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Abstract: Telecommunication networks are growing exponentially due to their significant role in
civilization and industry. As a result of this very significant role, diverse applications have been
appeared, which require secured links for data transmission. However, Internet-of-Things (IoT)
devices are a substantial field that utilizes the wireless communication infrastructure. However, the
IoT, besides the diversity of communications, are more vulnerable to attacks due to the physical
distribution in real world. Attackers may prevent the services from running or even forward all of
the critical data across the network. That is, an Intrusion Detection System (IDS) has to be integrated
into the communication networks. In the literature, there are numerous methodologies to implement
the IDSs. In this paper, two distinct models are proposed. In the first model, a custom Convolutional
Neural Network (CNN) was constructed and combined with Long Short Term Memory (LSTM) deep
network layers. The second model was built about the all fully connected layers (dense layers) to
construct an Artificial Neural Network (ANN). Thus, the second model, which is a custom of an
ANN layers with various dimensions, is proposed. Results were outstanding a compared to the
Logistic Regression algorithm (LR), where an accuracy of 97.01% was obtained in the second model
and 96.08% in the first model, compared to the LR algorithm, which showed an accuracy of 92.8%.

Keywords: Artificial Neural Network (ANN); Convolutional Neural Network (CNN); Long Short
Term Memory (LSTM); IoT; deep learning; intrusion detection system (IDS)

1. Introduction

The development of telecommunications has been proceeding at a rather rapid rate.
The development of new communication technologies has been the driving force behind
the rise of many civilizations. Wireless communications have come a long way since the
days of smoke signals, pigeons, and hawks, before we finally achieved the level of world-
wide connectedness we have today. Alongside facilitating voice and data connectivity,
telecommunications have had a profound effect on society by enhancing the quality of life
and equipping citizens to deal with calamities and other less severe issues of daily living.
The. “Automation of Everything” is the end outcome of contemporary industrialization,
which brings about profound change and advances in human civilization. In order to link
smart phones and other digital gadgets, it utilizes telecommunication networks. Addition-
ally, it mines data and manages real-world applications. The possibility presented by this
transformation enables everyone to gain access to billions of pieces of data and information,
which in turn creates exciting challenges. People might notice substantial improvements in
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quality of life and economic well-being as a consequence of substantial efficiencies gained
in both the physical and digital domains. This could lead to a wealthier society. Researchers
anticipate that the number of Internet-of-things (IoT) links would therefore attain 83 billion
by the year 2024, which itself represents the massive increase in IoT equipment that in-
fluences our daily lives across their various types of services in many significant areas,
including telemedicine, education, and home automation. This growth will be reflected
in the fact that scientists consider the number of IoT interconnections to reach 83 billion
by the year 2024 [1]. Since these electronics are connected to the internet and accessible
around the clock, it is simple to obtain accurate data in a timely manner [2,3]. As a result,
the proliferation of wireless telecommunication infrastructures, wireless handheld devices
(such as mobiles), and wireless communication networks has made it possible to organize
massive amounts of data at once. Nodes in an Internet-of-Things network typically have
low capacity, limited resources, and very few instances of manual control when compared
to nodes in conventional networks. As a result, these very unassuming pieces of technology
frequently leave themselves open to attack. Concern for the safety of these appliances is on
the rise as a result of the daily emergence of new forms of cyberattack. Countless security
mechanisms have been created throughout the years, and some of them have proven to be
effective at stopping particular types of attacks [4]. Moreover, because the IoT creates such
a large volume of data, we need efficient and quick methodologies for detecting attacks.
Botnets, denial-of-service (DoS), man-in-the-middle attacks, infiltration, identity theft, data
theft, ransomware, etc. are all common forms of assaults in IoT communication channels.
Botnet threats are increasingly widespread, and it’s impossible to completely stop them
because of how they evolve over time. That’s why there are so many threats and security
flaws aimed at these systems.

2. Related Work and Literature Review

As a result, aggressive, inexpensive, and reliable wireless intrusion detection systems
(IDSs) to prevent and recover from such attacks [5,6] must be developed. Due to the
inability of current firewalls to detect and block such a current cybersecurity attack scenario,
the secrecy, reliability, and stability of the communication network are at risk of attacks,
network attacks, or intrusions that are conveyed over communication network packets.
Furthermore, with the widespread use of smart digital devices in an IoT communication
network, secure communications among such interconnected devices are a necessity due to
the complexity and expense of removing network vulnerabilities from such a system [7].

Despite this, IDS is nevertheless one of the most popular methods. With the help of
IDS, communications may be scanned in real time for any signs of malicious behavior
or policy violations real time for any signs of malicious behavior or policy violations.
Signature-based IDSs and anomaly-based IDSs are the two main groups [4]. Using a
method called “signature matching”, signature-based intrusion detection systems can
identify potential threats. Signature-based IDS is great at identifying common assaults,
but it can also spot less common ones. The potential of anomaly-based IDS to identify
previously unseen assaults is impressive. In order to recognize novel and varying forms of
natural attacks, this detection approach employs machine/deep learning algorithms. There
has been a lot of interest from both academia and industry in using deep learning (DL)
algorithms for the design and development of cybersecurity solutions in recent years. The
vast amounts of data generated by industrial systems present a huge opportunity for DL
techniques to improve upon previous efforts. Nonetheless, there is room for improvement
in the development of IoT intrusion investigative techniques [8]. Datasets for the purpose
of planning IDSs using machine learning have been developed by a number of laboratories.
Researchers working in the field of cybersecurity are paying close attention to the most
recent cyberattacks, which are reflected in the UNSW-NB15 dataset [9]. The Cyber Security
Research Group at the Australian Centre for Cyber Security (ACCS) has developed a new
dataset for testing IDS called UNSW-NB15, which includes over 2 million labels of both
normal and aberrant network traffic from the contemporary day [10].
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Experiments ranged across the chosen dataset, which was UNSW-NB 15, based on
the sort of assault, the protocol that was utilized, or the strategy that was taken to threat
identification. As a result, some individuals chose to reduce the complexity of the detecting
circuit so that it could identify just one particular incident, or possibly even two different
strikes at the very most. Some also started talking about the issue of reliance on the
transport layer protocol, such as TCP or UDP. Someone else did not complete the multiclass
categorization, but the binary classification was sufficient for them. In recent years, methods
from the field of machine learning (ML) have been used to resolve numerous issues in the
field of intrusion detection, including the identification of botnets. On the one hand, from
the point of view of DL, the problem is appealing due to the huge number of dimensions that
it contains. On the contrary, the issue might be remedied with the application of appropriate
algorithms for feature selection or dimension minimization. Two of the most well-known
IDS datasets that are currently available are the KDD99 [11] and UNSW-NB15 [12] datasets.
These datasets have been utilized in a wide variety of research projects [13–23].

One such hybrid approach to categorization is described in [13], whereby the artificial
fish swarm (AFS) and the artificial bee colony (ABC) approaches are combined. Both the
UNSW-NB15 and the NSL-KDD [24] datasets were used to evaluate the hybrid approach.
The wrapper strategy presented in [14] was evaluated on the KDD99 and UNSW-NB15
datasets with several decision-tree classifiers. The C4.5 and enhanced K-means hybrid
given in [17] was assessed with the KDD99. An extreme learning machine (ELM) and
support vector machine (SVM) hybrid classification strategy was evaluated using the
KDD99 in [16,18]. The authors of [19] presented and assessed a K-means/information gain
ratio (IGR) hybrid categorization algorithm with the KDD99 dataset. Researchers in [20]
presented a method for integrating datasets, which (called MapReduce). They put the new
pairing technique through its paces on the KDD99 and DARPA datasets [25]. The merged
and purified dataset was then examined with K2 and NaiveBayes (NB) methods.

To test out a novel scaling method for SVMs, researchers in [21] analyzed the UNSW-
NB15 dataset. Alternatively, a thorough examination of using the local clustering strategy
to address the IDS problem was provided by the authors in [22]. The KDD99 data set
was used for this analysis. Contrarily, the multi-layer SVM was examined on the KDD99
dataset in the study presented in [23]. To test how well their suggested methodology
worked, they took a few random items from the full dataset. In order to address this
issue, the researchers in [15] created a unique discrete metaheuristic algorithm (MHA)
called the discrete cuttlefish algorithm (D-CFA). In an effort to streamline the KDD99
dataset, the D-CFA was put to the test. Using the cuttlefish’s unique color-reflection and
visibility mechanism, the algorithm was developed. There were a few more iterations of the
algorithm that were suggested in the research [26,27]. Nevertheless, in the study reported
in [15], a decision tree (DT) classification was used to analyze the features that were picked
by the D-CFA. According to the findings of the study, the classifier used only five attributes
but attained a detection rate of 91% and a false-positive rate of 3.9% using just those five
attributes. In addition, there have been very few attempts by researchers to examine the
KDD99 and UNSW-NB15 datasets [10,28–34]. When analyzing the UNSW-NB15 dataset,
the research in [29] utilized a clustering approach in addition to an integrated rule-based
IDS. An analysis in a study that is found in [30] looked at the connection between the
assaults on the UNSW-NB15 and the transport layer protocols they used.

The authors of [31] provided a prototype that is based on the KDD99 database collec-
tion. According to the report, there is a dearth of studies in the field of IDS that examine
the existing database. Features from the KDD99 and UNSW-NB15 datasets were studied
in [32] to see how effective they are. In their tests, they employed a set of preexisting
classifiers alongside an association rule mining technique. According to the study, UNSW-
NB15 outperforms KDD99 in terms of detection accuracy and false alarm rate. In light of
their findings, the authors of [28] recommend an enhanced version of the KDD99 dataset
they call NSL-KDD. Nonetheless, an evaluation of the KDD99 was also provided in [10].
In addition, they looked at the NSL-KDD and KDDcup datasets for further variations.
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The investigation in [10] was conducted with the intention of improving the datasets by
decreasing the number of dimensions, filling in missing values, and getting rid of dupli-
cate instances. According to the results of the research, KDD99 has a large amount of
unnecessary repetitions. The correlation between characteristics and KDD99 classes was
evaluated using rough-set theory (RST) in [33]. A small subset of features was eliminated
from consideration in the analysis since it did not contribute to any of the classes in the
dataset. The feature significance of the KDD99 was analyzed by the authors of [34] utilizing
an information gain. The research found that some attributes in the collection did not help
in the attack uncovering process. The results likewise showed that the challenging set of the
database had unique properties compared to the training sample. A most recent research
presented in [35], they have used a most recent ML method called Slime Mould Algorithm
(SMA). This work integrates SMA into a WSN IDS for anomaly detection. SMAs reduce
dataset features from forty-one to five. Although it performed properly, but the algorithm
suffers from the early mature problem.

Recent research presented in [36] examined the datasets used in IDS studies and
provided an in-depth review of the characteristics of each. During the study, the year
and course offerings were considered the most fundamental characteristics. The second
feature was the nature of the data, which included the dataset’s structure and any metadata
it contained. The third characteristic was the captured packets’ size and duration. The
fourth characteristic was the setting in which the recordings were made, which revealed
the channels and services utilized by the network to produce the dataset. Finally, the
researchers were given an evaluation section, complete with things such as a class-balanced
and predetermined data-split. Nonetheless, rather than attempting to encompass all
potential attacks, the authors advised researchers to create a dataset that is concentrated
on particular threat vectors. The dataset is sufficient if and only if it can be used for the
intended purpose. Moreover, in the work given in [36], the exhaustive database was defined
to have publicly accessible, accurately categorized categories, to have included real-world
network activity rather than synthetic activity, to include all types of assaults, and to
be continuously updated. Both the packet header and data payload should be recorded
over an extended time period. The UNSW-NB15 was suggested as a generic suggestion
for IDS testing due to the large number of assaults it contains compared to the other
accessible datasets.

Full KDD99, corrected KDD99, and 10% KDD99 versions, NSL-KDD, UNSW-NB15,
center for applied internet data analysis (CAIDA), Australia Defense Force Academy Linux
dataset (ADFA-LD), and University of New Mexico (UNM) datasets were all examined
in [37]. Consequently, in [38] they provided overviews of all the datasets, with special
focus on UNSW-NB15. Accuracy, precision, and recall were reported using the k-nearest
neighbors (k-NN) predictor for evaluation purposes across all datasets considered. The
classification performance improved using the NSL-KDD, the results showed. According
to them, the NSL-KDD’s performance can be attributed to the fact that the dataset has
fewer duplicates and is spread more evenly. The study report in [39] investigated the
KDD99, with UNSW-NB15, and NSL-KDD databases, utilizing a deep neural network
(DNN) for the purposes of IoT networks. Results demonstrate that DNN achieved an
accuracy above 90% across the board using the same assessment criteria as in [40] using
the F1-measure. DNN also achieved better results than its rivals on the UNSW-NB15
benchmark. The features in both the NSL-KDD and the UNSW-NB15 were evaluated using
four-filter-based feature-selection measures: correlation, consistency, information gain, and
distance measures. Four classifiers (k-NN, Random Forest (RF), SVM, and deep belief
network) were used to evaluate the features selected from the aforementioned methods and
disclose the efficiency of the training and testing procedures. With the intention of assisting
cybersecurity researchers in their quest for more efficient IDS, this paper reports the features
selected for each feature selection method alongside the classification outcomes.

Using a neural network, the researchers in [41] evaluated the UNSW-NB15 dataset to
determine which attributes were most relevant. The features are divided into five categories
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based on their function, including flow, content, time, necessary, and optional. Thirty-one
permutations of these characteristics were considered and discussed. Throughout [42],
93% accuracy was achieved using 39 attributes from the different classes. In addition, the
research employed a meta predictor called Select-From-Model to choose the combination
of 23 attributes based on their scores. When compared to the original set of 39 features, the
accuracy achieved by the final set of 23 was significantly higher (97%).

The characteristics in the UNSW-NB15 dataset were compared in [43] to a few feature
vectors that have been proposed in literary works. Supervised ML was used to show
the processing speeds and accuracy of the classifications. The study’s findings show that
existing vectors can be enhanced by making them smaller and by modifying them to
handle encrypted communication. In [44], researchers suggested a genetic algorithm, a
grey wolf optimizer, particle swarm optimization, and firefly optimization based feature-
selection technique. Testing was carried out using the UNSW-NB15 dataset. SVM and J48
classification methods were used to assess the features chosen by the suggested technique.
Several feature mixes were tested on the UNSW-NB15 dataset, and their categorization
efficacy was revealed. Using the KDD99 dataset, the authors of [45] present and evaluate a
hierarchical IDS that employs ML and knowledge-based techniques. In [46], the authors
investigated the performance of several ML models, including the RF and gradient-boosting
machines, in practical IoT environments. Data-poisoning assaults were simulated by
modifying the training data of the datasets using a stochastic algorithm so that the analysis
could be carried out. Throughout the study’s tests, researchers used the UNSW-NB15 and
ToN_IoT [9] datasets.

Thus, from the above literature review, we can deduce that there is room for more
investigation. That is, different datasets have different attributes and different dimensions.
Therefore, it is necessary to introduce a technique that is more practical than the traditional
approaches. In other words, there is a need for a technique that has the capacity to deal
with various dimensions and different features. Artificial Neural Networks (ANN) are one
of the promising approaches that could handle such phenomena. Alongside that, the DNN
is another methodology that may also be utilized for this task. However, it will be shown
that DNN is not always dominant and that ANN may be more practical.

Since the UNSW-NB15-dataset focuses primarily on the Internet-of-Things’ communi-
cations infrastructure networks, we decided to use it for this particular piece of research. In
addition, the dataset was preprocessed, cleaned, and then feature/dimensionality reduction
was carried out so that the classification phase could be improved. The ANN-based models
and the deep neural network (DNN) models were utilized in the implementation of the
classification phase. As a result, the following is a concise summary of the most important
contributions made by this work:

• It developed a deep learning-based IDS architecture for anomaly detection by con-
ducting asynchronous security scans on a variety of IoT devices and evaluating the
traffic patterns on those devices. The deep learning approach that was proposed can
be used to give Internet-of-Things devices the ability to adapt to the dynamic and ad
hoc environments in which they operate. After that, the suggested model is subjected
to a series of tests to determine whether or not it is accurate and whether or not it is
ready for deployment. It offered us outstanding findings which guarantee that the
model will be superior to the traditional alternatives that are already in place. We
were able to keep our model lightweight while also improving its accuracy, precision,
and f-score.

• For the anomaly-based IDS, a second DL model based on a Convolutional Neural Net-
work (CNN) and long-short term memory (LSTM [47]) combination was developed.
This second structure was trained and evaluated using various measures.

• The performance of the ANN will be shown to be a technique that is more practical
than DNN (CNN plus LSTM combination) for the purpose of IDS when using UNSW-
NB15-dataset than others.
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Following this structure, the rest of the paper will discuss the following: In Section 3,
the proposed models will be shown in detail. Next, in Section 4, we go over the steps taken
to get the UNSW-NB15 dataset ready for this research and show the results it the discussion.
In Section 5, we sum up our findings.

3. Proposed Models

In this paper, two models have been suggested: the first is based on deep learning
networks, while the second is a conventional Artificial Neural Network (ANN). That is, the
first model for the classification process is a combination of LSTM and CNN layers. LSTM
networks are recurrent neural networks. The results of previous computations are used as
information feeds in the current iteration of a Recurrent Neural Network (RNN) [48]. They
(Hochreiter and Schmidhuber [47]) created the LSTM. The RNN’s inability to predict a word
from its long-term memory was addressed, along with the fact that it now provides more
precise forecasts based on more current data. RNN’s performance degrades with increasing
gap size. By design, LSTM is capable of storing data for a very long time. Time-series data
may be processed, predicted, and classified using this method.

It was stated in [49] that the CNN is a deep learning network design that takes
advantage of automatic feature extraction to learn directly from input. When it comes to
recognizing objects, persons, and scenes in photos, CNNs shine because of their ability
to analyze images for recurring patterns. They may also perform admirably when used
to categorize data other than images, such as audio, time series, and signal data. CNNs
are essential for application areas that need object detection and computer vision, such as
autonomous cars and facial recognition software. There are three main reasons why CNNs
are often used for deep learning; by learning the characteristics themselves, CNNs obviate
the need for human intervention in the feature extraction process. Using a CNN, one may
expect precise recognition performance. In order to expand upon current networks, CNNs
may be retrained for other recognition tasks. Tens or even hundreds of layers can be used
in a CNN, with each layer learning to identify a unique aspect of the input data. Each piece
of training data is sent through a series of filters with varying granularities, with the results
feeding into the next layer of the network’s architecture. The filters might begin with really
basic features and advance to more complicated attributes that characterize the item in
question in a particular way. The second model is an ANN network composed of ten layers:
an input layer, an output layer, and eight hidden layers.

Table 1 shows the structure of the first model, while Table 2 shows the second model.
However, the total number of learnable parameters in the first model was 68574, with zero
non-trainable parameters. The last layer (No. 13 in Table 1) is the fully connected layer
for the classification. As a result, its size is only ten, because it will produce ten classes.
Note that the first layer of the first model is not shown in Table 1. The first layer after the
input layer is a 1-dimensional (1D) convolutional layer (No. 1 in Table 1). Then activation
layer using Rectified Linear Unit (LeLU). The ReLU function, short for Rectified Linear
Unit, is a piecewise linear function that returns the input value unmodified if it is positive
and 0 otherwise. After that, a thirty-two-filter convolutional layer of 1D, ReLU-activation.
This was the first group in the structure. The next group is starting a convolution layer
of kernel size 64, ReLU-activation, dropout layer of ratio 0.2, a convolutional layer, ReLU-
activation, and a dropout layer. Up to this point, the total number of learnable parameters
are 42,944 trainable parameters. Last but not least, the third group consists of an LSTM
layer of size 40, which has 16,800 trainable parameters, followed by another LSTM layer of
size 30, which involves 8520 trainable parameters, and finally a fully connected layer of
size 10, which has 310 trainable parameters, as listed in Table 1.



Sensors 2023, 23, 206 7 of 14

Table 1. Deep learning first model layers’ architecture.

Sequence Layer Type Output Shape No. Learnable
Parameters

1 Convolution (1D) (1, 32) 8992
2 Activation (ReLU) (1, 32) 0
3 Convolution (1D) (1, 32) 3104
4 Activation (ReLU) (1, 32) 0
5 Convolution (1D) (1, 64) 10,304
6 Activation (ReLU) (1, 64) 0
7 Dropout (0.2) (1, 64) 0
8 Convolution (1D) (1, 64) 20,544
9 Activation (ReLU) (1, 64) 0
10 Dropout (0.2) (1, 64) 0
11 LSTM (1, 40) 16,800
12 LSTM (1, 30) 8520

13 Fully Connected
(Dense) (output) (1, 10) 310

Table 2. ANN, second model, layers architecture.

Sequence Layer Type Output Shape No. Learnable
Parameters

1 Fully Connected (Dense) (1, 300) 17,100
2 Fully Connected (Dense) (1, 400) 120,400
3 Fully Connected (Dense) (1, 600) 240,600
4 Fully Connected (Dense) (1, 800) 480,800
5 Fully Connected (Dense) (1, 1) 801
6 Fully Connected (Dense) (1, 500) 1000
7 Fully Connected (Dense) (1, 400) 200,400
8 Fully Connected (Dense) (1, 1) 401
9 Fully Connected (Dense) (1, 10) 20

The second model was constructed, as in Table 2, from nine fully connected layers
(dense layer) corresponding to sizes (1, 300), (1, 400), (1, 600), (1, 800), (1, 1), (1, 500), (1, 400),
(1, 1), and (1, 10) which is the output layer, respectively. The total trainable parameters
in the second model, the ANN-model, are 1,061,522 parameters, with zero non-trainable
parameters, as shown in Table 2. The sequence of the layers, both in Tables 1 and 2, stands
for the flow of the data from the input to the output. Thus, these two tables can be imagined
as model structures.

In this effort, we create an IDS with DL algorithms powering its backend. The result
is a system that can adapt to changing needs and grow with the business. The success of
any machine learning or deep learning algorithm is determined by the caliber of the data
used in the algorithm. On the other hand, the model’s accuracy increases as more data is
added to its training set. Thus, it is crucial in these IDSs to ensure the quality of the dataset
in order to identify and mitigate Bot-Net assaults on IoT sensors. In this research, we
employ the most recent dataset available (the UNSW-NB15 dataset) and conduct additional
evaluations of the model with a variety of assessment techniques. However, there are a
total of 2,540,044 entries in the collection, which includes nine different types of assaults
(Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and
Worms). A subset of this data was split up and used as a training set and a test set. There
are a total of 175,341 records of both attack and normal types in the training set, while
there are 82,332 records in the testing set. The six types of features, which contribute to the
dataset are the Additional Generated Features (AGF), Time Features (TF), Content Features
(CF), Basic Features (BF), Class Features, and Flow Features (FF). The AGF can also be
broken down into its two constituent parts: Connections and General Purpose Features.
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4. Simulation Results and Discussion

The investigations in this paper were run on a Windows-10 64-bit computer using the
Python libraries Scikit-Learn and Keras-Tensorflow. These ML/DL libraries are widely
used in machine learning, deep learning, and data science. With regards to hardware, we
ran our simulations on a 1.60GHz 2.30GHz Intel Core i5-4200U CPU with 16GB of RAM.
However, Table 3 lists all of the UNSW-NB15 dataset-features. Note that the Id is discarded
from the list shown in Table 3. The first process to be achieved is to drop the feature
No. 43, F43, and the last feature, F44, which will be used later. There are eleven features of
type float64, four features of type object, and thirty features of type int64, including the Id,
which is discarded from Table 3.

Table 3. UNSW-NB15 dataset 42 features.

Attribute Term Type Attribute Term Type Attribute Term Type

F1 Dur Float-64 F16 Sinpkt Float-64 F31 ct_srv_src Int-64
F2 Proto Object F17 Dinpkt Float-64 F32 ct_state_ttl Int-64
F3 Service Object F18 Sjit Float-64 F33 ct_dst_ltm Int-64
F4 State Object F19 Djit Float-64 F34 ct_src_dport_ltm Int-64
F5 Spkts Int-64 F20 Swin Int-64 F35 ct_dst_sport_ltm Int-64
F6 Dpkts Int-64 F21 Stcpb Int-64 F36 ct_dst_src_ltm Int-64
F7 Sbytes Int-64 F22 Dtcpb Int-64 F37 is_ftp_login Int-64
F8 Dbytes Int-64 F23 Dwin Int-64 F38 ct_ftp_cmd Int-64
F9 Rate Float-64 F24 Tcprtt Float-64 F39 ct_flw_http_mthd Int-64

F10 Sttl Int-64 F25 Synack Float-64 F40 ct_src_ltm Int-64
F11 Dttl Int-64 F26 Ackdat Float-64 F41 ct_srv_dst Int-64
F12 Sload Float-64 F27 Smean Int-64 F42 is_sm_ips_ports Int-64
F13 Dload Float-64 F28 Dmean Int-64 F43 attack_cat Object
F14 Sloss Int-64 F29 trans_depth Int-64 F44 Label Int-64
F15 Dloss Int-64 F30 response_body_len Int-64

Consequently, to prepare the dataset, Id is the first function to be removed. This is only
a search field and not a descriptive one, as indicated at the beginning of this section and in
Table 3. After “attack cat,” this is the next functionality to be removed. Since this feature
is a superset of the target feature, it will yield perfect predictions but not generalizability.
However, for some distributions, it may be helpful to remove the outliers in order to
minimize the skew. The approach employed here cuts features to the 95th percentile if their
greatest value is greater than 10 times the median value. If the 95th percentile is really high,
we may safely assume that there is more valuable information in the tail than in the central
region. Features with bounds more than 10 times the median is the only one subject to
the clamping. This keeps us from having to carry out too much pruning, which protects
things such as bi-modals and tiny value distributions. According to the statistics of the
dataset, which are found in [50], the entries are skewed to the right. Thus, applying the
Log-function to the vast majority of numbers since they are slanted to the right.

Since manually applying the log function to each continuous feature would have been
a monumental task, a simple rule has been established: if the number of unique entries in
the continuous attribute is greater than 50, subsequently implement the log function. To
exclude the integer-based characteristics that behave more categorically, it is preferable to
find more than 50 distinct values. The cardinality of some characteristics is quite high, but
that number is brought down to about five or six in this step. The rule of thumb is to use
the five most frequent labels from the attribute as the actual labels and assign the other
labels the status of “rarely used.” Additional encoding will not result in an explosion of
dimensionality or the constraint of dimensions.

Feature selection [18] is all about selecting features from a large pool of candidates in
order to improve accuracy, save training time, and eliminate overfitting selection [26]. There
are three distinct varieties. Embedded methods, filter methods, and wrapper methods.
While the proper predictor is used to assign a value to a subset of features in wrapper
techniques, relevance is determined by correlation with the relying variable in filter method-
ologies. Since filter techniques do not necessitate training the models, they are quicker
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and require less computing effort than wrapper approaches. SelectPercentile is a feature
selection technique that may be achieved with Scikit-learn [51]. This approach gives each
feature a percentile depending on its score, and it is a feature selection method. After that,
features might be chosen up to a certain cutoff percentile by taking into consideration a
classifier’s overall performance. In this work, the best 80th percentiles have been selected.

Accordingly, only 37 features have been selected out of 43 features, as listed in Table 4.
That is, the features are listed descending manner, from highest score to lowest score. The
highest scored features that are in millions are, F16, F19, F6, F9, F17, F18, F7, F30, and F31
corresponding to Sinpkt, Djit, Dpkts, Rate, Dinpkt, Sjit, Sbytes, response_body_len, and
ct_srv_src, respectively, where the scores were, respectively, (1719.167, 1422.332, 1191.638,
122.0820, 118.2373, 117.9835, 113.8066, 110.4150, and 105.2134) × 103. Hence, there are nine
features with scores in millions, while there are twenty features with scores in hundred-
thousands, and the rest are scored less than ten-thousands, as listed in Table 4.

Table 4. List of selected features after preprocessing operation.

Feature Score (×103) Feature Score (×103) Feature Score (×103)

F16 1719.167 F11 52.38466 F26 5.255736
F19 1422.332 F36 51.71041 F13 5.078488
F6 1191.638 F29 48.28637 F3 3.278490
F9 122.0820 F24 42.79038 F20 0.3157251

F17 118.2373 F10 34.03161 F21 0.255003
F18 117.9835 F14 24.79605 F35 0. 2291240
F7 113.8066 F5 24.78945 F25 0.2284359

F30 110.4150 F2 20.64451 F22 0.1100448
F31 105.2134 F8 17.47411 F23 0.09680493
F32 99.98646 F15 11.57659 F34 0.02468076
F37 82.63284 F12 9.971425 F33 0.02169648
F27 78.87113 F1 7.812781
F4 61.40787 F28 6.947356

The final step in preprocessing the dataset is the encoding operation. However, it is
necessary to encode the categorical attributes in order to guarantee that the classifiers can
understand them. Considering that neither of the categorical characteristics are ordinal,
one-hot encoding is utilized in this situation. Consequently, the dataset is ready for the
classification algorithms, the last step in the IDS. These algorithms are discussed in the
previous section. The training sub-dataset has been fed to the first model see Table 1,
which is a custom CNN network combined with a custom LSTM network. The number of
iterations/Epochs was two hundred with a batch size of 2000, while the validation ratio was
33%. The model was trained using these parameters, and the results of the training phase, in
terms of accuracy and loss, are shown in Figure 1 and Figure 2, respectively. From Figure 1,
it is observed that the accuracy was 96.08%, with recall, precision, and F1-score equal
to 96.08% each. However, the evaluation loss was 0.0968 while the evaluation accuracy
was 96.2%.

Moreover, the second model, which is presented in Table 2, was trained using the same
settings as the first model for a fair comparison. This model is an ANN combination of multi-
dense layers. As indicated previously in the last section, there are 1,061,522 parameters
that are all trainable. Nevertheless, Figure 3 shows the training accuracy of this model,
while Figure 4 depicts the loss of the training phase. Although training and prediction
time were longer than with the first model, accuracy was improved to 97.01% with recall,
precision, and F1-score equal to 97.01% for each of them.
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For more convenience, these two models have been compared with the logistic regres-
sion algorithm. Using input variables, logistic regression (LR) estimates the likelihood of
a discrete result. LR is widely used to model a variable with a true/false or other binary
result. For modeling purposes where there are more than two distinct discrete events,
multinomial LR is the method of choice. LR is a helpful analysis tool for classification
problems, such as deciding which category is the best fit for a new sample. LR is a helpful
analytic tool for cyber security because many areas of the field have classification problems,
such as threat detection. Despite the low processing time required by the LR algorithm,
its accuracy was 92.80%. However, the recall measure achieved by LR was 92.80%. The
precision and F1-score are 92.83% and 92.8%, respectively. Table 5 shows a comparison
between our two suggested models and the LR algorithm.
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Table 5. Comparison results of LR, first model (custom CNN + LSTM), and ANN model.

Approach Accuracy Recall Precision F1-Score

LR 92.8% 92.8% 92.83% 92.8%
Custom CNN + LSTM model 96.08% 96.08% 96.08% 96.08%

ANN model 97.01% 97.01% 97.01% 97.01%

That is, the first suggested model, which is represented by the custom CNN + LSTM
model in Table 5, outperforms the LR in terms of accuracy, recall, precision, and F1-
score measures. Improvements of 3.28%, 3.28%, 3.25%, and 3.28% in the accuracy, recall,
precision, and F1-score, respectively. While the second model was superior as compared
with both the LR and the first model. Thus, the ANN model improved the accuracy by
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0.93% and 4.21% when compared with the first model and the LR approach, respectively.
The same improvement amounts were captured for the recall and F1-score, while in terms
of precision, the improvement was 0.93% and 4.18% compared to the first model and LR
methodologies, respectively.

5. Conclusions

For securing the communication links in IoT networks and other wireless communica-
tion networks, two Intrusion Detection System models were built based on deep learning
approaches. The first model was an architecture of custom Convolutional Neural Networks
combined with Long Short Term Memory layers. The second model was constructed using
different dense layer sizes. The two models were trained using a well-known dataset called
UNSW-NB15. The dataset was first cleaned, i.e., preprocessed, before it was fed to our two
different classification models. Outstanding results were obtained using the two suggested
models, as compared to the Logistic Regression algorithm. However, the second model
performed better than the first model by less than 1%. Thus, it is proved that the ANN’s
performance was superior to that of the custom CNN and LSTM combination. However, a
drawback can be noticed, which is the training on a single dataset. If there is more than one
dataset, the ANN model may fail. That is, a future work is proposed to enable the ANN to
overcome this issue. This can be achieved by combining more than two datasets, or it can
be achieved by fine-tuning the pre-trained ANN network to be used with other datasets.
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