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Abstract: The fifth-generation (5G) wireless network is visualized to offer many types of services
with low latency requirements in Internet of Things (IoT) networks. However, the computational
capabilities of IoT nodes are not enough to process complex tasks in real time. To solve this problem,
multi-access edge computing (MEC) has emerged as an effective solution that will allow IoT nodes
to completely or partially offload their computational tasks to MEC servers. However, the large
communication delay at a low transmission rate for nodes far from the access point (AP) makes this
offloading less meaningful. This paper studies joint multi-task partial offloading from multiple IoT
nodes to a common MEC server collocated with an AP, and it uses relay selection to help nodes far
from the AP. The computation time of all tasks is minimized by adaptive task division and resource
allocation (bandwidth and computation resource), and it is solved with an evolutionary algorithm.
The simulation results confirm that the proposed method with both relay selection and adaptive
bandwidth allocation outperforms the methods with neither or only one function.

Keywords: multi-access edge computing; partial offloading; relay; resource allocation; latency
optimization

1. Introduction

Recent developments in wireless communications and sensing techniques have pro-
moted the Internet of Things (IoTs). Initially, IoT nodes were used to realize simple sensing
tasks, such as measuring temperature or moisture, and most IoT nodes have limited
resources for computation, storage, and battery life.

The emergence of AI techniques enables more advanced tasks, such as surveillance
and intrusion detection, which heavily rely on the deep learning technique to improve their
accuracy and require more complex processing at IoT nodes [1]. Although current CPUs on
IoT nodes have become more powerful, it is still difficult to process computation-intensive
tasks in real time, and the large power consumption will quickly deplete the battery of an
IoT node [2].

To overcome the above problem, in the last few decades, mobile cloud computing
(MCC) has been suggested to assist IoT nodes with low computational capabilities by
exploiting the abundant processing power and storage in the cloud. Specifically, IoT nodes
collect and send data to cloud servers for processing, and the control decision based on the
processing result is sent back to actuators collocated with the sensors. This helps to reduce
the processing delay, but the long distance between IoT nodes and the cloud servers may
bring vast communication latency, especially when the sensing data are multimodal with a
large size, which makes it hard to meet the criteria of delay-sensitive applications [3,4].

A new technology, named multi-access edge computing (MEC), has been proposed
to meet the strict delay requirement. An MEC server is deployed at the cloud edge near
IoT nodes. With more computation resources and storage than IoT nodes, an MEC server
can help IoT nodes to process computation-intensive tasks, while its short distance to IoT
nodes also helps to suppress the communication delay [5–7].
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The computation task offloading to MEC servers has attracted much attention in recent
years. It is generally divided into two types: binary offloading and partial offloading [8]. In
binary offloading, a node either computes a task locally or totally offloads it to an MEC
server. Binary offloading has some drawbacks, such as unnecessary consumption of energy
and time for the computation that is ultimately offloaded. Another problem is that when
fully offloading a task, its execution may be delayed because of bandwidth limitations. In
contrast, a partial offloading scheme divides a task into two segments. One segment of the
task is executed on the node locally, and the other segment is offloaded to an MEC server.
Partial offloading efficiently utilizes both the local and MEC resources. With good splitting
of a task between local processing and MEC offloading, partial offloading can efficiently
minimize the task execution time, and it is a promising technique for the IoT [9–12].

IoT nodes usually are connected with MEC servers by wireless communications. The
wireless channel is susceptible to path loss and channel fading, which may greatly degrade
the transmission rate. When a task has a very large data set, but the transmission rate
between the IoT node and the MEC server is low, the communication itself takes a great
deal of time, and the effect of partial offloading will be degraded. Relaying was exploited
in [13] to alleviate this problem. In a network with multiple IoT nodes sharing the same
spectrum resource, equally allocating bandwidth is a reasonable policy. However, the
volume of data generated by each task is time-variant, and it is necessary to dynamically
allocate the resource to improve the spectrum efficiency. Adaptive resource allocation was
studied in [14] for binary offloading.

This paper studies joint multi-task partial offloading from multiple IoT nodes to
a common MEC server collocated with an AP, aiming to address the heterogeneity in
transmission rates. To this end, an algorithm named Partial Offloading with Relay and
Adaptive Bandwidth Allocation (PORAB) is proposed to minimize the execution time of
all tasks. PORAB is an evolutionary algorithm. It initiates a population of candidates. In
each generation, it drops the lowest part of the population and generates new candidates
using the characteristics of highly fit candidates.

Our contribution is twofold:

• We investigate the heterogeneity in transmission rates and suggest using a relay to
help nodes far from the AP and combine it with adaptive bandwidth allocation to
achieve fine-grained resource allocation.

• We propose an evolutionary algorithm for joint optimization of radio resources (band-
width) and computation resources. This not only improves the performance of nodes
using relays but also reduces the delay of other nodes.

The proposed method is evaluated with MATLAB simulations, and the impacts of
the number of tasks, size, and the volume of data on the task execution time are analyzed.
The simulation results confirm that the proposed method with both relay selection and
adaptive bandwidth allocation outperforms methods without the functions or with only
one function.

The remainder of the paper is divided into five sections. Related works are reviewed
in Section 2. The system model, including a relay communication model and problem
formulation, is presented in Section 3. Section 4 describes the proposed method, while the
simulation analysis and evaluation are presented in Section 5. Finally, Section 6 concludes
this paper.

2. Related Work

Partial offloading is especially suitable for applications with low latency requirements.
Some work has been performed in this field. In [15], Wang et al. adopted partial offloading
to enhance the computation offloading performance. Le et al. [16] and Ren et al. [17]
investigated resource allocation and data segmentation in order to minimize latency by
considering a partial offloading scheme. In [13], Cao et al. studied the concept of coop-
erative communication and considered three nodes, with one of them working as a relay.
They considered both binary and partial offloading schemes and jointly optimized the
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resource allocation and computation for both the relay and nodes. For delay-sensitive
applications, in [18], Chen et al. proposed a green parallel online offloading algorithm
based on Lyapunov optimization. Multiple devices can offload their data to MEC servers
in parallel, and a joint optimization problem is formulated. The algorithm adaptively
selects a server for a device according to its channel state and current location. In [19],
Katayama et al. considered an MEC system with three types of servers, formulated an
optimization problem for resource allocation, and proposed a heuristic algorithm to min-
imize the total latency. Zhang et al. in [20] investigated the task offloading problem of
multiple nodes for an MEC system and jointly optimized the offloading delay and energy
consumption. In [21], Huang et al. optimized the resource allocation and task offloading
decision by adopting a binary offloading policy and solved it with a deep reinforcement
learning-based framework. Meanwhile, in [22], Chen et al. proposed a software-defined
network and minimized the task offloading time to MEC servers via a binary offloading
scheme. The problem of reducing energy utilization was investigated in [23] to minimize
the overloading battery usage by using the wireless power transfer to nodes and the partial
offloading to MEC servers. In [24], a Lyapunov optimization problem was formulated with
the objective of jointly reducing the energy consumption and task execution time, and the
authors proposed a secure offloading framework, combining edge computing and cloud
computing to achieve optimal task offloading where the MEC servers provide low-latency
computation assistance while the MCC servers offer powerful computation.

In [25], considering both energy usage and time delay, joint multi-task partial offload-
ing was formulated to achieve on-demand offloading, and the authors stated that partial
offloading outperformed binary offloading. In [26], Guo et al. stated that the best resource
allocation can improve the energy efficiency, latency, and computational capabilities of
the nodes. The above statement was proven by Mahmood et al. in [27], who proposed
to minimize the duration of multiple tasks through excellent placement of computational
assets’ power supplies and optimal task segmentations. Although only a part of a task is
transmitted to an MEC server in partial offloading, its transmission time is non-negligible
and may be long at a low transmission rate for nodes far from the access point (AP). This
problem, however, was not taken seriously in previous works.

In recent years, intelligent offloading has attracted much attention. In [28], Qu et al.
proposed a deep meta reinforcement learning-based offloading algorithm which integrates
various parallel deep neural networks with Q-learning to achieve efficient offloading
decision making. The purpose is to reduce the latency and energy computation. In [29],
the concept of the wireless power mobile edge cloud (WPMEC) with partial offloading
was studied, where the MEC is integrated with wireless power transfer (WPT) at the
AP. In [23], the authors confirmed that a partial offloading scheme outperformed the
binary counterpart.

This paper also adopts the policy of partial offloading. Compared with previous work
in this field, this paper considers the potential poor transmission rate and time-variant
data size in each task. Accordingly, relay selection is used to help nodes far from the
AP, and adaptive bandwidth allocation is exploited to address both the heterogeneity in
transmission rates and the variation in data volumes of tasks. We notice that relay was
exploited in [13], where a relay node also helped computation, and adaptive resource
allocation was studied in [14] for binary offloading. In comparison, this paper combines
both to achieve better performance for partial offloading.

3. System Model

In this paper, we consider a wireless cell with an AP and N IoT nodes. Nodes are
randomly distributed in the coverage of the AP. They have low computational capabilities
and cannot process power-hungry and computation-intensive tasks in real time. Therefore,
an MEC system is deployed, collocated with the AP to deliver computational services to
the nodes on demand.
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We assume each node has only one task. The task at node n has a data size sn
and requires cn cycles to process. The processing capability of node n is f L

n cycles per
second, and the computational capability of the MEC server is f max cycles per second. The
computation resource allocated at the MEC server to task n is f M

n cycles per second. The
overall bandwidth is B, and the percentage of bandwidth for task n is bn, which is decided
according to the signal strength and other factors. To fully exploit the computation resource
for both IoT nodes and the MEC server, this paper adopts a partial offloading policy. We
denote the percentage of local computations for task n as αn, and the remaining part (1− αn)
will be offloaded to the MEC server. The main notations are summarized in Table 1.

Table 1. Main notations in the model and their default values [23,29].

Parameters Descriptions Values

N Number of nodes 100
B Overall bandwidth 2 MHz
bn Percentage of bandwidth for task n By algorithm
cn Number of processing cycles of task n [0.2, 0.4, · · · , 1] M cycles
sn Data size of task n [20, 40, · · · , 100] M bits
f L
n Comp. resource of node n for task n 1 M cycle/sec

f M
n Comp. resource for task n at MEC server By algorithm

f max Overall comp. resource at MEC server 25 M cycle/sec
αn Percentage of task n for local processing By algorithm

Pmax Maximum energy of a node 2 joules

When a node offloads its computation task to the MEC server, the delay consists
of three parts: (1) time for transmitting data to the MEC server via the AP, (The link
between the MEC server and the AP uses high-speed Ethernet, and the transmission time is
neglected.) (2) time for processing the data at the MEC server, and (3) time for transmitting
the result from the MEC server back to the node. Here, it is assumed that the size of the
result is negligibly small. The time in (1) depends on the transmission rate, which further
depends on the distance between the nodes and the AP. As shown in Figure 1, the blue
nodes (U1 and U2) are close to the AP, and they can offload their data to the MEC server
by direct transmission at a high rate. However, the red node (U3) is far from the AP and
near the cell edge. Its direct transmission rate is low, which will cause a large delay. In this
paper, we use the relay method to solve this problem and adaptive bandwidth allocation to
fine-tune the transmission rate.

Figure 1. System model of relay-based multi-task partial offloading in multi-access edge computing.
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3.1. Relay Model and Adaptive Bandwidth Allocation

According to the Shannon theory, the rate for direct transmission from node n to the
AP is

rn,M = bnB log2

(
1 +

pngn

σ2

)
(1)

where pn is the transmission power of node n, gn represents the channel gain between
node n and the AP, σ2 represents the noise power, bn(0 ≤ bn ≤ 1, ∑n bn = 1) represents the
percentage of bandwidth allocated for node n, and B represents the total bandwidth of
the system.

When node n transmits its task data via a relay node j, it shares its bandwidth with
the relay node, and they transmit in different periods. The whole transmission involves
two rates: rn,j from node n to relay node j in the first period and rj,M from relay node j to
the AP in the second period, as shown in Figure 2.

Figure 2. Resource allocation for nodes and relay.

The period length is inversely proportional to the transmission rate, and the ratio
between the first and second period lengths is rj,M : rn,j. Then, the equivalent rate between
node n and the AP, using relay j, is

rn,j,M =
1

1
rn,j

+ 1
rj,M

=
rn,j·rj,M

rn,j + rj,M
. (2)

The relay selection problem is finding a relay node j that maximizes the rate

j∗ = arg max
j

rn,j,M. (3)

If rn,j∗ ,M is greater than rn,M, then the relay node j∗ should be used; otherwise, direct
transmission should be used. Then, the overall rate from node n to the AP is

r̂n = max
(
rn,M, rn,j∗ ,M

)
. (4)

3.2. Computation Time

Node n locally processes a part (αn) of its task, and the required time is

TL
n =

αncn

f L
n

. (5)
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Node n offloads 1− αn of its task to the MEC server. The transmission time is (1−αn)sn
r̂n

.

At the MEC server, the processing time is (1−αn)cn
f M
n

. Then, the overall edge computation
time for task n is

TM
n =

(1− αn)sn

r̂n
+

(1− αn)cn

f M
n

. (6)

The overall computation time of task n is equal to max
{

TL
n , TM

n
}

.

3.3. Problem Formulation

As mentioned above, this paper aims to minimize the computation times of all tasks
by relay selection and optimal allocation of resources (such as bandwidth, task division
between local computation and offloading, and allocation of computation resources at the
MEC server for all tasks).

Mathematically, we define our joint optimization problem as follows:

min
αn ,bn , f M

n

max
n

(
αncn

f L
n

, (1− αn)

(
sn

r̂n
+

cn

f M
n

))
, (7a)

C1 :
N

∑
n=1

f M
n ≤ f max, f M

n ≥ 0, (7b)

C2 :
N

∑
n=1

bn ≤ 1, bn ≥ 0, (7c)

C3 : 0 ≤ αn ≤ 1. (7d)

The objective of Equation (7a) is to minimize the maximal processing time of all
tasks. C1 in Equation (7b) states that the sum of the computation resources allocated to all
tasks must be less than the maximum computational capability of the MEC server. C2 in
Equation (7c) ensures that the sum of the allocated bandwidth for all nodes must be less
than the total bandwidth. C3 in Equation (7d) indicates the lower and upper bounds of the
task division.

4. Proposed Method
4.1. Optimal Calculation of αn

As can be seen in Equation (7a), our objective function, having three decision variables,
is non-convex in nature. We optimally find the value of the task division αn by fixing the
values of the remaining parameters, which makes it easier to find the solution.

In our optimization problem, time delay consists of the local computation time TL
n

in Equation (5) and the edge computation time TM
n in Equation (6), with both depending

on the task division αn. TL
n increases with αn, while TM

n is inversely proportional to αn.
We can say that at some point, they will have the same value, and the processing time
of task n reaches the minimum. Then, we can calculate the value of αn by solving the
following equation:

αncn

f L
n

= (1− αn)(
sn

r̂n
+

cn

f M
n

). (8)

After some mathematical calculations, we find the optimal value of task division αn
as follows:

α∗n =
f L
n
(
sn f M

n + cn r̂n
)

cn r̂n f M
n + cn r̂n f L

n + sn f L
n f M

n
. (9)

As can be seen in Equation (9), the task division α∗n depends on the local and edge
computational capabilities ( f L

n and f M
n , respectively), the size of the data sn, and the number

of cycles cn required to compute the task.
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Then, the non-convex optimization problem in Equation (7a) can be rewritten as follows:

min
bn , f M

n

max
n

α∗ncn

f L
n

, (10a)

C1 :
N

∑
n=1

f M
n ≤ f max, f M

n ≥ 0, (10b)

C2 :
N

∑
n=1

bn ≤ 1, bn ≥ 0. (10c)

The objective in Equation (10a) is a nonlinear function of both bn and f M
n and is

subject to the sum constraints in Equations (10b) and (10c). bnB corresponds to the number
of subcarriers allocated to node n in the OFDMA-based network. In [14], the authors
studied a binary offloading problem by considering adaptive bandwidth allocation and
MEC resource allocation. The bandwidth allocation was based on the (integer) number
of subcarriers, and the MEC CPU resources were real numbers. Their problem was a
mixed-integer nonlinear program problem which was NP-hard. Similarly, the problem in
Equation (10a) is also NP-hard.

4.2. Optimal Resource Allocation

Due to the complexity of the joint optimization of wireless resource allocation and
MEC resource allocation in Equation (10a), we propose solving it iteratively with an
effective algorithm called Partial Offloading with Relay and Adaptive Bandwidth allocation
(PORAB). Instead of alternate optimization, relay selection and the parameter α∗n are
determined in advance. Then, PORAB optimally allocates the bandwidth for transmission
and computation resources for processing each task at the MEC server.

Basically, PORAB is an evolutionary algorithm [30]. At each generation, the pop-
ulation is generated based on the characteristics of the previous generation. Then, the
unfit candidates are removed, and the fittest candidates are selected according to their
characteristics. New candidates are generated in the next generation to keep the size of the
population constant. This process repeats from one generation to the next generation until
we obtain the desired solution. PORAB optimizes the problem by maintaining the numeri-
cal characteristics of each candidate in the population. In this way, the actual population
does not need to be maintained from one generation to the next.

As shown in Algorithm 1, we first initialize all the parameters of our optimization
problem. Uniform random distribution is used to initialize the population of the first
generation with random candidates (line 3). During each iteration, the algorithm computes
the maximum in Equation (10a) as the fitness value of each candidate ω ∈ Ω (line 5). The
best fitness value is recorded in δ∗ω,t (line 6). If the difference between the optimal fitness
values of the current and previous iterations is less than a parameter (i.e., |δ∗ω,t− δ∗ω,t−1|≤ ε ),
then it is said that the algorithm has converged, and no further computation is required.
Otherwise, the s = |Ω|Sp best fit solutions, where Sp ∈ (0, 1) is a selection probability, are
selected as Ω (line 10).

For each dimension ωn, the mean (µn) and standard deviation (σn) are computed over
Ω, and they form the vectors µ and σ, respectively (lines 11–12). Next, new candidates
are generated while a premature convergence is avoided (lines 13–20). Using the mean
and standard deviation of each dimension v ∈ ω, a window

(
vlow, vhigh

)
is calculated,

where vlow and vhigh represent the lower and upper bounds of dimension v, respectively. If
its window size vhigh − vlow is too small, being less than the predefined value γv, then its
window is reset to

(
ωl

n, ωu
n

)
. This process is repeated for all dimensions of ω. Then, with

the new windows, a new population is generated for the next generation using uniform
random distribution.
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In each iteration of Algorithm 1, the computation mainly takes place in three places.
First, there is the computation of the fitness value δω for each sample ω ∈ Ω (line 5), which
is O(N·|Ω|). Next, the best s solutions required to sort the population are selected, and
the complexity is O(|Ω|log(|Ω|)) (line 10). Then, the time for updating the population is
O(N·|Ω|). Assume that the maximal number of iterations is L. Accordingly, the overall
computation cost is O(L·|Ω|·max{N, |Ω|}).

Algorithm 1: Partial Offloading with Relay and Adaptive Bandwidth Allocation (PORAB)
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is O(N · |Ω|). Next, the best s solutions required to sort the population are selected, and
the complexity is O(|Ω| log(|Ω|)) (line 10). Then, the time for updating the population is
O(N · |Ω|). Assume that the maximal number of iterations is L. Accordingly, the overall
computation cost is O(L · |Ω| ·max{N, |Ω|}).

Algorithm 1: Partial Offloading with Relay and Adaptive Bandwidth Allocation
(PORAB)
1 Decision variable: ω = (b1, b2, · · · , bN , f M

1 , f M
2 , · · · , f M

N )T ;
2 Input: D ← |ω| (Problem dimension), Ω = {ω} ← Population, |Ω| ← Population size,

Sp ← Selection probability, [ωl
n, ωu

n]← Lower, upper bound of ωn (n = 1, 2, · · · , 2N);
3 Initialization: Initialize Ω with U[0, 1], s← b|Ω|Spc, t← 1 ;
4 while t is less than maximum number of iterations do
5 For each ω ∈ Ω, compute the max in (10a) as the fitness value δω, subject to C1 and C2 ;
6 δ∗ω,t ← the best fitness value ;
7 if |δ∗ω,t − δ∗ω,t−1| ≤ ε then
8 break ;
9 end

10 Ω← Select the best s solutions from Ω based on δω, ω ∈ Ω;
11 µ← Find mean of all variables from the selected population Ω ;
12 σ ← Find std. dev. of all variables from the selected population Ω;
13 foreach v ∈ {ω1, ω2, · · · , ω2N} do
14 [vlow, vhigh]← [µv − σv, µv + σv];
15 if (vhigh − vlow) < γv then
16 [vlow, vhigh]← [ωl

n, ωu
n];

17 end
18 Ωv ← vlow + (vhigh − vlow) ◦ R,R ← U[0, 1] ;
19 Ω← [Ω, Ωv] ;
20 end
21 end

The convergence graph of the proposed algorithm is shown in Figure 3. The results
show how the algorithm converged with iterations under different numbers of nodes N,
where N ∈ {20, 40, 60}. Here, we assumed a block fading channel was between the nodes
and AP, which means that the transmission rate was constant for the entire period T . We
observed that as the number of iterations increased, the algorithm gradually converged to
an optimal solution. The converged result of the algorithm increased with the number of
nodes N because more nodes led to more computational requirements at the MEC server.
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Figure 3. Algorithm convergence graph.

The convergence graph of the proposed algorithm is shown in Figure 3. The results
show how the algorithm converged with iterations under different numbers of nodes N,
where N ∈ {20, 40, 60}. Here, we assumed a block fading channel was between the nodes
and AP, which means that the transmission rate was constant for the entire period T. We
observed that as the number of iterations increased, the algorithm gradually converged to
an optimal solution. The converged result of the algorithm increased with the number of
nodes N because more nodes led to more computational requirements at the MEC server.

Figure 3. Algorithm convergence graph.
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5. Simulation Evaluation

In this section, the performance of the proposed method is evaluated via simulation in
the MATLAB environment.

5.1. Simulation Setting

The simulations were performed by using the parameters shown in Table 1. We
assumed that N IoT nodes were randomly distributed in the coverage of an AP, and the
channel between a node and the AP was constant within the transmission time.

The proposed PORAB method has both relay selection and adaptive bandwidth
allocation functions. It was compared with other methods, namely Partial Offloading with
neither function (POBase) [27], Partial Offloading with only Relay selection (POR), and
Partial Offloading with only Adaptive Bandwidth allocation (POAB). Here, both POR
and POAR implemented one of the functions of the proposed method. In this way, the
comparison between PORAB and POR or POAR provided an ablation study.

In the evaluation, we used the transmission rate and task computation time as the
evaluation metrics. The latter was the maximal execution time of all tasks, each of which
was the maximum of local processing time TL

n and the MEC offloading time TM
n (including

both transmission delay and the processing time at the MEC). Because each node had only
one task, the number of nodes equaled the number of tasks.

5.2. Simulation Results

Figure 4 shows how the task computation times in different methods changed with
the number of tasks in the network. Generally, in all methods, the task computation time
increased with the number of tasks. This was because the computation resources at the
MEC server were fixed, and each task would have fewer resources when there were more
tasks, which increased the edge computation time.

Figure 4. Variation of task computation time with the number of tasks.

When each task was allocated equal bandwidth, using a relay did not help much,
and the task computation time was almost the same for POBase and POR. When adaptive
bandwidth was used, both PORAB and POAB achieved better performance than POBase
and POR. In addition, the effect of the relay became obvious. PORAB outperformed POAB,
and the improvement in task execution time increased with the number of tasks.

In our model, we optimally allocated the bandwidth, and we can see in Figure 5
that the average data transmission rate improved. For a small number of nodes, the data
transmission rate was high. When the number of nodes increased, the data transmission
rate decreased, but our proposed PORAB algorithm outperformed POAB.



Sensors 2023, 23, 190 10 of 13

Figure 5. Variation of transmission rate with the number of nodes.

Figure 6 shows the number of nodes selected for the relays. Generally, the number
of relays increased with the number of nodes. Using adaptive bandwidth, the number of
relays can be reduced in PORAB, which helps to reduce the burden of the nodes.

Figure 6. Variation of the number of selected relays with the number of nodes.

Table 2 shows how the number of selected relays varied with the number of nodes.
When N = 20, the number of nodes selected as relays was 11 in POR but reduced to 10 in
PORAB. Similarly, when N = 40, the number of nodes selected as relays was 26 and 22 in
POR and PORAB, respectively. We can see from Table 2 that the number of relays increased
with the number of nodes.

Table 2. Variation of the number of selected relays with the number of nodes.

N 20 40 80 100

POR 11 26 48 58

PORAB 10 22 43 53

Figure 7 shows how the task computation time varied with the volume (size) of the
tasks. Generally, the task computation time increased with the volume of the tasks in all
methods. However, the proposed PORAB method achieved the best performance. When
the volume of data was low, the required amount of computational cycles was small, and
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the task computation time was small. In the partial offloading, a part of the task was
computed locally, and the remaining part was computed on the MEC server. The time
required to compute a part of a task was less than that required to process the whole task
on the MEC server. As a result, the proposed PORAB method minimized the delay and was
expected to meet the requirements of fifth-generation wireless communication systems.

Figure 7. Variation of task computation time with the volume of tasks in terms of bits.

Figure 8 shows that the task computation time increased with the number of cycles
required to process each task, but the trend was different. With adaptive bandwidth
allocation, the transmission could be made more efficient, and more time could be used for
processing at the MEC server. By using relays, PORAB further improved the performance
compared with POAB.

Figure 8. Variation of task computation time with the number of cycles required to process a task.

The above results indicate that both relays and adaptive bandwidth allocation helped
to reduce the task computation time. Adaptive bandwidth allocation fine-tuned the
transmission rates and showed a very obvious effect, regardless of the use of relays.
In comparison, the effect of the relay was larger when used together with adaptive
bandwidth allocation.

6. Conclusions

In this paper, to solve the potential transmission delay caused by the low transmission
rates of nodes far from the AP in multi-task partial offloading, we have suggested using
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relay selection and adaptive bandwidth allocation. We minimized the overall task compu-
tation time, jointly considering relay selection, bandwidth allocation for tasks, task division
between nodes and the MEC server, and resource allocation for tasks at the MEC server.
PORAB, as an evolutionary algorithm, was proposed to iteratively solve the problem. The
simulation results show that the proposed method effectively reduced the task computation
time compared with other benchmark methods.
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