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Abstract: The risk associated with extreme hydrological processes (flash floods, floods) is more
present than ever, taking into account the global climatic changes, the expansion of inhabited areas
and the changes emerging as a result of inadequate land management. Of all the hydrological risks,
slope flash floods represent the processes that have the highest impact because of the high speed
of their development and their place of origin, which makes them difficult to predict. This study is
performed in an area susceptible to the emergence of slope flash floods, the Valea Rea catchment
area, spatially located in Northwest Romania, and exposed to western circulation, which favours
the development of such processes. The entire research is based on a methodology involving the
integration of spatial databases, which indicate the vulnerability of the territory in the form of a
weighted average equation to highlight the major impact of the most relevant factor. A number of
15 factors have been used in raster spatial databases, obtained by conversion (land use, soil type,
lithology, Hydrologic Soil Group, etc.), derived from the digital elevation model (slope, aspect, TWI,
etc.) or by performing spatial analysis submodels (precipitation, slope length, etc). The integration of
these databases by means of the spatial analysis equation based on the weighted average led to the
vulnerability of the territory to FFPI, classified on five classes from very low to very high. The final
result underlines the high and very high vulnerability (43%) of the analysed territory that may have
a major impact on the human communities and the territorial infrastructure. The results obtained
highlight the torrential nature of the analysed catchment area, identifying several hotspots of great
risk, located mainly within the built-up areas of intensely inhabited regions; a fact which involves a
major risk and significant potential material damage in the territory. The model was validated by
directly comparing the results obtained with locations previously affected, where the flood effects
have been identified, highlighting the fact that the model may be taken into account to be applied in
practice, and also to be implemented in territories that share the same features.

Keywords: flash flood; spatial analysis; GIS model; weight of evidence; FFPI

1. Introduction

As a consequence of the climate changes in recent decades, the frequency, magnitude,
and duration of several weather and climate-related extreme events have been modified at
the global, European and regional level [1]. There are no doubts regarding the fact that all
these changes may be the result of the increasing complexity of anthropogenic activities. In
the European Environment Agency report [1], it is shown that even if the emissions of CO2
and other greenhouse gases are reduced to zero in the near future, the time of atmospheric
residence of the greenhouse gases, as well as the dynamic of the climate system, would
still continue to generate anthropogenic climate changes for several decades by increasing
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record-high temperatures, the rate of extreme precipitation events and drought periods,
and leading to more frequent and longer heat waves.

Related to these atmospheric extremes, the frequency of destructive events, such as
flash floods, is also increasing. Flash floods are generated by intense local precipitation
events and represent one of the most dangerous and unpredictable natural disasters. They
occur so quickly that people are caught off-guard [2]. Together with river floods and storms,
they are the most important natural hazard in Europe in terms of economic losses, and as a
result of damage to infrastructure, property, and agricultural land, they are responsible for
almost one-third of the damage caused by all natural hazards [1].

Every year, flooding, in general, is responsible for more deaths around the world
than any other type of natural disaster. The statistics revealed the fact that countries from
Eastern and Southern Europe, more precisely Romania, Bulgaria, Slovakia, and Serbia,
have the highest deaths per million inhabitants (>10) related to flooding for the period from
1991–2015. According to EEA 2017 [1], river floods are estimated to affect approximately
300,000 people per year in the EU by the 2050s and 390,000 people by the 2080s.

As a result, integrative flood-risk management is a vital issue [3]. For sustainable
disaster and flood-risk management, international cooperation is required, as well as a
disaster statistic database, which includes the disaster occurrences, their effect upon people,
and the economic losses to regions and countries [4]. Since 1988, the Centre for Research on
the Epidemiology of Disasters (CRED) has implemented and maintained an Emergency
Events Database, which includes disaster events that occurred in Romania too (the flood
in 2015, the storm in 2017, severe weather in 2019, and floods in 2020). There are many
disaster databases at the national level or that are related to a specific type of hazard:
SIGMA disaster-event database maintained by SwissRe; DisDAT, initiated by the Global
Risk Identification Program (GRIP) and CRED, which brings together publicly available
disaster-related data from different countries (GRIp, 2010) [4]; Documentation of Mountains
Disasters—DOMODIS (1998–2002).

The European Flood Directive 2007/60/CE of the European Parliament and the Coun-
cil was developed for flood risk assessment and management upon European rivers. To
this end, the member states must identify river basins at risk of flooding, draw hazard and
flood risk maps (such as Elba Flood Atlas, Danube Atlas—hazard and risk maps, 2012), and
set up flood risk management plans for those areas [5]. Flash flood events all over Europe
were also analysed through numerous international research projects between different
institutions, such as the HYDRATE Project, Integrated flood risk analysis and management
methodologies—FLOODsite [6], European flood forecasting system—EFFS [7].

Probably due to the better disaster management and warning systems, the number of
human fatalities in relation to natural disasters shows a decreasing trend, but the number
of people affected follows the increasing trend of the number of events [4].

As a result of selecting and summarising the most cited scientific papers written
between 1990 and 2018 concerning vulnerability to floods and susceptibility assessment,
Rehman (2018) revealed that most of the research approached flash floods, urban floods,
and coastal floods. Given the catastrophic consequences inflicted by these devastating phe-
nomena, and the capacity of the authorities to manage emergency and recovery situations,
flash floods should be studied as a matter of priority in developing countries [4,8].

Therefore, the identification of areas susceptible to flash floods within catchment
areas represents a paramount measure in the prevention, control, and mitigation of the
catastrophic effects on human society [9,10]. Based on the scientific literature, two types
of flood analysis methods can be distinguished, deterministic modelling and parametric
methods. Because they use easily accessible, site-specific information to build up an image
about the areas prone to natural disasters, parametric methods became widely applied.

To help the conventional prediction methods, Flash Flood Monitoring and Prediction
System (FFMS) [11], for example, were set up as methods to identify the areas susceptible
to flash floods. By overlaying only four geographical variables (slope, vegetation, soil type,
and land use) in the GIS environment, was determined for the first time the basics of the
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Flash Flood Potential Index (FFPI) within the National Weather Service, “Western Region
Flash Flood Project” (USA). After his method was successfully tested during flash flood
situations in several geographical regions, such as Colorado, central New York, Northeast
Pennsylvania and central Iowa, many researchers manifested their interest in modifying the
original formula. Changes related to weighting factors [12], as all elements received equal
weighting [13], while additional weighting was given to Slope and Land Use/Cover [14],
and later a new factor was added, the annual maximum daily rainfall statistics [15].

The methodology was gradually improved by taking into account a higher number of
geographical variables and weighting these factors into the final equation of FFPI. In the
last decades, several methods were developed for natural hazards, especially for landslide
and flood vulnerability mapping.

Recent methods such as geospatial techniques [16–20], bivariate statistical methods,
frequency ratio (FR) [21], weights-of-evidence (WofE) [22–24], machine learning tech-
niques [25,26], hybrid computational approaches [27,28], and decision tree [29] were pro-
posed in the literature.

In Romania, due to the morphological conditions given by the presence of the Carpathi-
ans, the drawing up of studies determining the FFPI for several regions became a necessity.
These studies were based on the above-mentioned methods and were performed by many
authors, such as [30–36].

The FR and WofE are the most popular bivariate statistical analysis (BSA) techniques
used for flash flood susceptibility mapping. The basic feature of the BSA is that the events
are conditioned by the same combination of factors throughout the entire study area [37].
WofE can be applied considering even several predictive variables [38–41].

The effects inflicted by flash floods in the analysed area have a very high impact on
the infrastructure and the communities in the Valea Rea catchment, and they are visible
after each torrential rain of heavy intensity. The policy to reduce the management costs
for small catchment areas involved a lack of their monitoring. This makes it difficult to
directly identify the associated risk. Therefore, the development of spatial analysis models
by integrating the factors which contribute to the identification of hotspots affected by flash
floods is a useful method and it is compulsory to take it into account within the studies
of territorial technical assessment. The above-mentioned references clearly highlight the
usefulness and the necessity of implementing of such models. The need for the current
paper is pressing and dire because of the absence of hydrometric data in the study area,
correlated with a total lack of interest from the side of the authorities concerning the
regionalisation of flash flood risks to mitigate their effects.

The purpose of this current research study is to assess the flood susceptibility map ap-
plying the WofE bivariate statistical GIS-based approach model in the Valea Rea catchment
area, Romania.

2. Study Area

The study area corresponds to the Valea Rea River catchment, located in the Northwest
part of Romania (Figure 1) in the Maramures, Carpathian region, covering an area of
293 km2. The Valea Rea River (which would translate as “Bad Valley”) is a right tributary
of the Tur River, upstream of the Călines, ti-Oas, Reservoir. Draining the Oas, and Gutâi
Mountains and Oas, Basin, the catchment elevation ranges from 145 to 1239 m asl. With an
average altitude of 410 m asl., the average slope of 10.10, and the circularity ratio [41] of
0.33, the accelerated surface runoff and flash flood occurrence conditions are given [42].

In an ample analysis regarding the flash floods produced within the last 30–40 years,
it is shown that the study area is part of the category of most vulnerable regions within
the Somes, -Tisa drainage space, having a high potential for the occurrence of flash flood
phenomena [43]. Generally, the entire area of the Valea Rea catchment is affected by a high
number of flash floods, and these events occur throughout the entire year.
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Figure 1. Valea Rea River catchment area location.

The average multiannual discharge of Valea Rea at the Huta Certeze station is 1.83 m3/s
(for the period from 1966–2012). During the most severe flash floods, the discharge reached
peaks, for example, of: 89.6 m3/s in May 1970, 47.2 m3/s in June 1974, 48.2 m3/s in
December 1979, 55.9 m3/s in December 1993, 62.0 m3/s in June 2013, 42.3 m3/s in June
2018, 46.6 m3/s in August 2019.

As a consequence, flash floods and torrential runoff extreme phenomena affect the
lives of the inhabitants and social-economic material assets in the entire study area, in rural
settlements, such as Huta Certeze, Certeze, Mois, eni, Bixad, Trip, Boines, ti, Lechint,a, Târs, olt, ,
Aliceni, and Cămârzana. Among these, Cămârzana is on the select list of settlements which
were predicted to suffer the highest potential damage between 2014 and 2020, including
219 households, 519 ha of land, 3.9 km of county roads, and 7 km of national roads. Boines, ti
(more than 23 flash floods) and Huta Certeze (more than 15 flash floods) are among the
hydrometric stations which recorded the highest number of flash floods during the entire
period of their existence [44].

Representing an area that has a high potential for the occurrence of flash floods, the
Valea Rea catchment area was also analysed in other scientific works [36].

3. Methodology and Database

The high complexity of the spatial analysis model presented in this research supposes
the approach of a methodology that allows for the management of spatial and alphanumeric
databases in such a way as to highlight the local and general specificity of each database
which makes up the final model. The analysis of each component and their integration
in the form of spatial analysis equations based on mathematical equations and weighted
averages finalises the model and allows the spatial identification of areas that have different
types of vulnerabilities to flash floods.
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The proposed methodology is structured on four main stages, starting from the
database acquisition, then the performance of the detailed spatial analysis, the presentation
of the final results, and the validation of the results for the proposed model in order to be
scientifically applied in practice (Figure 2). There is an integrated approach of the method-
ological stages, both vertically and horizontally, in order to have proper management of
the many (raster, vector, alphanumeric data) types of spatial databases.
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The basic stage for the development of the proposed model is represented by the
database acquisition stage, which fundaments the proposed model. In this stage, the direct
acquisition of databases is performed by downloading (DEM obtained on the basis of
LIDAR flights with a spatial resolution of 3 m, CLC), vectorization (lithology, soils, and
spatial extension of the existing torrents), and tabular data acquisition (coordinates of
meteorological and pluviometric stations, multiannual average amount of precipitation).

Another manner of database acquisition refers to indirect acquisition by deriving the
spatial databases according to the functions made available by specialised software. Such
an acquisition was performed for the spatial identification of the slope angle value, the slope
aspect, the plan curvature, HSG, TPI, SPI, and TWI. These databases were derived from the
DEM and were integrated in the form of raster databases for the stage of spatial analysis.

The high complexity of the spatial databases which make up the proposed model
determines the identification of two distinctive substages within the stage of database
acquisition. Therefore, there is one substage of spatial analysis which integrates the derived
databases and those collected by direct acquisition to obtain final results, outlined as
entry databases in the proposed model (L-S, Depth of fragmentation). The other substage
integrates a distinctive spatial analysis submodel to spatialise the multiannual average
amount of precipitation taking into account the spatial location of the meteorological and



Sensors 2022, 22, 3573 6 of 21

pluviometric stations and performing a statistical correlation between altitude and the
average amounts of precipitation.

The development of such a submodel increases the complexity of the main model,
resulting in the management of database acquisition to pass from the stage of simple
acquisition to the stage of integrated management based on the efficient use of all resources
related to available spatial and non-spatial databases to finalise the model. The spatial
analysis submodel proposed for the spatialisation of the average amount of precipitation
according to altitude is based on the statistical spatial analysis implemented according to
spatial analysis equations obtained as a result of the identification of the regression line and
its equation. The regression line best approximates the correlation of the average precipita-
tion values taking into consideration the natural evolution of the modelled phenomenon.
Therefore, the following equation has been used for the entire study area:

Y = a + b ln(x)

where
Y = average precipitation, a = −148.377, b = 190.707, x = altitude

The equation was obtained by implementing the precipitation and altitude values for
a number of nine stations unevenly distributed across the study area and its immediate
vicinity, by means of Curveexpert software. A correlation coefficient of 0.980 was obtained,
providing a 95% confidence coefficient.

The spatial analysis stage is the main and fundamental stage for finalising the proposed
model to identify the vulnerable areas. It spatially and structurally integrates the databases
that enter the model to provide the final result. The development of the main stage of spatial
analysis is based on the implementation of two spatial analysis submodels that are different
in terms of manner of implementation. They are developed according to spatial analysis
equations derived from different equations in terms of structuring manner, as one model is
based on a bivariate statistical equation and the other model is based on a deterministic
equation that integrate the spatial databases resulting from the implementation of the first
model. The model based on statistical analysis is centered on the bivariate equation WofE
and allows the analysis of the basic components of the model to identify the behaviour
of each analysed factor concerning the statistical answer to flash flood occurrence. The
statistical equation used for the implementation of the model and the identification of the
numerical value of each interval for every analysed parameter was developed by [45–47]
in the form of:

Index = log[(Si/Ni)/(S/N)] (1)

where:
Index = the statistical value of the interval within the analysed factor;
Si = the area (sq km) with torrents on an interval of the analysed factor;
Ni = the total area covered by the analysed factor (sq km);
S = the total area with torrents within the entire study area (sq km);
N = the total area with torrents within the entire study area (sq km).
The finalisation of the spatial analysis submodel involves several main substages that

are highly correlated to each other and converge to the acquisition of numeric databases
which are integrated in a statistical formula, highlighting the statistical behaviour of each
interval of the analysed factor. One main stage is represented by the uniformisation of the
types of databases that enter the spatial analysis model, taking into account that different
types of databases, such as raster and vector databases, were acquired during the stage
of database acquisition. Taking into consideration the fact that the entire spatial analysis
model is based on the implementation of spatial analysis equations on raster structures,
it was decided that the vector format databases representing CLC, lithology, soil type,
and HSG be converted to raster format according to the class used in the analysis. The
resolution of the raster databases acquired as a result of conversion is three, which is equal
to the one of the spatial databases derived from DEM.
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The second stage of the submodel is represented by the spatial integration of the
analysed factors with the areas covered by torrents in order to extract numerical values
for areas, to be introduced in the statistical equation for computing. This stage has in its
centre the overlay vector–raster analysis, integrating on one hand the vector databases
representing the spatial extension of the torrents, and on the other hand the raster databases
representing each factor classified according to its susceptibility to flash floods.

The second main submodel of the spatial analysis stage proposes the integration of all
the factors unitarily analysed within the statistical submodel based on the WofE equation
according to a deterministic spatial analysis equation of the weighted average type.

The integration of the two submodels in the spatial analysis stage is made according
to the reclassification method, the main purpose of which is the acquisition of digital data
in raster format to highlight spatially the numeric values of every factor and its degree of
susceptibility to flash floods and to allow their integration on the basis of the deterministic
equation. The deterministic equation was implemented in the GIS environment in the
following form:

(“BSA_SPI.tif” × 2) + (“BSA_LS.tif” × 8) + (“BSA_PP.tif” × 7) + (“BSA_DepFrag_ha.tif” × 8) +
(“BSA_TPIndex3.tif” × 5) + (“BSA_DEM.tif” × 2) + (“BSA_Convergente_Index.tif” × 7) +

(“BSA_Profile_curv.tif” × 8) + (“BSA_Aspect.tif” × 3) + (“BSA_Slope.tif” × 15) +
(“BSA_HSG_cor.tif” × 10) + (“BSA_Lithology_cor.tif” × 2) + (“BSA_CLC.tif” × 10) +

(“BSA_SOL_Tip.tif” × 5) + (“BSA_TWI.tif” × 8)/15

(2)

where: “BSA_SPI.tif” = analysed factor, 2 = percentage weighting the factor, +/× = mathe-
matical identifiers.

The specific weight of each factor was established according to the importance and
influence of the factor within the general process related to the emergence and development
of flash floods.

The third stage represents the acquisition and analysis of the spatial impact of the final
result. To perform the spatial analysis of the impact, the final result was classified on five
FFPI vulnerability classes, from low vulnerability to very high vulnerability. Each class was
identified numerically in intervals based on the Natural Breaks classification implemented
in ArcMap 10.7.1 software.

The validation stage represents the last stage in the logical succession of the proposed
spatial analysis model, and it is absolutely necessary to be carried out so that the obtained
results may be scientifically implemented in practice and the model be implemented in
other territories that share similar features. Therefore, the model validation is based on
the method of direct comparison between the results obtained as a result of running the
proposed model and the reality in the field. In this case, several locations within the study
area have been selected, as they were identified in the synthetic reports performed when
natural calamities were recorded. They were analysed according to the impact identified
on the basis of the model. The model will be considered valid if the high and very high
vulnerability classes have a direct impact on the identified locations.

The development of spatial analysis models in the form of whitebox-type methodology
based on stages, substages, and integration between them leads to better database manage-
ment and provides the opportunity for the automation of the work flows if necessary.

4. Results

The results obtained as a consequence of the implementation of the methodology
materialised in spatial analysis models and submodels are first of all analysed individually,
both from the perspective of the specific database acquisition for every factor taken into
account, and from the perspective of the territorial impact of the analysed factor. Secondly,
the analysis of the obtained results is performed by correlating the involved factors in the
general model of spatial analysis to obtain the territorial specificity leading to different
intensities of the FFPI.
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The territorial specificity from the point of view of the FFPI is given by the statistically-
based integrated analysis of a number of 15 factors which best highlight the territorial
development of the analysed process.

4.1. Elevation

Elevation is one of the most decisive factors in terms of climate features, as it influences
the vegetation zoning, the precipitation pattern, and, implicitly, the formation of the runoff
conditions. The altitude map of the study area was derived from DEM into five classes, and
to highlight the morphological levels we used the manual classification method: 145–300,
300–450, 450–650, 650–850, 850–1239 m (Figure 3a). The highest value of the final weight
(WofE) was 0.29, corresponding to the 145–300 m interval, emphasising the fact that floods
are concentrated on the lower sector of the drainage basin. The highest morphological
level between 850 and 1239 m does not have any torrential formations, so its importance in
computing the WofE is zero. Its Weighted Average Integration (WAI) percent in the FFPI
map is 2% (Table 1).
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Table 1. Flash flood predictor variables classes with their WofE results.

Predictor Variables Class Pp (%) Pt (%) WofE WAI (%)

Elevation

145–300 42.6 82.3 0.29

2
300–450 24.5 15.2 −0.21

450–650 17.9 2.4 −0.87

650–850 10.2 0.2 −1.80

850–1239 4.7 0.0 -

Slope angle

0–3 22.0 17.2 −0.11

15
3.1–7 19.8 34.1 0.24

7.1–15 32.6 35.6 0.04

15.1–25 17.1 10.5 −0.21

>25 8.5 2.6 −0.51

Aspect

Flat/Southwest 17.0 9.4 −0.26

3
South 13.0 10.7 −0.09

Southeast/West 28.7 26.4 −0.04

East/Northwest 24.1 24.3 0.00

North/Northeast 17.3 29.3 0.23

Profile curvature
Convex −209–0 50.6 33.9 −0.17

8Flat 0–1.92 47.2 55.6 0.07

Concave 1.92–199 2.2 10.5 0.69

Depth of
fragmentation

0–2 27.5 22.0 −0.10

8
2–4 35.1 52.7 0.18

4–8 20.3 17.9 −0.05

8–16 11.8 6.4 −0.26

16–110 5.3 1.0 −0.73

SPI

(−13.8)–(−11.3) 5.6 4.4 −0.10

2
(−11.2)–(−4.33) 22.0 17.0 −0.11

(−4.32)–(−2.55) 39.3 38.5 −0.01

−2.54 –0.52 31.1 31.4 0.00

0.53–11.4 2.1 8.7 0.62

TWI

0–2.49 6.6 4.7 −0.14

8
2.50–6.04 25.8 19.5 −0.12

6.05–8.06 44.1 40.5 −0.04

8.07–11.6 21.3 26.7 0.10

11.7–30.2 2.2 8.5 0.59

L-S Factor

0–2 67.1 62.5 −0.03

8
2–6 23.1 20.4 −0.06

6–10 5.9 6.4 0.04

10–50 3.7 10.3 0.45

50–190 0.1 0.3 0.41
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Table 1. Cont.

Predictor Variables Class Pp (%) Pt (%) WofE WAI (%)

TPI

(−35.3)–(−7.10) 3.5 18.3 0.73

5
(−7.09)–(−2.1) 16.5 52.5 0.50

(−2.09)–1.66 57.3 28.8 −0.30

1.67–6.98 18.6 0.4 −1.68

6.99–44.5 4.2 0.0 -

4.2. The Slope Angle

The slope angle (Figure 3b) represents one of the most basic physiographic conditions
in the formation of surface runoff processes, directly influencing the infiltration and the
velocity of the water flow. As the slope angle increases, the drainage process, the sediment
transport capacity, and, implicitly, the erosivity are accentuated. The Slope tool in the
Spatial Analyst extension of ArcMap 10.7.1 software was used in order to obtain the spatial
distribution of slope angle values. The following five classes were selected according
to the literature [26]: <30, 3.1–70, 7.1–150, 15.1–250, >250. Positive WofE values were
assigned to intervals 3.1–70 (0.24) and 7.1–150 (0.04), which include all the existing torrential
formations (Table 1). As well as the LULC, it received the highest WAI percent in the FFPI
computation (15%).

4.3. The Slope Aspect

The slope aspect (Figure 3c) has an indirect impact on hydrological processes due to its
influence on evapotranspiration, soil humidity, and the direction of frontal precipitation [46].
With the use of the Aspect tool from the Spatial Analyst extension of ArcMap 10.7.1 software,
these flash flood predictor values were divided into five slope aspect classes, of which most
face Southeast/West (28.7%) and East/Northeast (24.1%). Areas affected by torrentiality are
located on slopes that have a North/Northeast aspect, representing 29.3% of the torrential
pixels, and received the highest value of the WofE, 0.23. For the final FFPI map computation,
it counted 3% (Table 1).

4.4. The Profile Curvature

The profile curvature (Figure 3d) represents a flood conditioning variable used to
compute the FFPI and indicates the direction of maximum slope. The values of this variable
can be used to distinguish between areas with accelerated runoff and those with decelerated
runoff. The negative value indicates that the surface is upwardly convex at the cell and
flow will be decelerated, while the positive value indicates that the surface is upwardly
concave at that cell and the flow will be accelerated. The profile curvature was extracted
from DEM, applying the Curvature tool from the Spatial Analyst extension of ArcMap
10.7.1 software. The manual classification method was used to categorize its values into
three classes: (−209)–0, 0.1–1.92, 1.9–199. As was expected, concave slopes received the
highest WofE value (0.69). In the final FFPI equation, it received a weight of 8% (Table 1).

4.5. The Depth of Fragmentation

The depth of fragmentation represents a morphometric conditioning factor, which
indicates the degree of deepening of the drainage network within a certain catchment
area compared to the initial level of the topographic surface, marked by the watershed
(Figure 4a). The depth of fragmentation map was computed based on the DEM, applying
the cartograms method in the Zonal Statistic tool from the Spatial Analysis extension of
ArcMap 10.7.1 software. A fishnet with a cell size of 100 m was created in advance and the
differences between the highest and lowest altitudes inside each square were calculated.
The manual classification method was used to delineate its values into five classes: 0–2,
2–4, 4–8, 8–16, 16–110. The areas affected by torrentiality are mostly present in the class
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from 2–4, representing 52.7% of the total torrential pixels, thus, representing the only class
with a positive WofE (0.18). This factor received a weight of 8% in the final FFPI equation
(Table 1).
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4.6. The Stream Power Index

The Stream Power Index (SPI) (Figure 4b) represents the product of the catchment area
and slope and measures the erosive power of flowing water per unit length of the stream [47,
48]. Negative values indicate areas with topographic potential for deposition while positive
values indicate potentially erosive areas. The lowest values represent relatively flat areas,
influencing the susceptibility to floods, sediment deposition, and accumulation. SPI raster
was obtained based on parameters derived from DEM. Its values were determined by
implementing the Equation (1) in Map Algebra of ArcMap 10.7.1. software.

SPI = “flow_accumulation” × cell_size × Tan(“slope_degree” × 0.017543) (3)

Based on the natural breaks method, SPI values were divided into five classes: (−13.8)–
(−11.3), (−11.2)–(−4.3), (−4.2)–(−2.5), (−2.4)–0.52, 0.53–11.4. Positive values classes re-
ceived the highest WofE value (0.62), indicating that erosion processes are present in
riverbeds and torrential formations. This factor received a weight of 2% in the final FFPI
map determination (Table 1).

4.7. The Topographic Wetness Index

The Topographic Wetness Index (TWI) represents a morphometric conditioning factor.
Taking into consideration the topography of the area, the slopes or flat surfaces, TWI



Sensors 2022, 22, 3573 12 of 21

indicates the moisture of the soil (Figure 4c). This flow conditioning variable map was
computed by using the DEM as input data in the Basic Terrain Analysis of SAGA GIS 7.9.0.
software. In order to divide the values into five classes, we used the natural breaks method:
0–2.49, 2.5–6.0, 6.1–8.0, 8.1–11.6, 11.7–30.2. The areas affected by torrentiality are mostly
present in the class between 6.1 and 8.0, which represents 40.5% of the study area. The
highest WofE value (0.59) was allocated to the class from 11.7–30.2. Having an important
influence, this factor received a weight of 8% on the FFPI map computation (Table 1).

4.8. L-S Factor

The L-S factor is another morphometric conditioning factor, commonly used to assess
the compound influence of slope length and slope steepness on the occurrence of surface
runoff [49,50]. The L-S was determined based on the spatial analysis Equation (2) proposed
by Mitasova et al. 1996 [51] and implemented in Map Algebra of ArcMap 10.7.1. software
(Figure 4d).

POW ([accumulation] × 3/22.1, 0.6) × POW(sin([slope] × 0.017)/0.09, 1.3) (4)

where: [accumulation]—runoff accumulation, 3—grid resolution, 0.6, 1.3, 22.1, 0.017—
experimental coefficients, [slope]—terrain slope.

The L-S factor values were classified into five classes based on the manual break
method: 0–2, 2.1–6, 6.1–10, 10.1–50, 50.1–190. The highest WofE (0.45) corresponds to classes
between 10.1 and 50. Same as TWI, it received 8% weight on the FFPI map computation
(Table 1).

4.9. Topographic Position Index

The Topographic Position Index (TPI) was also computed by using the DEM as input
data in the Basic Terrain Analysis of SAGA GIS 7.9.0. software (Figure 5a). TPI is a scale-
dependent flash flood conditioning factor, used to compare the altitude of each cell with
the mean altitude of the neighbourhood around that cell [52]. The natural breaks method
was used to divide the TPI values as follows: (−35.3)–(−7.10), (−7.09)–(−2.1), (−2.09)–1.66,
1.67–6.98, 6.99–44.5. Positive values represent locations that are higher than the average
of their neighbourhood (ridges), negative ones represent locations that are lower than
their neighbourhood (valleys), while values around zero are either flat areas or areas with
constant slope. In fact, the highest value of the WofE (0.73) was assigned to the class with
the lowest value, where the drainage of the surface water is produced. This factor received
a 5% weight in the final FFPI map determination (Table 1).

4.10. Convergence Index

The Convergence Index (CI) represents a very important flash flood conditioning
factor (Figure 5b). By using the aspects of surrounding cells, it calculates an index of
convergence regarding overland flow. The negative values of the Convergence Index
correspond to convergent areas (valleys), the positive ones to divergent (watershed areas)
flow conditions. As in the case of TWI and TPI, the Convergence Index was derived from
SAGA GIS 7.9.0. software using the DEM as input data in the Basic Terrain Analysis. The
CI factor values were classified into five classes according to the literature [26]: 0.1–99,
(−0.9)–0, (−1.9)–(−1), (−2.9)–(−2), (−99)–(−3). The highest WofE (0.59) corresponds to
the class between (−99) and (−3), where 30.8% of the total torrential pixels are situated. In
the final FFPI equation, it received a weight of 7% (Table 2).
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Table 2. Flash flood predictor variables classes with their WofE results.

Predictors
Variables Class Pp (%) Pt (%) WofE WAI (%)

Convergence Index

0.1–99 53.3 31.9 −0.22

7

(−0.9)–0 26.6 19.0 −0.15

(−1.9)–(−1) 8.3 11.0 0.13

(−2.9)–(−2) 3.8 7.3 0.28

(−99)–(−3) 7.9 30.8 0.59

Precipitation

800–850 14.3 21.2 0.17

7

850–950 32.0 65.8 0.31

950–1000 13.6 7.6 −0.25

1000–1050 13.1 3.8 −0.54

1050–1209 27.1 1.5 −1.25

Land use

Discontinuous urban fabric 5.7 4.8 −0.12

10

Non-irrigated arable land 8.0 0.0 -

Fruit trees and berry plantations 13.6 26.7 0.25

Pastures 14.7 19.6 0.08

Complex cultivation patterns 7.2 9.2 0.06

Land principally occupied by agriculture,
with significant areas of natural vegetation 3.6 9.0 0.35

Broad-leaved forest 35.8 29.2 −0.13

Coniferous forest 0.3 0.0 -

Mixed forest 1.3 0.0 -

Natural grasslands 9.3 1.6 −0.82

Transitional woodland-shrub 0.5 0.0 -

Sparsely vegetated areas 0.1 0.0 -
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Table 2. Cont.

Predictors
Variables Class Pp (%) Pt (%) WofE WAI (%)

Lithology

Amphibole andesites 0.1 0.0 -

2

Basaltic andesites 36.2 20.1 −0.17

Quartz andesites 5.8 2.6 −0.35

Pyroclastic rocks 4.3 4.4 0.01

Argillaceous marls/marlstones, sand, gravel 23.6 32.6 0.14

Andesites 0.6 1.2 0.27

Alluvial deposits, proluvium 3.2 14.8 0.67

Porphyry granodiorites 0.6 0.9 0.19

Diluvium 11.1 0.1 −2.10

Gravel, sand, and argillaceous sand 13.4 19.2 0.16

Porphyry diorite 1.0 4.1 0.59

Soil type

Acid brown soils 22.4 7.1 −0.50

5

Brown luvic (podzolic) soils 21.8 42.3 0.29

Clayish brown luvisols 15.0 22.9 0.18

Lithosols 3.4 2.6 −0.12

Albeluvisols (podzoluvisols) 18.5 23.1 0.10

Eu-mesobasic brown soils 9.2 2.0 −0.70

Andosols 9.7 0.0 -

Alluvial soils 0.0 0.0 -

HSG

D 46.9 22.3 −0.32

10B 41.7 71.3 0.23

C 11.4 6.4 −0.25
Pp (%)percentage of class pixels; Pt (%)—percentage of torrential pixels; WAI—Weighted Average Integration.

4.11. Precipitation

Because of its intensity and spatial distribution, the precipitation represents one of the
most essential and important flash flood conditioning factors [42,43]. The multi-annual
mean amount of precipitation (MaP) map was derived with the help of Curveexpert by
statistically correlating the altitude with the MaP values (Figure 5c). We used the manual
classification method to categorise its values into five representative classes: 800–850, 850–
900, 950–1000, 1000–1050, 1050–1209. The class between 850 and 900 mm/year covers
32% of the study area and most of the torrential pixels, at approximately 65.8%. As a
consequence, the same class received the highest WofE (0.31), followed by the class between
800 and 850, with 0.17 of the WofE. Similar to CI, it received a weight of 7% on the FFPI
map computation (Table 2).

4.12. Land Use

Due to its influence on the runoff velocity by different coefficients and, thus, on
the water balance of a drainage system, land use (Figure 5d) constitutes a deterministic
flash flood conditioning factor [51]. It was derived from the Corine Land Cover 2018
dataset, and 12 land use categories were identified in this study area: discontinuous urban
fabric; non-irrigated arable land; fruit trees and berry plantations; pastures; complex
cultivation patterns; land principally occupied by agriculture, with significant areas of
natural vegetation; broad-leaved forest; coniferous forest; mixed forest; natural grasslands;
transitional woodland-shrub; sparsely vegetated areas. The broad-level forest category
covers most of the study area, representing 35.8% of the catchment area, followed by
pastures and land use for fruit trees and berry plantations, which cover 14.7% and 13.6%
of the area respectively. These three categories comprise over 75.5% of the total torrential
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pixels. The highest WofE (0.35) corresponds to the “land principally occupied by agriculture,
with significant areas of natural vegetation” category. In the final FFPI equation, land use
received the second-highest weight of 10% (Table 2).

4.13. Lithology

Lithology (Figure 6a) has a vital influence on the surface runoff due to the fact that
this factor controls the water infiltration rate. The lithology classes were extracted from the
Geological Map of Romania (1:200.000), and 11 categories were identified in the study area.
Approximately 36.2% of the study area is covered by basaltic andesites, which represent
20.1% of the total torrential pixels. The second best-represented class is the one containing
argillaceous marls/marlstones, sand, and gravel, covering 23.6% of the total area, and
including 32.6% of the total torrential pixels. The highest WofE of 0.67 was associated with
the category covered by alluvial deposits and proluvium, mostly located at the base of
torrential formations. Similar to SPI and elevation, this factor received only a weight of 2%
in the final FFPI map computation (Table 2).
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4.14. Soil Type

The soil type (Figure 6b) represents a basic flash flood conditioning factor, in the
context in which water infiltration depends upon soil properties. There are eight soil
type classes in the study area, extracted from the Soil Map of Romania (1:200.000). The
dominant presence of the broad-leaved forest across the entire study area determines the
large extension of several soil types, such as acid brown soils representing 22.4% and brown
luvic soils covering 21.8% of the catchment area. The class of brown luvic soils covers
42.3% of the total torrential formation pixels and also received the highest WofE of 0.29.
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Considered equally important to TPI in the final FFPI equation, the soil type received a 5%
weight (Table 2).

4.15. Hydrologic Soil Group

The hydrologic soil group (HSG) represents an important geographical factor that
reveals the water infiltration rate (Figure 6c). Its definition is based on the association with
the soil texture and four hydrologic soil groups were classified, according to [53,54]. In the
Valea Rea catchment area, only three hydrologic soil groups were identified, B, C, and D.
The dominant soil groups are group D, covering 46.9% of the study area, characterised by a
low infiltration rate and a high runoff potential (clayed-loam/clayed texture), and group
B, respectively, covering 41.7%. Group B has a medium infiltration rate, a medium runoff
potential, and a loamy/loamy-sand texture. It covers 71.3% of the total torrential pixels,
receiving the highest WofE of 0.23. Considered as important as the land use factor, HSG
received 10% weight on the FFPI map computation (Table 2).

4.16. FFPIWofE Distribution in the Valea Rea River Catchment

The integration of the unitarily analysed factors for the acquisition of the final databases,
representative for the analysed territory from FFPI perspective, has been carried out accord-
ing to the weighted average overlay method. The result was a spatial database, classified
on five classes (from very low to very high), representing the territorial vulnerability in
terms of FFPI (Figure 7).
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The analysis at the level of the study area highlights the very large extension of two
distinctive categories in terms of territorial vulnerability. First of all, one emphasises the
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large extension of the low vulnerability class identified in the North, East, and Southeast of
the study area, having a weight of approximately 22.7%. This large extension in the above-
mentioned areas is caused mainly by the forest vegetation cover of those areas, correlated
with a sudden vegetation transit from forests to complex crops in the context of very steep
slopes. The low and very low vulnerability classes are also identified across large areas
with low slopes in the Lechincioara Valley, Frasin Valley, and Alba Valley, usually located
at the confluence of streams and in the small basins created by these valleys. The class
of high vulnerability is identified on approximately 25.0% of the territory and is specific
especially for the steep slopes of the Lechincioara Valley, the slopes of the lower Târs, olt,
catchment, and the middle areas of the Frasin Valley and Alba Valley catchments. The
correlation analysis highlights the fact that the very high vulnerability class is determined
by the slope factor, in addition to inadequate land use (orchards and improper crops), as
well as lithology and type of soils.

A medium class is identified and may be considered as a transition level between
the two extremes previously presented, covering 20.7% of study area. This class is mainly
present in the central northern part of the study area, in the southern part, and in the steep
transition area, where it is less developed spatially. Analysing the results obtained as a
consequence of the implementation of the spatial analysis model on three vulnerability
classes: low (low and very low vulnerability), medium (spatially covering the transition
area), and high (high and very high vulnerability), the high vulnerability of the study area
in terms of FFPI is clearly emphasised because this class spatially covers approximately
43% of the analysed study area.

The territorial impact of the flash flood development potential highlights the risks
associated with the territory. This risk may impact the transport infrastructure, the resi-
dential areas, as well as the productive agricultural lands located on the steep slopes of the
Lechincioara and Târs, olt, valleys. At the level of the territory, there is major impact due to
the fact that the entire class of high vulnerability covers the built-up areas of the villages
within the analysed region and is also manifest in the areas with the highest density of
residential households and their associated infrastructure.

The validation of the spatial analysis model was performed by directly comparing the
obtained results with places where flash floods occurred, randomly identified in the study
area. Therefore, a number of 15 sites were identified according to bibliographical references
which mentioned the events produced and the damage assessment as a result of the event
impact (operational reports, synthetic reports, disaster records). These sites are distributed
across the entire study area. For validation, two sites have been selected in order to cover as
much of the analysed area as possible. The analysis of the two areas chosen for validation
highlights the spatial identification of a number of five points affected by a previous flash
flood in areas modelled as having high potential for flash flood occurrence, and one point
in an area modelled as having medium potential for flash flood occurrence, within the
first area selected for validation (Figure 7a). In the case of the second area selected for
validation, a number of four locations were identified as corresponding to an area of high
vulnerability, and one location was identified in an area modelled as having very high
vulnerability (Figure 7b). The identification of locations affected by previous flash floods in
areas corresponding to high and very high vulnerability classes in terms of FFPI during the
validation process emphasises the high degree of validation for the proposed model. It also
validates the methodological approach and leads to the recommendation that the obtained
results should be used and scientifically applied in practice.

5. Discussion

The ever-higher intensity and frequency of slope flash floods determines a higher
necessity for the drawing up of associated hazard and vulnerability studies, which are
increasingly important. Most of the studies are performed at the local level by the au-
thorities responsible for the integrated management of catchment areas, concerning areas
already affected by extreme events. These are post-event studies, not taking into account
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the prediction of such events to mitigate the potential damage. A series of studies were
presented at the national level [28,33–35] and were validated by means of case studies,
proposing methodologies and factors to be considered for FFPI identification. The structure
of the presented model fits the general methodologies based on the statistical analysis to
identify the territorial vulnerability to slope flash floods, implementing a number of new
factors (depth of fragmentation, soil type, precipitation) which influence their development
and propagation. The presented model is based on the integration of a number of 15 factors
that are materialised in databases acquired directly or based on spatial analysis submodels.
The integration of a very large number of databases acquired either from diverse sources or
from spatial analysis submodels renders a very high complexity of the proposed model and
a very high accuracy of the final result and of its validation. The integration of the 15 factors
according to the weighted average equation induces an element of subjectivity within the
model when the weight of each factor is established. Therefore, taking into account the
mechanisms governing the development of flash floods and based on expert knowledge
analysis, it was decided to assign the highest weight to the slope factor, followed by land
use and HSG. These factors have an impact on the occurrence of flash floods by reducing
the amount of water leading to runoff by interception and infiltration, at the same time
influencing the flash flood propagation in terms of direction, speed, erosive power, and
impact. The factors that have the lowest weight are represented by lithology, SPI, and
elevation, which do not have a direct influence on runoff.

The selected manner of validation for the proposed model (direct validation) suggests
its successful use in scientific practice, considering that events once produced in an area
have a high probability to occur once again if measures meant to mitigate and reduce
them are not taken. In the scientific literature, one may identify a high number of studies
using the statistical method of validation, which involves a certain degree of subjectivity,
not entirely capturing the territorial specificity. By means of the presented case study, we
emphasised both the territorial specificity of flash flood occurrence and development, and
the direct correlations between the factors involved in the development of the process.
The large coverage of the high class of vulnerability across extensive areas highlights the
potential risk associated with the territory. Risk assessment is an absolutely necessary
stage in the process of integrated territorial management to highlight viable areas for the
development of human activities. Future studies regarding the analysed area will focus on
risk assessment concerning all territorial infrastructures and the solutions meant to mitigate
these risks.

6. Conclusions

Analysing the entire research approach reveals that the proposed methodology may
be easily implemented into different study areas. The databases used in the modelling
process represent the basis of the spatial analysis model. They are acquired by deriving
from DEM and implementing spatial analysis equations. The presented methodology was
applied to identify the areas prone to flash floods in different degrees, from very low to very
high vulnerability. It also highlights that areas with high and very high vulnerability cover
approximately 43% of the total catchment, highlighting the excessively torrential nature
of the study area and the potential risks for the territorial infrastructure. Additionally,
the identification of large areas of the analysed territory that have high and very high
vulnerability underlines the success rate of the model and its validation based on the
principle of direct comparison between the result of the model and the reality in the field.

The analysis of the proposed methodology and of the obtained results highlights the
following aspects:

• The identification of critical areas where measures should be implemented to mitigate
the susceptibility to flash floods by prohibiting massive deforestation and implement-
ing a clear policy of afforestation according to the norms in the field;

• The local and central government should implement policies to prioritise the invest-
ments to defend the population from flash floods and to make the inhabitants aware of
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them. These policies should be based on previous case studies and should underline
the negative effects of flash floods;

• The proposed methodology may be also used as a starting point to identify hotspots
with high vulnerability and territorial risk within catchment areas that are not super-
vised by direct measurements;

• The model may be applied on a large scale, reducing the costs related to the implemen-
tation of the spatial planning process meant to mitigate the losses inflicted by flash
floods. It also reduces the costs for the integrated management of catchment areas.

The databases are easy to obtain and to analyse using proprietary and open-source
software, available to any specialist in the field of spatial analysis. The model proposed in
this study may represent a methodology to be applied in spatial planning studies, highly
useful in land management and for local governments in mitigating the risk of flash floods.
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