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Abstract: The camera is the main sensor of vison-based human activity recognition, and its high-
precision calibration of distortion is an important prerequisite of the task. Current studies have
shown that multi-parameter model methods achieve higher accuracy than traditional methods in
the process of camera calibration. However, these methods need hundreds or even thousands of
images to optimize the camera model, which limits their practical use. Here, we propose a novel
point-to-point camera distortion calibration method that requires only dozens of images to get a
dense distortion rectification map. We have designed an objective function based on deformation
between the original images and the projection of reference images, which can eliminate the effect
of distortion when optimizing camera parameters. Dense features between the original images and
the projection of the reference images are calculated by digital image correlation (DIC). Experiments
indicate that our method obtains a comparable result with the multi-parameter model method using
a large number of pictures, and contributes a 28.5% improvement to the reprojection error over the
polynomial distortion model.

Keywords: camera calibration; point-to-point camera distortion calibration; vision-based human
activity recognition; speckle pattern; digital image correlation

1. Introduction

In recent years, vision-based human activity recognition (HAR) has developed rapidly
with many exciting achievements [1-3]. Camera calibration is the upstream task of vision-
based HAR, which can establish the mapping between real space and image space. Its
accuracy determines the performance of downstream tasks such as feature points recog-
nition and 3D reconstruction, and thereby affects the final performance of vision-based
HAR [4]. For instance, the fisheye camera, which has been widely used in HAR tasks
in the field of monitoring and security, although it has an ultra-wide-angle field of view,
the object at the edge of the fisheye image has great deformation and serious information
distortion. If the distortion of the camera is not accurately calibrated, it will seriously affect
the accuracy of the subsequent algorithm. So, camera calibration is of great significance to
vision-based HAR, containing daily activity recognition, self-training for sports exercises,
gesture recognition and person tracking [5].

Distortion calibration of the camera impacts the accuracy of other parameters’ estima-
tions. With the development of this field, distortion models’ degree of freedom is increasing,
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thus, there is much difference compared polynomial distortion models with point-to-point
distortion models. In 1992, Weng [6] summarized distortion camera models, namely, radial,
decentering, and thin prism distortions, which describe the real distribution of distortion
by polynomials and parameters. Polynomial distortion models are idealized models and
have a gap with the actual camera imaging relationship, resulting in limited accuracy of the
calibration method. For higher accuracy of distortion calibration, some general distortion
models and corresponding calibration methods [7-13] are proposed.

Since radial distortion is the main distortion of the camera, some researchers [7,8]
developed a general radial distortion model that does not adopt a classical two-to-six
parameter radial distortion, but rather a freer form of radial distortion. Inspired by their
success, more general distortion models have been developed [9-13], describing lens
distortion per pixel or by some kind of interpolation. In this kind of model, as distorted
points can be extracted directly, the key problem to be solved is how to determine the
original position (of pixels or spaces) of distorted points. Sagawa et al. employed structured-
light patterns to obtain a dense distortion sample; the camera is aligned opposite to the
target to make the feature points fixed [9]. Aubrey K. et al. set a synthetic image plane
and recorded distortion as bias between real camera images and images projected on the
synthetic image plane [10]. Jin et al. assumed that distortion in the central area of the
image plane is negligible, and calculated distortion of the surrounding area by cross-ratio
invariance [13]. Based on a raxel model, Thomas S. et al.’s pipeline [11] achieved the highest
accuracy, but needs a large number of images. In our method, we designed a novel objective
function that treats the distortion of each pixel as a constant quantity between different
images and reprojects reference images by optimization results to create “virtual photos”
which can determine the original position of distorted points.

Our method is based on the central generic camera model, which assumes all lights
pass through a single optical center in the imaging process. Since the rays diverge from
a point in the central generic camera model, the order and spacing ratio of rays remains
unchanged, and the distortion rectification map remains unchanged with distance. Accord-
ingly, there are sufficient reasons to believe that the distortion of a pixel is consistent across
images taken with the same camera, which is the basis of our objective function.

Before the iteration, using the initial estimation of parameters with Zhang’s calibration
method [14], we reprojected reference images to create “virtual photos” and extract dense
features between “virtual photos” and original images. We designed our objective function
to be a mean square error of the deformation between the “virtual photos” and original
images. This objective function can remove the influence of distortion during parameter
optimization, and obtain a more precise estimation of the camera parameters and target
pose in each image.

To describe deformation adequately in the objective function, dense features are
needed in our method. Although active phase targets can provide dense features [9,10,15,16],
they are inconvenient to use. Chen et al.’s work [17] verified the accuracy and stability of
feature detection methods based on digital image correlation (DIC). In Gao et al.’s work [18],
the result of DIC is used to determine the accuracy of camera distortion calibration. Inspired
by them, we incorporated a speckle pattern target and DIC into our camera calibration
method, but unlike Chen, we did not utilize polynomial distortion models, but rather a
full-pixel distortion description.

Since the polynomial distortion model is only an approximation of real distortion, the
results of the camera calibration method based on the polynomial distortion model will be
affected by incomplete distortion estimation. Our method can establish a point-to-point
correspondence between distorted pixels and rectified pixels, which describes the camera
distortion more comprehensively, and then gets a more accurate estimation of the camera
parameters. Compared with methods based on the raxel model, our method needs only
dozens of images, and strict experimental conditions are not required.

In our results, distortion is calculated for each point as the average value of the
DIC calculation results across multiple images, which eventually formed a distortion
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rectification map that mapped images taken by the camera to undistorted ones. Figure 1
displays a distortion rectification map obtained by our point-to-point distortion calibration
method. Figure 2 illustrates the difference between Figure 1 and the distortion rectification
map obtained by Zhang’s method with a polynomial distortion model using the same set
of calibration images, indicating free distortion, which the polynomial distortion model
cannot describe.
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Figure 1. (a) Distortion rectification map of point-to-point calibration method for X directions;
(b) Distortion rectification map of point-to-point calibration method for Y directions.
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Figure 2. (a) Distortion rectification map of point-to-point calibration method subtracted from
distortion rectification map of Zhang’s calibration method for X directions; (b) Distortion rectification
map of point-to-point calibration method subtracted from distortion rectification map of Zhang’s
calibration method for Y directions.

The paper is organized as follows. Section 2 illustrates relative work. Section 3
introduces the camera model and lens distortion in our method. Section 4 describes our
point-to-point distortion calibration method. In Section 5, experiments are performed to
verify our method’s effectiveness. In Section 6, we discussed the issues not mentioned
above. Finally, the conclusion is made in Section 7.

2. Related Work
2.1. Camera Model

From special to general, camera models can be classified as perspective cameras,
central generic cameras, and non-central generic cameras [19]. The perspective camera is a
single-view camera described by a pinhole imaging model, in which the imaging process is
subjected to projective transformation, containing the finite projective camera and affine
cameras [20].

The central generic camera contains the wide-angle camera, fisheye camera, and
other cameras with refraction and reflection [19], which is unlikely to undergo a projective
transformation and has a single focal point. In the imaging process of this camera, since the
rays radiate from only one point, the order and spacing ratio of the rays remain unchanged,
and the distortion rectification map remains constant with distance. That is why a distortion
rectification map can describe the central generic camera’s distortion. Following distortion
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rectification, the central generic camera is simplified to be a camera that conforms to the
pinhole imaging model.

The non-central generic camera is also referred to as a general camera. It lacks a
single focal point, the order and spacing ratio of the rays will vary with distance, and the
distortion rectification map cannot be used for distortion correction. Michael D. Grossberg
and Shree K. Nayar from Columbia University first proposed a raxel model for a general
camera [21], which uses a point p and a direction q to describe a ray entering the camera
from the outside and colliding with the sensor. Subsequent works on general camera
calibration have adopted the raxel model [11,19,22-24].

2.2. Pattern Design and Feature Detection

While a chessboard or circle pattern target is usually used in camera calibration,
methods for improving feature detection precision have been proposed [25-29]. Ha, and
Hyowon et al. discussed a triangle pattern target [30]. The intersection of three triangles
can be approximated using a series of third-order polynomials as control points. An active
phase target is also used for calibration [9,10,15,16], which provides more freedom for
feature setting and de-focus situations. Chen et al. utilized speckle patterns and extracted
feature points using the DIC method [17]. Experiments demonstrated that calibrating with
a speckle pattern produces a smaller reprojection error than calibrating with a chessboard
or circle pattern.

2.3. Digital Image Correlation Method

Digital image correlation (DIC), first proposed by researchers from the University of
South Carolina [31], is a method for determining material deformation. In its application
there are two kinds of DIC: (1) 2D-DIC, which is used for flat materials and requires
the materials to remain flat during measurement; and (2) Stereo-DIC, which is used for
three-dimensional materials and deformation, and can handle more variable situations.

The core objective of DIC algorithms is to match points of interest (POI) from the
speckle pattern feature on the surface of materials in images, which usually consists of
two main steps: (1) obtaining an initial guess and (2) iterative optimization. In the first
step, there are methods such as correlation criteria [32,33], fast Fourier transform-based
cross-correlation (FFT-CC) [34], and a scale-invariant feature transform (SIFT) [35] for a
path-independent initial guess. For iterative optimization, Bruck HA et al. [36] proposed
the forward additive Newton—-Raphson (FA-NR) algorithm, which was later improved
and widely used. As calculating the gradient and the Hessian matrix in optimization
progress is a noticeable burden, one feasible approach is simplifying the Hessian matrix
by making some assumptions, thereby converting it to a forward additive Gauss—Newton
(FA-GN) algorithm. Pan, B. et al. introduced the (IC-GN) algorithm into the DIC [37],
which maintains a constant Hessian matrix and can be pre-computed.

3. Model of Camera and Lens Distortion

A camera can be regarded as a mapping between a 3D world and a 2D image. Our
method was developed to address the issue of central generic camera calibration. To
describe this 3D-2D mapping, we combined a pinhole camera model and a point-to-point
lens distortion model.

3.1. Pinhole Camera Model

In the pinhole camera model, point Pw in the 3D world was transformed into a point
(u, v) in an image after transformation in Equation (1) [20]. T (Equation (2)) is a rigid body
transformation from point Pw in the world coordinate system to point (X, Y, Z) in the camera
coordinate system, using the rotation matrix R and translation matrix t. A (Equation (3)) is
an inner parameter matrix that transforms the point in the image coordinate system (the
normalized camera coordinate system) to point (u, v) in the pixel coordinate system, where
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fx and fy are focal lengths in pixels, and cx and cy are pixel coordinates of the principle
point. To normalize the image plane, the formula is divided by Z.
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Distortion d in Equation (1) describes the geometric deformation arising from the
optical imaging system. In Zhang’s method [14], distortion is employed on normalized
image planes using polynomial representation [6]. However, in our method, for generality,
distortion is defined as unknown mapping.

3.2. Point-to-Point Lens Distortion Model

This section will illustrate the generality of the point-to-point lens distortion model
and its representation. Since A is a linear transformation, we can modify Equation (1) to
apply distortion mapping on pixel coordinates.
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By substituting D for d, the representation and rectification progress of distortion can
be simplified. The distortion calibration result obtained with this lens distortion model
can be shown as a point-to-point distortion rectification map. It can describe distortion
caused by any central generic camera. If we rectify a central generic camera after obtaining
point-to-point distortion rectification mapping, it is simplified to be a camera that conforms
to the pinhole imaging model.

Figure 3 illustrates the mechanism of rectifying a camera with point-to-point distortion
rectification mapping. Point-to-point mapping contains a mapping of the X direction and
a mapping of the Y direction, which is stored as two matrices. Assuming a feature point
is (uge, V4e) in a deformed image, the corresponding point with the same feature in the
reference image is point (u, v). An element (u, v) in the mapping matrix of the X direction
stores the displacement dy, , of feature point (uge, V4e)’s location in the deformed image
relative to feature point (u, v)’s location in the reference image in the X direction. It is
identical for the mapping matrix of the Y direction. Following that, the location of feature
point (Uge, V4e) in the deformed image can be calculated using feature point (u, v)’s location
in the reference image and element (u, v) in the mapping matrix of X and Y directions, as
displayed in Equation (5).

_ X
Ude : u-+ d?,v (5)
Vde =V + du,V

For every point (u, v) in the reference image, we can obtain its pixel value by copying
the value of the corresponding point (uge, Vqe)- If displacements dy; ,, and dK,V are decimals,
bilinear interpolation is performed to obtain the value of the point (uge, V4e). Going through
every point (u, v) to obtain its value by Equation (5) and bilinear interpolation, a complete
distortion corrected image is generated.
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Figure 3. Mechanism of point-to-point mapping.

4. Method

Our method consists of three stages, which share the same set of calibration images.
The first stage is an initial estimation. DIC method [38] is applied on images of speckle
pattern calibration targets. Then, using Zhang’s approach, a set of control points extracted
from DIC result is used for calibration. In the second stage, all parameters and distortions
are optimized using a novel object function. In the third stage, distortion rectification
mapping is extracted via point-to-point calculation. We will discuss each stage in detail in
the following sections.

4.1. Initial Estimation

Our calibration target is based on a speckle pattern synthesized from Equation (6) [39].
In Equation (6), n and D are the number and radius (unit in pixels) of speckle, respectively.
(xk, yx) is the random location of the kth speckle with a random peak intensity of Iﬂ.
The synthesized speckle pattern image is shown in Figure 4a, which is denoted as I".
We printed it as our calibration target. Additionally, we created a mask I"™ with logical
value representation, indicating the scope of the speckle pattern in image I', as displayed
in Figure 4b.

n _ 2 _ 2
I(X, y) _ Z Ig exp | — (X Xk) [‘;‘2(5’ Yk) (6)
k=1

(b)

Figure 4. (a) Speckle pattern image; (b) Mask of speckle pattern image.



Sensors 2022, 22, 3524

7 of 18

With the camera to be calibrated, we captured 15-30 images of this camera calibration
target; the ith image is denoted as I. We allowed the speckle pattern area to extend beyond
the photo’s edge. Figure 5 illustrates a calibration target’s pose in our calibration image.
A rectangle outlines the image with thick solid lines. The array of black points represents
control points for initial estimation. It is a noticeable principle that the speckled area can
exceed the scope of the image, as shown on the left and bottom of Figure 6, but the array of
control points must remain inside the scope of the image.

(b) (c)

Figure 6. A group of images for DIC calculation in the second stage of our method, containing:

(a) reprojection of reference image; (b) projection of mask; (c) image taken by the camera.

For initial estimation, we employ Zhang’s camera calibration method. Control points
are extracted from the result of the DIC calculation performed on these images. DIC
calculation can determine a point-to-point correspondence between points in reference and
deformed images. The result of DIC calculation is expressed as displacement of pixels in
the deformed image relative to corresponding pixels in the reference image. Equation (7)
represents DIC calculation, where I" is a reference image, I"™ is the mask of I, and I¢! is
the deformed image. The displacement of all the pixels can be denoted as two mapping
matrices, M} and Miy, corresponding to X and Y directions, respectively. If we have n
deformed images, there are 2n mapping matrices.

M, MY = Zaie (17,17, 19) @)

By using the DIC approach, we can obtain the displacement of pixels in the speckle
pattern area of each I{ relative to the corresponding point in I by the DIC method. We
took displacement of an array of pixels in I" and calculated their corresponding subpixel
coordinates in a deformed image I{! using displacement and pixel coordinates in I', as in
Equation (5). These corresponding points were saved as control points.

From initial estimation, we obtained camera parameter A and the pose of calibration
targets R; and t;. Radial and tangential distortion is considered to obtain a more accurate
calibration result.
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4.2. Optimization with a Novel Objective Function

At this stage, we performed optimization with a novel objective function, Equations (11)—(13),
thatis also based on DIC. A, R, and t; were used as optimization variables, with initial guess
calculated by Zhang’s method. Then, we set radial and tangential distortion parameters
to zero and reprojected reference image I" with parameters A, R;, and t; to obtain “virtual
photos” Pj, as in Equation (8). The mask I"™ was also projected with the same method, as
in Equation (9). Therefore, P{" is a mask that indicates the scope of the speckle pattern in
image P;.

P{ = Proj(A, R, t,I") ®)
an = PI'Oj(A, Rir ti/ Im) (9)

For every pixel in the projection of reference image Pj, the DIC method can obtain the

displacement of the corresponding point in distorted image I taken by the camera, as in

Equation (10). A group of these, Pj, Pi" and ICl is illustrated in Figure 6. It is worth noting
that Pf and P™ share the same estimation of pose corresponding to Ifl.

M, MY = Ziie (P, P, 1) (10)

1741 7
Our objective function is set as the square error of these 2n mapping matrices, as in
Equations (11)—(13). Apﬁ,v,i is element (u, v) of M’ ¥, meaning X direction displacement of
point (u, v) in image I¢ relative to the corresponding point in image I]frol. ApY , is average
of ApY ,; for every ApX _, that does not equal to 0, ny is the number of ApY,  ; that we took

into account. Apﬁ v and Ap?,y are all the same for Y coordinate.

n 2 .
min)_) {(Apﬁ,v,i —Bp%y) + (AL — Aply) ] VAPLy; #0,8pY,; #0 (1)

uv i
VAP i 7# 0,8p),; # 0 (12)
I Z Ap ﬁ,v,i
1
Aphy = — VApY i # 0 (13)
y

This objective function means to minimize the difference of displacements between P{
and I, When the optimization process was complete, we obtained new camera parameters
and pose of calibration target, namely A°, R?, and t{.

4.3. Distortion Rectification Map Extraction

Distortion rectification maps of X and Y directions were calculated with reference
image I", calibration images I;i, and parameters A°, RY, and t?, obtained in optimization
using a novel objective function.

Using parameters A°, R?, and t?, we reprojected reference image I' and its mask I™ to
obtain “virtual photos” T} and their mask Tj", as in Equations (14) and (15). DIC analysis
was performed on every part of T, T{", and ICl as in Equation (16). Apuv ; is element
(u, v) of MY, and Apuv . is element (u, v) of M". Ap is the average of every Apuv ;
that does not equal 0, as in Equation (17). n, x is the number of Ap{"y i that we took into
account. Apu v,iand Ap are all the same for Y coordinate, as in Equation (18). The result
(Apu s Apo’y> is displacement (d ,,d}; v) used in Equation (5). Therefore, point-to-point
mapping of lens distortion is obtained.

PY" = Proj(A°, R{, 1, 1Y) (14)
P = Proj(A° R, £, 1) (15)

17717

MY, MY = Zaie (BT, T, 1) (16)
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Y APy
APIY = -, VAP, #0 (7)
No,x 7
— ZApﬁZI o
Appy = ——, VAP #0 (18)
Noy o

5. Experiments

We conducted experiments to ascertain our method’s efficacy and priority. The conver-
gence stability of our point-to-point distortion calibration method was proved by repeating
experiments, which were repeated 10 times on 10 groups of images. Additionally, we
evaluated the accuracy of the distortion rectification map calculated from the result of
7 training processes using a test set that was not used for the previous calibration. Ad-
ditionally, the influence of the number of calibration images on the calibration results
was investigated. We compared the performance of the distortion calibration results
between our method, Zhang’s method [14], and Thomas S. et al.’s method [11], using
1920 x 1080 pixels laparoscopy, demonstrating a reprojection error and RMSE of camera
parameter estimation. The ablation experiment demonstrated that optimization with a
novel objective function and point-to-point calculation of lens distortion contributed to the
final result’s improvement.

5.1. Experimental Procedures

The 2D targets employed in the experiments of Zhang’s method were circular and
checkerboard pattern targets. We also adopted the deltille grid target proposed by Ha et al. [30]
and the speckle pattern target proposed by Chen et al. [17]. As depicted in Figure 7a, the
speckle pattern was synthesized using Equation (1) with n = 1.5 x 10* and D = 60 pixels
in a resolution of 4000 x 4000 pixels®. It was printed on adhesive matte paper by HP
Indigo 7600 and stuck on a piece of glass to serve as a calibration target of 6 x 6 cm?. The
circular pattern calibration target consisted of circulars with a 3 cm diameter and 6 cm
center distance, forming a 7 x 7 array, as depicted in Figure 7b. The deltille grid pattern
calibration target was composed of equilateral triangles with a side length of 6 cm and an
arrangement, as demonstrated in Figure 7c. The checkerboard pattern calibration target
had 6 x 6 cm? squares, forming an 8 x 8 array, as in Figure 7d. The circular pattern,
deltille grid pattern, and checkerboard pattern calibration targets were all printed on an
alumina sheet with a glass substrate. To make a comparison under the same conditions,
we used 7 X 7 array features extracted from the speckle pattern as the input of the method
in [11]. Calibration images of each calibration target were captured by a 1920 x 1080-pixels
binocular laparoscopy. We adjusted the lighting conditions to obtain the best imaging
performance for each pattern, respectively, during image recording.

AELEALE

A A
(b) (c) (d)

Figure 7. Two-dimensional targets used in the experiment, containing: (a) speckle pattern calibration

target; (b) circular pattern calibration target; (c) triangle pattern calibration target; (d) chessboard
pattern calibration target.
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The experimental equipment was arranged as displayed in Figure 8. The calibration
target was mounted on a mechanical arm, which was programmed to change its pose
by inclination from —24° to 24° with a 6° interval. We positioned the calibration target
initially in such a way that its projection covered the entire image area. The calculations
were performed on a server with 256 CPUs and 512 GB of memory.

Figure 8. Experimental setup.

5.2. Validity under Different Initialization

To investigate our method’s performance for each kind of calibration target, we
grouped 20 images of different poses. For this, the poses of selected images had to be
various, and all selected images had to cover the whole field of view. Figure 9 displays the
poses of a group of selected images. We selected 10 groups of images as a training set.

Extrinsic Parameters Visualization

0
20 \ <
Z (mm) ~< /_20

0 _40 X (mm)
Figure 9. Poses of the target in a group of the training set.

Here, we verified the stability of our optimization’s convergence under different
initialization conditions by 10 training sets. The initial estimation was made by Zhang's
calibration method. Then, optimization using our novel objective function was performed,
and a convergence curve was recorded. Figure 10 displays the average value and range of
the convergence curve in 10 training processes. The vertical axis represents the value of the
objective function described in Equations (11)—(13).
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Figure 10. Average value and range of convergence curve in 10 training processes.

Additionally, we examined the distortion calibration results when different numbers of
calibration images were utilized. For this purpose, the camera was calibrated 16 times, using
from 10 to 40 calibration images. Then, training set images, undistorted by a distortion
rectification map, were calibrated using Zhang's calibration method, assuming no distortion
remains. The reprojection error was recorded, indicating the accuracy of the distortion
rectification map. Figure 11 illustrates the reprojection error of calibration using different
numbers of calibration images. The reprojection error calculated from training results was
smaller than the initial estimation, even when only 10 images were utilized, and remained
stable when more than 20 images were used.
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number of calibration images

Figure 11. Reprojection error when different numbers of calibration images are used.

5.3. Ablation Study

Based on the initial estimation, we systematically added parts of our method and
obtained a calibration result to demonstrate how individual parts influence the final perfor-
mance. In the case of Map Extraction, the parameters obtained from the initial estimation
were directly employed to calculate the point-to-point distortion rectification map, and
calibration images were corrected by the point-to-point distortion rectification map. Then,
assuming no distortion remained, the camera parameters were estimated using Zhang’s
calibration method. Each configuration of the calibration progress was repeated with
5 groups of 20 images.

As listed in Table 1, the mean reprojection error of Map Extraction was reduced by
11.48%, compared to the result of the Initial Estimation. The last configuration contained
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our complete calibration progress, with a mean reprojection error reduction of 30.61%
compared to the initial estimation result. The reprojection errors’ distribution in 5 repeated
ablation experiments is showed in Figure 12. As a result, it can be inferred that in our
method, both the optimizations with novel objective functions and the calculation of a
point-to-point distortion rectification map are critical for improving calibration accuracy.

Table 1. The result of the ablation study.

Method Mean Reprojection Error Improvement (%)
Initial Estimation 0.106767
Map Extraction 0.094512 11.48%
Map Extraction + Optimization 0.074087 30.61%
0.15 . | I |
I (nitial Estimation
[N Map Extraction
[ Optimization + Map Extraction
S 01Ff .
uLJ —
c
S
=
[$] ] —
2 ] —
9]
g
o 0.05 -
0

1 2 3 4 5
Number of Experiment

Figure 12. Reprojection errors’ distribution in ablation experiments.

5.4. Benchmark Performance

This section compares the reprojection error and stability of the parameter estima-
tion of previous methods with our novel method. Zhang’s calibration method with the
circle pattern target, the checkerboard pattern target, the deltille grid target, proposed
by Ha et al. [30], and the speckle pattern target proposed by Chen et al. [17] are included
in the comparison. For Zhang’s method, using each target, we repeated the calibration
progress 7 times using 7 groups of 20 pictures. A test set of 20 images was selected, ex-
cluding images in the training set. For the method of [11] and our method, we showed
the reprojection error on the test set under the result of the calibration using 7 different
groups of pictures. As to our method, for images in the test set, distortion was rectified
using a point-to-point distortion rectification map calculated from the training result. Then,
assuming no distortion remained, the camera parameters were estimated using Zhang’s
calibration method.

The reprojection error is shown in Table 2. The method of the top 4 lines in Table 2 is
Zhang’s calibration method with different calibration patterns. The reprojection errors of the
chessboard, deltille grid, circle, and speckle calibration target methods were 0.34990613255,
0.115054 and 0.107224, respectively. Compared with Zhang’s calibration method using
different targets, the reprojection error of our novel point-to-point distortion calibration
method was the smallest as it was reduced by 28.5% beyond Zhang’s method using the
same pattern.

The reprojection error was 0.075841 in the training result of our method, and was
0.076663 in the test result, exhibiting the performance of the distortion rectification map
obtained from the training result on the new data. Although the reprojection error of the
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test set is slightly greater than that of the training set, it is still less than that of Zhang’s
calibration approach with any type of calibration target. This demonstrates that the dis-
tortion correction map calculated from our point-to-point distortion calibration method
could effectively correct new images captured with the same camera and achieve the
desired impact.

Table 2. Reprojection error and RMSE of internal parameters’ estimation of different calibration
methods, with a training set of 228 images for method of line 6, and 20 images for other methods.

Root Mean Squared Error

Method Mean Reprojection Error

Fx Fy Cx Cy
OpenCV (checkerboard) 0.349906 1.04336 1.070489 0.839562 0.490924
Deltille Grid [30] 0.13255 0.788706 0.841719 0.298072 0.659631
OpenCV (circle) 0.115054 0.339109 0.391043 0.334438 0.484564
Speckle [17] 0.107224 0.221421 0.186815 0.168492 0.167473

Thomas [11] 0.352319 NA NA NA NA

Thomas [11] (228 pic.) 0.072295 NA NA NA NA
Speckle-novel 0.076663 0.14265 0.065153 0.292851 0.164638

To compare our point-to-point distortion calibration method with the method of [11],
the performance on the test set under different amounts of calibration images is shown in
Table 2 and Figure 13. Assuming that 20 images were used in our method, with the same
number of images, the estimation result of [11] was inferior to that of our method because
of overfitting, and when 228 images were used in [11], the estimation result was superior
to that of our method with 20 images.

0.5

—*— Tomas [6] -
—o6— Speckle-novel

0.3

0.15

reprojection error

0.1

0.07

1 1 Il L 1 n n L i Il 1 L
10 15 20 30 50 100 200 300 455
number of calibration images

Figure 13. Reprojection error of Thomas S. et al.’s method and our point-to-point distortion calibration
method on test set when different numbers of calibration images are used.

Table 2 and Figure 14 show the distributions of the internal parameters estimated
using different calibration methods. The RMSE of the internal parameters’ estimation is
listed in Table 2. The small circle in Figure 14 represents the average value of the estimated
internal parameters, and the upper and lower sides of the error bar represent the max and
min value of the estimated internal parameters, respectively. It can be inferred that with
the method of Chen et al. [17] and our novel method, the internal parameters’ estimation in
the repeated calibration is more stable than the other methods.
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Figure 14. Distributions of internal parameters were estimated using different calibration methods.
(a—d) are the distribution of estimated fx, fy, cx, and cy, respectively.

6. Discussion

We considered both the simulation and experimentation with a real camera when
designing the experiment. In the simulation, the method employing the polynomial distor-
tion model to simulate the camera distortion exhibits more advantages. In contrast, if we
set additional distortions not limited to the polynomial distortion model, the point-to-point
distortion calibration method offers more advantages. To make the experimental conditions
neutral between the camera calibration method with the polynomial distortion model and
point-to-point distortion calibration method, we used real cameras for our experiments.

As can be seen from the result of the validity experiment under a different initialization,
the convergence curve of the optimization calculation by our method is stable, and the
reprojection error is satisfactory when the number of calibration images involved in the
optimization is not smaller than 20. The ablation study illustrated that the novel objective
functions and the calculation of a point-to-point distortion rectification map have both
resulted in a significant reduction of the reprojection error. The benchmark performance
shows that the reprojection error of our method is smaller than that of methods using the
polynomial distortion model. The accuracy of methods using the polynomial distortion
model depends on whether the calibration pattern can achieve more accurate feature
extraction and whether the features of image edges can be extracted. Our method not only
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uses the speckle pattern with higher feature extraction accuracy, but also adopts a full pixel
distortion description and a specially designed objective function for optimization, so its
reprojection error is superior to the method of the top 4 lines in Table 2.The method using
the raxel model can achieve a smaller reprojection error than our method. When 228 images
were used in the raxel model, the estimation result was superior to that of our method with
20 images. The following conclusion can be drawn from the findings of our experiment:

(1) For our optimization process, over 20 calibration images can completely realize the
objective function convergence.

(2) Both the optimization with our new objective function and point-to-point distortion
extraction significantly contributed to our method’s results.

(3) The accuracy of our method is superior to methods using the polynomial distortion
model. The method using the raxel model is more accurate, but with significantly
more calibration images.

The setting of hyperparameters is a component in our technique that was not disclosed
previously. To achieve the best performance of our method, hyperparameters were searched
before calibrating different cameras in different environments. One of the hyperparameters
was the subset size of the DIC calculation. The other one was the correlation coefficient
threshold that determined which feature points were used in the parameter optimization.

1. Subset Size

In DIC, a larger size subset usually leads to a higher feature matching accuracy. How-
ever, an oversized subset introduces other problems, such as the complexity of deformation
in the subset region. In this case, the current subset shape function cannot appropriately fit
the subset deformation, resulting in decreased accuracy or failure of DIC. After a test with
various subset sizes in our experiment, we used a subset with a radius of 70 pixels for DIC
in the initial estimate and final verification, and a subset with a radius of 65 pixels in the
parameter optimization.

2. Correlation Coefficient Cutoff

The correlation coefficient cutoff is used to determine whether the DIC results are
reliable. A correlation coefficient cutoff that is set too high can introduce inaccurately
matched features into the parameter optimization and reduce the accuracy of the parameter
estimation. A correlation coefficient cutoff that is set too small results in large invalid regions
of a calibration image that lack any features suitable for parameter optimization, which
can also decrease the parameter estimation’s accuracy. After testing with different cutoff
values, we used 0.065 as the cutoff value of the correlation coefficient in our experiment.
This implies that features matched in the DIC with a correlation coefficient of less than
0.065 will be used for parameter optimization, whereas features matched in the DIC with a
correlation coefficient of more than 0.065 will be filtered out.

Our method is devoted to the accurate calibration of camera parameters and lens dis-
tortion, which paves the way for a better performance of HAR. Developing Gao et al. [18]
and Chen et al.’s work [17], our method can obtain a point-to-point distortion rectifi-
cation map of the camera without establishing distortion models or strictly restricting
experimental conditions.

7. Conclusions

We propose a camera calibration method that requires only dozens of images to obtain
point-by-point distortion calibration results and internal camera parameters. This approach
extracts dense features using a speckle pattern calibration target and DIC, as well as a new
objective function for parameter optimization. The distortion rectification map is calculated
from the result of the parameter optimization. We can warp camera-captured images into
undistorted ones using a distortion rectification map. Compared with commonly used
methods, this method is not limited to the polynomial distortion model, and also allows for
the pixel-level calibration of the camera distortion. We designed experiments to validate
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our approach’s stability under various initialization conditions and compared it to the
method of [11], using the same calibration target, and Zhang’s calibration method, utilizing
a variety of calibration targets. Our method has a lower reprojection error than that of
the compared method with the same number of calibration images, as demonstrated by
experiments on a test set. This proves that our method can get a more accurate estimation of
the camera distortion and camera parameters, so as to better describe the mapping between
real space and image space. Therefore, our method is more advantageous than calibration
methods using the polynomial distortion model in downstream tasks.

Despite the advantages above, our method is limited by its single optical center
assumption, and its accuracy is inferior to that of methods using the raxel model. The
accuracy of the distortion rectification map of our method is also limited by the number of
images. As the DIC calculation at the edge of the speckle region is not accurate enough,
there are some undesirable points that cannot be ruled out in the distortion rectification map.
A possible solution is not to use pixels at the edges of the speckle region during distortion
rectification map extraction. Another problem is computing the resource consumption of
the DIC, which increases with the size of the subset area and the number of calibration
images. This can be solved with GPU-accelerated computing [40]. These topics are on
which we should concentrate our future efforts.
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