial intelligence and machine learning that attempts to mimic human thinking.
Deep learning algorithms create multi-layered networks that process raw data and extract
patterns used to perform complex, intelligent tasks by analyzing them. In the field of deep
learning, there are many different types of algorithms. Each technique is unique and is
tailored to certain applications, where the goal is to achieve the best possible performance.
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There has been a notable increase in the amount of research associated with deep learning
sensor fusion algorithms, with convolutional and recurrent neural networks (CNN and
RNN) being among the most widely used [3]. In this work, three deep learning methods
were investigated, namely: the DCNN for its ability to automatically extract important
features from the raw input data, combine them through its multiple layers, and thus, result
in an accurate model; LSTM because it is a method that deals with long-term relationships
between data, allowing a decision to be made at a given point in time based on a set of
information stored at previous times [3,25]. This is an advantage for predictive maintenance
of equipment, as it allows a decision to be made at a given time on the state of an item of
equipment based on the history of events that have occurred during its operation. Since
the approach used in this paper involves passing raw data into the inputs of the different
methods, the CNN-LSTM method was studied here to assess whether the addition of
a convolutional layer to the LSTM could improve its performance since the LSTM method
does not incorporate layers that extract features from the raw data.

6.2.1. Deep Convolutional Neural Network

The architecture of the DCNN model used in this work is shown in Figure 5. It is based on
a classical CNN and takes a concatenation of raw vibration and sound signals as the input and
passes them through a set of convolutional filters, each of which activates certain features of
the signal. This process on the convolutional filters is repeated on the five convolutional layers
in this architecture. To speed up network training and reduce sensitivity to initialization, batch
normalization layers are used between convolutional layers and non-linear activation layers
(ReLU). We used pooling layers to simplify the output and reduce the number of parameters
the network had to learn by performing non-linear downsampling. This architecture was
used to train on data from our setup, with the following training options, minibatch size: 2000,
max epochs: 10, optimizer: Adam [32], learning rate: 0.001.

Qutputs
nvz
S
Y7 — 81D
Y/ onv
/A - N $2D
V. 1
/N nv4
. ) on —_— S2
Laye y 2 D
ﬁ _— S30
D - — 83
h —_ 84D
convolutional >4
[ | batchNormalization + RelLU
20 .
1x50 D/ max pooling

Figure 5. DCNN architecture (S: shape, D: decentered, C: centered).

6.2.2. Long Short-Term Memory

The LSTM architecture presented in Figure 6 is the one used for our experiment.
This architecture is built with an input layer, which also takes as input the concatenation
of signals like the previous method. The input layer is followed by two LSTM layers that
learn long-term dependencies, each of which is followed by a dropout layer to prevent
overfitting. While LSTM can handle long-term dependencies, it still needs to go deep to
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learn a high-level representation and model complex dynamics [33]. The number of hidden
units represents the amount of information stored between the time steps. The last two
layers are used for the classification. This architecture is used with the following training
options: minibatch size: 2000, max epochs: 10, optimizer: Adam [32], learning rate: 0.001,
gradient threshold: 1.

Outputs
== S1D
—= 82D

. . . . —= S2C
125 hidden units 100 hidden units

sequencelnput ) fullyConnected | [ ] — = 3D
Layer —»  IstmLayer —>| dropoutLayer l—b IstmLayer — dropoutlLayer e mﬁmaxLayerJ—b

—=  S53C

—™= S4D

—F s4C
Figure 6. LSTM architecture.

6.2.3. Convolutional Long Short-Term Memory

The architecture of the CNN-LSTM trained in this work is shown in Figure 7. This ar-
chitecture also takes as input the concatenation of the two types of raw signals. To automat-
ically learn effective features suitable for tool health detection, a convolutional layer is used
to perform feature extraction on the concatenation of the two input signals. To perform
the convolutional operations on each time step independently, a sequence folding layer is
included before the convolutional layer to convert the sequence input into an array. As the
LSTM layers expect a sequence input, a sequence unfolding layer and a flattening layer are
used between the convolutional layers and the LSTM layer to restore the sequence structure
and reshape the output of the convolutional layers into a sequence of features. To train
on our data, we used this architecture, with the following training options: minibatch
size: 1000, maximum epochs: 100, optimizer: Adam [32], learning rate: 0.001, gradient
threshold: infinite.

Outputs

— §1D

—= 52D
50 hidden units =~ S
sequencelnput sequence sequence fullyConnected | [ | —= 830
: - ——» flattenLayer IstmLayer dropoutLayer softmaxLayer
Layer FoldingLayer UnfoldingLayer L ¥ J ¥ P ¥ Layer "
—= S3C
convolution2d _
Layer —'=  s4ap
= s4C

1x100% 10

Figure 7. CNN-LSTM architecture.

7. Training

The training of the DCNN model started with an open-access data set. The public
gearbox data set [34] is a data set consisting of vibration data recorded using Spectraquest’s
gearbox fault diagnostic simulator. It includes healthy and broken tooth data and has been
recorded under the variation of a load from “0” to “90” percent load with four different
sensors in four directions. Ten text files are available for each case. The aim was to classify
the data between the gearbox’s healthy and broken tooth conditions. We gained experience
with this first step to adapt the DCNN to the needs of our data and the experimental
setup. After that process, the topology of the DCNN was migrated to use the data from our
experimental setup.

With two convolutional layers, five and ten filters, respectively, for each layer,and 1 x 20
as the filter size, the accuracy achieved by the 1D DCNN was around 70% for models trained
with data from single sensors and 80% after the data fusion. To improve the results, we
gradually added convolutional layers with an increasing number of filters and filter size
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at each step; the models improved 10% for some and 9% for others. Next, we added
batch normalization layers and the nonlinear function ReLU, which performs a threshold
operation on each element. The softmax activation function is used after the last fully
connected layer to predict the output. We then reached an accuracy of around 100% in all
cases, and we had a suitable set of parameters for the DCNN model.

The same scenario was performed with the LSTM method, i.e., training the model
on a public data set and then using the resulting configuration to train the model on our
data set. Unlike the DCNN model, the L5TM did not give convincing results with our
data. This motivated the choice of the third method, CNN-LSTM, which is a combination
of the two methods mentioned above.

The training of the third model was performed from scratch and was progressively
improved according to the observations. For example, the gradient threshold, which was
set to 1 for the LSTM, was set to infinity for the CNN-LSTM because during training, we re-
alized that the gradient threshold could exceed the set limit, thus disturbing the learning
process. At this stage, the fixed threshold control method was used to stabilize the process
and speed up the learning. If the method is wrongly chosen, the model will not be effective
in the end. However, by setting the gradient threshold to infinity, a significant performance
improvement was achieved, with a huge training time as a counterpart. From one training
of the model to the next, the number of epochs increased from 60 to 100 via 80 because
the learning curve had not yet reached its peak (see Figure 8).

Training Progress (15-Feb-2022 11:30:50) - o x
Training Progress (15-Feb-2022 11:30:50)

Results
Validation accuracy: N/A
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Figure 8. CNN-LSTM training progress.

For all the methods, the global data set was randomly split; a total of 70% of the data
samples were used as the training data and 30% as the test data. The models were developed
using MATLAB on a Linux SMP server with a 48-core CPU and 64 GB RAM. The following
section shows the results.

8. Results and Discussion

The experiments carried out in this work aimed at analyzing the sensor data for fault
detection on the BLDC motor, materialized here by a set of variant shapes. Using three
different methods, the sensor data were evaluated both individually and merged. Several
metrics are available to evaluate the inference of the ML model. Here, Cohen’s Kappa (K),
precision, recall, and accuracy were used and are defined according to the following
Equations (1)-(4), where P,: observed proportion correct, P,: proportion expected correct,
T: true, F: false, N: negative, P: positive.
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8.1. Results of Models Trained on Single Sensor Data

The DCNN and LSTM models were used to assess single sensor data. Figures 9 and 10
show diagrams of the precision and the recall of the DCNN and the LSTM models re-
spectively, to identify each shape using data from each sensor. Table 2 shows the overall
accuracies of the models trained with single sensor data.

Recall Precision

M Accelerometer M Microphone W Accelerometer M Microphone

120

0 I I I I I | I I I I I I I I
s1D s2c 52D s3c 3D s4c 4D
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Figure 9. The DCNN models inferences in terms of recall and precision. (a) Recall. (b) Precision.
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Figure 10. The LSTM models inferences in terms of recall and precision. (a) Recall. (b) Precision.

Table 2. Accuracy of models trained with single sensor data.

Accelerometer Microphone
DCNN 71.1% 96.8%
LSTM 64.3% 63.8%

8.2. Results of Models Trained on Fused Sensor Data

As mentioned earlier, all the methods were used to train on fused signals data. To as-
sess the resulting models, multi-class confusion matrices were computed and Cohen’s
Kappa (K) was measured according to Equation (1). See the confusion matrices in Figure 11,
where the column at the far right of the plot shows the precision, the row at the bottom
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of the plot shows the recall, and the cell at the bottom right of the plot shows the overall
, . .
accuracy. The Cohen’s Kappa scores (k in %) obtained were as follows k = 98%, k = 92.79%,
and k = 69.97% for the DCNN, the CNN-LSTM, and the LSTM, respectively.
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Figure 11. Confusion matrices of models trained with fused data. (a) DCNN confmat. (b) CNN-LSTM
confmat (c¢) LSTM confmat.

8.3. Discussion

From different sensors, one can record particular measurements sensitive to varying
types of conditions. This is why in our configuration, models trained with sounds data
achieved different and better results than those trained with vibration data. These re-
sults also show that some sensors can be used individually, with an appropriate training
model, as is the case for the DCNN model, which gave an accuracy of over 90% with
the microphone data (see Table 2).

From the confusion matrices in Figure 11, we can see the results of models trained with
fused data showing that the DCNN was more accurate than the CNN-LSTM and LSTM.
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The CNN-LSTM method achieved an accuracy of 93.8% compared to 73.6% for the LSTM
method, which allowed us to confirm the hypothesis that the use of a convolutional layer
in combination with LSTM could have a major impact in improving the performance of
LSTM, which was the main reason for choosing the CNN-LSTM method. Although the
models were trained on raw data without a feature extraction step, the ability of the DCNN
to automatically learn relevant features from raw input signals is behind its good-quality
results. The results in [35] indicated that the proposed DCNN-based fusion method also
achieved the best result among other methods with around 98% accuracy on bearing fault
diagnosis. The confusion matrices also present the amount of correctly and misclassified
samples. We can easily observe that the DCNN was more robust and generalized better
than the two other models since it registered just a few misclassifications over all the classes.

The impact of data fusion was most evident in the case of LSTM with around a 10%
improvement over 2% for DCNN. Note that the maximum gain the DCNN could obtain was
4% because the baseline result was already very high (96%). Sensor data fusion is useful,
even when it leads to only small improvements in some cases. The impact of the fusion can
even vary during the operation of the setup. This means that a small impact in the average
of the preciseness to predict wear out can lead in the specific case to a remarkable benefit.
Additionally, small increases in preciseness can be of great value when a large machine can
be prevented from becoming damaged.

9. Conclusions and Future Work

In this work, we examined the impact of data-level fusion on the accuracy of detecting
different tools realized as load shapes on the BLDC motor. Such detection will be useful
in the context of PM, where the detected shape in real machines, e.g., drills and cutter heads,
can indicate the system status. We used a microphone and an accelerometer to record
the corresponding signals under seven different load configurations. We built domain-
specific DCNN, LSTM, and CNN-LSTM models to know which sensor provides the most
useful information or if we can have a better set of information with a combination of
sensors. The experiment conducted in this work also presented methods that can be
applied in association with data-level fusion to achieve promising and good results in fault
diagnosis on BLDC motors.

The microphone sensor data gave better accuracy than the accelerometer data, with an
accuracy of 96.8% for the DCNN and 53.8% for LSTM. The combination of the two sensors
showed an improvement of 2% with the DCNN and at least 10% with the LSTM. These
models achieved an accuracy of 98.8% and 73.6%, respectively. The CNN-LSTM achieved
an accuracy of 93.5% with the merged data. These results indicate that the DCNN can easily
use data-level fusion to evaluate different BLDC engine states with different tools as equip-
ment. The LSTM method did not achieve very interesting results by itself, but combined
with a convolutional layer, the accuracy increased significantly. This means that the LSTM
method has to be used with a feature extraction step to obtain the best results, as it cannot
extract relevant features by itself for learning.

Motivated by the promising results of this work, in the future, we will investigate
multi-sensor data fusion with different sensor positions and additional noise to diagnose
the impact of the environment on the detection task. Additional sensors could be integrated.
This could lead to the selection of an appropriate range of sensors for this particular purpose.
As we have presented this work in the context of PM, it would be interesting in the future
to connect the sensors to a small controller, which will transfer the data to a central node on
which the sensing solutions will be deployed, which will evaluate the data directly. We also
plan to extend the CNN-LSTM architecture used in this work to predict future failures
based on the remaining useful life of the tool.
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Abbreviations

The following abbreviations are used in this manuscript:

BLDC Brushless direct current

DCNN Deep convolutional neural networks
LST™M Long short-term memory

PM Predictive maintenance

HW Hardware

SW Software

FPGA Field-programmable gate array

PC Personal computer

CNN-LSTM  Convolutional long short-term memory
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