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Abstract: To obtain single-receiver Global Navigation Satellite System (GNSS) parameter solutions,
the PPP-RTK user-filter combines measurements with time-correlated corrections that are separately
computed by the filter of an external provider. The consequence of exercising such double-filtering is
that the Kalman filter’s standard assumption of having uncorrelated measurements in time becomes
violated. This leads the user-filter to lose its ‘minimum variance’ property, thereby delivering
imprecise parameter solutions. The solutions’ precision-loss becomes more pronounced when one
experiences an increase in the correction latency, i.e., the delay in time after the corrections are
estimated and the time they are applied to the user measurements. In this contribution, we propose a
new multi-epoch formulation for the PPP-RTK user-filter upon which both the uncertainty and the
temporal correlation of the corrections are incorporated. By a proper augmentation of the user-filter
state-vector, the corrections are jointly measurement-updated with the user parameter solutions.
Supported by numerical results, the proposed formulation is shown to outperform its commonly
used counterpart in the minimum-variance sense.

Keywords: global navigation satellite system (GNSS); integer ambiguity resolution enabled precise
point positioning (PPP-RTK); Kalman filter; double-filtering; time-correlated corrections

1. Introduction

Integer carrier-phase ambiguity resolution-enabled precise point positioning, PPP-
RTK, has the potential to enormously benefit from the state-space packaging of the posi-
tioning corrections to reduce their transmission rate, i.e., the frequency with which the
corrections are to be provided to single-receiver global navigation satellite system (GNSS)
users, see, e.g., [1–5]. However, a reduction in the transmission rate comes at the cost of
delivering time-delayed corrections. Consequently, the user is required to time-predict the
corrections so as to bridge the gap between the corrections’ generation time and the user
positioning time.

Therefore, next to the intrinsic uncertainty brought by the randomness of GNSS
measurements, PPP-RTK corrections also inherit extra uncertainty that is associated with
their time-prediction [6]. Should the characteristics of such correctional uncertainty, e.g., in
terms of corrections’ (co)variance matrices, be made available, the PPP-RTK user would
then be in a position to employ rigorous estimation methods so as to achieve the most-
precise (minimum-variance) parameter solutions [7]. In practice, however, a proper quality
description of the corrections is often not provided to the user [8]. This is because the state-
space representation of the corrections is aimed at minimizing the amount of information
required to be made available. In the absence of such information, the approach commonly
taken is to assume that the corrections are precise enough so that they can be treated as
non-random [9]. The consequence of this practice is that the user estimation method becomes
suboptimal in the sense that it loses its minimum-variance property and fails to provide the
correct quality description of parameter solutions [10].
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In our earlier contributions [7–9], we showed how the PPP-RTK user can limit the
sub-optimality level of their parameter solutions when dealing with a ‘single epoch’ of data.
Such single-epoch solutions do benefit from either closed-form expressions of the correc-
tions’ variance matrix or their approximate versions. The topic of the present contribution
concerns the scenario where the user aims to estimate their parameters using multiple epochs
of data in a near real-time manner. The well-known candidate for the real-time computation
of such multi-epoch solutions is the Kalman filter [11,12]. In this contribution, we show why
existing formulations of the user’s Kalman filter are misspecified, and propose an alternative
formulation that can largely avoid the precision loss of the user filtered solutions.

The structure of the paper is organized as follows. The problem of double-filtering in
PPP-RTK is briefly reviewed in Section 2. The dependence of the user-filter on an external
provider-filter is characterized, identifying the factors that lead to a misspecified stochastic
model of the user-filter. In Section 3, we discuss potential choices with which the user can
weight their time-correlated, ‘corrected’ observation vectors. Simulated examples are given
to provide numerical insight into the consequences of such choices. Section 4 is devoted to
the new formulation of the user-filter. The recursive structure of the filter is presented and
the approximation on which the filter’s optimality is based is highlighted. To numerically
demonstrate the superiority of the filter over existing formulations, a single-station PPP-
RTK setup [7,13] is employed in Section 5. It is thereby shown how the filter responds to
rather high correction latency, i.e., the delay in time after the corrections are generated and
the time they are applied to the user data. Finally, summary and concluding remarks are
provided in Section 6.

The following notation will be used in this paper. The underscore symbol indicates
the ‘randomness’ of quantities. Thus, x is random, while x is not. The hat ·̂ and check ·̌
symbols indicate the solutions of unknown parameters. Thus, x̂ (or x̌) is a solution of x.
The subscript t|τ of x̂t|τ indicates that x̂t|τ is a solution of xt which is obtained based on all
the observations collected up to and including the time-instant (epoch) τ. The covariance
operator is denoted by Cov(·, ·), while the capital Q is reserved for (co)variance matrices.

2. Optimal Provider-Filter vs. Misspecified User-Filter

We commence with the (linearized) observation equations of a single-receiver PPP-RTK
user at epoch i

ui = Bi bi + Ci ci + ni, (1)

where the user observation vector ui, together with the zero-mean random noise ni, is
linked to the user’s unknown parameter vector bi and the unknown correction vector ci
through the full-rank design matrices Bi and Ci. The observation vector ui may contain the
GNSS carrier-phase and pseudorange (code) measurements, with bi containing the position
coordinates, carrier-phase ambiguities, receiver clock parameters, and instrumental biases.
On the other hand, the correction vector ci may contain estimable forms of satellite orbit
and clock parameters, atmospheric parameters, and phase/code biases [14–16].

With the sole use of their measurements, the single-receiver user cannot unbiasedly
determine both the unknown vectors bi and ci. In other words, the augmented design
matrix [Bi, Ci] is rank-defect, meaning that part of bi (or of ci) has to be held fixed as S-basis
so that (1) becomes solvable for biased versions of bi and ci [15]. This of course does not suit
user positioning. To obtain bi unbiasedly, the PPP-RTK user needs to receive an unbiased
solution of the correction vector ci from an external provider, e.g., a network of permanent
GNSS stations [1].

2.1. Non-Random Corrections as a Basic Principle

For the sake of argument, let us first assume that the correction vector ci is determined
by the provider with no uncertainty and is made available to the user. Accordingly, the user
would correct their observation Equation (1) as follows

ui − Ci ci = Bi bi + ni (2)
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Since matrix Bi is of full-column rank, ‘single-epoch’ solutions of the user parameters
bi can then be unbiasedly computed. Instead of sticking to one single-epoch of data, the
user may improve the precision of their parameter solutions by incorporating the temporal
behaviour of some involved parameters. For instance, the user phase ambiguities remain
constant in time unless a cycle-slip occurs. The rather stable instrumental biases can be
linked in time by a random-walk process [17], while a polynomial dynamic model may
be employed to capture the motion of the user position [7]. Such constraints between the
user parameter vectors bh (h = i, i + 1 . . .) can be expressed by the following dynamic
models [18]

ob
h = bh −Φb bh−1 + wb

h, h = i + 1, i + 2 . . . (3)

where the randomness of the zero-sampled pseudo-observation ob
h is characterized by

the process noises wb
h. The transition matrix Φb links the user parameters between two

successive epochs. Thus, Φb
(j−i) = ∏

j−i
h=1 Φb (j > i) links the parameters from epoch i to

epoch j.
The constraints (3) serve as extra observations to increase the user model’s redundancy,

which is, the number of user observations minus the number of the estimable parameters
involved. An increase in the redundancy strengthens the user model, thus improving the
user parameter solutions [19]. In the context of PPP-RTK, however, the user parameter
solutions are to be computed in a near real-time manner, demanding recursive estimation
methods. The Kalman-filter [11,12] is known to be an optimal estimation method to handle
such recursive computation in a minimum-variance sense. This optimality property relies
on a key assumption, however, namely that the corrected observation vectors uh − Ch ch
(h = i, i + 1, . . .) must be uncorrelated in time, and uncorrelated with the process noises
wb

h (h = i + 1, i + 2, . . .). Likewise, the process noises wb
h must be uncorrelated in time.

Provided that the user collects their measurements independently over time, the obser-
vations uh (and therefore their corrected versions uh − Ch ch) fulfill such an assumption.
This serves as a basic principle of PPP-RTK that is commonly exercised in practice [8].
As the will be shown below, however, such a key assumption is violated if the non-random
correction vector ch in uh − Ch ch is replaced by a ‘random’ correction solution that has
been computed by the external provider filter. As a consequence, the underlying model
of the PPP-RTK user-filter becomes misspecified, losing its minimum-variance optimality
property [10].

2.2. Optimal Provider-Filter

The role of a PPP-RTK provider is to estimate the unknown correction vectors ch
(h = i, i + 1, . . .) and make the corresponding solutions available to the user. As with the
user, the provider formulates their own Kalman filter with the observation equations (at
epoch t)

y
t
= At ct + et, t = 1, 2, . . . , (4)

and the dynamic models

oc
t = ct −Φc ct−1 + wc

t , t = 2, 3 . . . (5)

where the provider observation vector y
t
, together with the zero-mean measurement noise

et, are linked to the unknown corrections vector ct through the full-rank design matrix
At. The transition matrix Φc links the correction vectors between two successive epochs
with the zero-sampled pseudo-observation oc

t and time-uncorrelated process noises wc
t

(t = 2, 3 . . .). If the observation vectors y
t

(t = 1, 2, . . .) are also time-uncorrelated, and
uncorrelated with the process noises wc

t , the provider would then be in a position to run
their optimal minimum-variance filter.

The three-step structure of the provider-filter is presented in the left-panel of Figure 1.
The structure follows from an application of the least-squares principle to (4) and (5), see,
e.g., [18]. At the initialization step (first epoch t = 1), the provider initializes their filter
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by the least-squares solution ĉ1|1 = A+
1 y

1
with A+

1 = (AT
1 Q−1

y1
A1)

−1 AT
1 Q−1

y1
, where Qyt

denotes the variance matrix of the observation vector y
t

(t = 1, 2, . . .). The application
of the (co)variance propagation law also gives the solution’s error-variance matrix as
Qĉ1|1 = (AT

1 Q−1
y1

A1)
−1. At the time-update (TU) step, the correction vector of the upcoming

epoch can be time-predicted as ĉt|t−1 = Φc ĉt−1|t−1 (t = 2, 3, . . .), with the error-variance
matrix Qĉt|t−1

= ΦcQĉt|t−1
ΦcT + Qwc

t
, where Qwc

t
is the variance matrix of wc

t . Finally, at the
measurement-update (MU) step, the filter makes use of the upcoming observation vector
yt to recursively update the correction solution as ĉt|t = ĉt|t−1 + Kc

t (yt
−At ĉt|t−1) with the

error-variance matrix Qĉt|t = (I − Kc
t At)Qĉt|t−1

, in which the Kalman gain matrix is given
by Kc

t = Qĉt|t−1
AT

t (Qyt + AtQĉt|t−1
AT

t )
−1.
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t = Qĉt|t−1
AT

t (Qyt + AtQĉt|t−1
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Figure 1. Double-filtering in PPP-RTK. (Left): the provider uses ‘time-uncorrelated’ observa-
tion vectors y

t
(t = 0, 1, . . .) to generate and disseminate ‘time-correlated’ correction packs

ĉkτ | kτ (k = 1, 2, . . .) every τ seconds. (Right): the user picks the ‘most recent’ correction pack
to feed their model at epoch i. Thus, k = b i/τc, where the operator bxc returns the greatest integer
less than or equal to x. If no previous user solution b̂i|i−1 is present, the user initializes their filter
with the corrected observation vector ui − Ci ĉi|kτ . Otherwise, the correction pack is fed into the user
MU step.

2.3. Misspecified User-Filter

In contrast to the provider-filter, the user-filter cannot stand on its own and requires
the output of the provider-filter, that is, the correction solutions ĉh|h (h = i, i + 1, . . .). Due to
the intrinsic randomness of the provider observations, ĉh|h is accompanied with an amount
of uncertainty characterized by the error-variance matrix Qĉh|h . With reference to (2), this
implies that the random filtered solutions ĉh|h replace their non-random versions ch to
form the user corrected observation vectors uh − Ch ĉh|h. As the observation vectors uh are
time-uncorrelated, it is the correction solutions ĉh|h that dictate whether the Kalman filter’s
key assumption holds. This is followed by applying the covariance propagation law to
corrected observation vectors of any two distinct epochs j and i, that is

Cov(uj − Cj ĉj|j , ui − Ci ĉi|i) = Cj Qĉj|j , ĉi|i CT
i , j 6= i (6)

in which the covariance matrix Qĉj|j , ĉi|i between the correction solutions ĉj|j and ĉi|i is
shown to read (Appendix A).

Qĉj|j , ĉi|i =

[
j

∏
h=i+1

(I − Kc
h Ah)Φ

c

]
Qĉi|i , j > i (7)

The nonzero covariance matrix above indicates that the user-corrected observation
vectors uh − Ch ĉh|h (h = i, i + 1, . . .) are indeed time-correlated, making the user-filter
misspecified.

Although the PPP-RTK user-filter is not minimum-variance, and thus suboptimal,
previous studies have demonstrated that the filter can still deliver successful ambiguity-

Figure 1. Double-filtering in PPP-RTK. (Left): the provider uses ‘time-uncorrelated’ observa-
tion vectors y

t
(t = 0, 1, . . .) to generate and disseminate ‘time-correlated’ correction packs

ĉkτ | kτ (k = 1, 2, . . .) every τ seconds. (Right): the user picks the ‘most recent’ correction pack
to feed their model at epoch i. Thus, k = b i/τc, where the operator bxc returns the greatest integer
less than or equal to x. If no previous user solution b̂i|i−1 is present, the user initializes their filter
with the corrected observation vector ui − Ci ĉi|kτ . Otherwise, the correction pack is fed into the user
MU step.

2.3. Misspecified User-Filter

In contrast to the provider-filter, the user-filter cannot stand on its own and requires
the output of the provider-filter, that is, the correction solutions ĉh|h (h = i, i + 1, . . .). Due to
the intrinsic randomness of the provider observations, ĉh|h is accompanied with an amount
of uncertainty characterized by the error-variance matrix Qĉh|h . With reference to (2), this
implies that the random filtered solutions ĉh|h replace their non-random versions ch to
form the user corrected observation vectors uh − Ch ĉh|h. As the observation vectors uh are
time-uncorrelated, it is the correction solutions ĉh|h that dictate whether the Kalman filter’s
key assumption holds. This is followed by applying the covariance propagation law to
corrected observation vectors of any two distinct epochs j and i, that is

Cov(uj − Cj ĉj|j , ui − Ci ĉi|i) = Cj Qĉj|j , ĉi|i CT
i , j 6= i (6)

in which the covariance matrix Qĉj|j , ĉi|i between the correction solutions ĉj|j and ĉi|i is
shown to read (Appendix A).

Qĉj|j , ĉi|i =

[
j

∏
h=i+1

(I − Kc
h Ah)Φ

c

]
Qĉi|i , j > i (7)

The nonzero covariance matrix above indicates that the user-corrected observation
vectors uh − Ch ĉh|h (h = i, i + 1, . . .) are indeed time-correlated, making the user-filter
misspecified.

Although the PPP-RTK user-filter is not minimum-variance, and thus suboptimal,
previous studies have demonstrated that the filter can still deliver successful ambiguity-
resolved positioning solutions when the duration of the provider-filter initialization, i.e.,
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the time-difference between the epoch i and the initial epoch t = 1, becomes sufficiently
large (e.g., ∼1 h), as can be seen in, e.g., [6,7,9]. In other words, the filtered solution ĉi|i
can become sufficiently precise so as to neglect its uncertainty relative to that of the user
observations, i.e., Qĉi|i ≈ 0. By making such an approximation, the covariance matrices
in (6) and (7) become zero, meaning that the user-filter is expected to deliver minimum-
variance solutions. While the duration of the provider-filter initialization can be ensured to
be sufficiently long to make that approximation, the corrections cannot be instantaneously
transferred to the user due to the limited data-transmission bandwidth [1]. This is all the
more so as PPP-RTK is meant to take advantage of the efficient ‘state-space’ packaging
of the corrections to reduce their transmission rate, i.e., the frequency with which the
corrections are to be provided to the user. Consequently, PPP-RTK corrections ranging
from orbits and clocks to phase biases are stored in, e.g., an Internet server, each having
its own sampling period τ. In contrast to RTK for which the correction latency is less than
4 s [20] (i.e., τ ≤ 4), PPP and PPP-RTK state-space corrections are to be provided with
higher time-delays. For instance, current PPP real-time service of IGS (https://igs.org/rts/)
(accessed on 18 December 2022) disseminates state-space corrections with a typical latency
of 5–10 s, see, e.g., [21,22]. In the following, it is shown how such state-space packaging
brings additional correctional uncertainty.

The red-box in Figure 1 indicates the ‘correction packs’ ĉkτ|kτ (k = 1, 2, . . .) that are
generated and stored by the provider every τ s. As a result, the user gains access to the
correction packs with a time-delay or ‘latency’, i.e., kτ ≤ i. The correction latency i− kτ
ranges from 0 to τ − 1 s. As shown in the right-panel of Figure 1, the user picks the ‘most
recent’ correction pack and time-predicts the correction as ĉi|kτ = Φc

(i−kτ)
ĉkτ|kτ to feed their

model at epoch i. Thus, even if the approximation Qĉkτ|kτ
≈ 0 would be plausible, the

uncertainty associated with the time-predicted correction ĉi|kτ may not be negligible. This
is indeed the case when the time-difference i− kτ is considered to be large. To see this,
consider the error-variance matrix of ĉi|kτ as (Appendix A)

Qĉi|kτ
= Φc

(i−kτ)Qĉkτ|kτ
ΦcT

(i−kτ) +
i

∑
h=kτ+1

Φc
(i−h) Qwc

h
ΦcT

(i−h) (8)

While the first term in (8) may be considered negligible for a long duration of the
provider-filter initialization, the second term increases as the latency or the time-difference
i− kτ increases, leading to a misspecified user-filter. Note, for the sake of presentation,
that we did not distinguish between each individual correction type (e.g., satellite orbits
versus clocks) in Figure 1. We instead only show one common sampling period τ for all
correction types. In practice however, each individual correction can, of course, have its
own sampling period τ.

The three-step structure of the misspecified user-filter follows, in a way analogous to
that of the provider-filter, be it that the role of the correction parameters ct is replaced by
the user parameters bi, the design matrix At by Bi, and the observation vectors y

t
by the

user corrected observation vectors ui − Ci ĉi|kτ (Figure 1, right-panel). In contrast to the
provider who weights the observation vectors y

t
using the inverse of their variance matrix

Qyt , the user may not have access to the variance matrix of the correction ĉi|kτ to properly
weight the corrected observation vectors ui − Ci ĉi|kτ . Instead, let us assume that the user
takes a given inverse-weight matrix Q̄ui to replace its provider-counterpart Qyt . As shown
in [10], the misspecified user-filter would then report incorrect error-variance matrices as

(initialization) : Q̄b̂i|i
= (BT

i Q̄−1
ui

Bi)
−1, i := i + 1

(time-update) : Q̄b̂i|i−1
= ΦbQ̄b̂i|i−1

ΦbT + Qwb
i
,

(measurement-update) : Q̄b̂i|i
= (I − Ki Bi)Q̄b̂i|i−1

(9)

https://igs.org/rts/
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where the Kalman gain matrix is evaluated as Ki = Q̄b̂i|i−1
BT

i (Q̄ui + BiQ̄b̂i|i−1
BT

i )
−1.

Here and in the following, the ·̄-symbol over the Capital Q is used to distinguish in-
correct variance matrices. Thus, not only does the user-filter deliver suboptimal solutions,
but it also fails to provide the correct quality description of the user parameter solution
b̂i|i. In the following, we discuss a choice of the inverse-weight matrix Q̄ui which is often
adopted in practice.

3. On the Choice of the Inverse-Weight Matrix Q̄ui

In the previous section, it was shown that the main rinput of the user-filter, i.e., the
corrected observation vectors uh − Ch ĉh|kτ (h = i, i + 1, . . .), are time-correlated cf. (6),
prohibiting the recursive computation of the most precise parameter solutions. By adopting
the inverse-weight matrix Q̄uh for uh − Ch ĉh|kτ , however, the user can still recursively
compute suboptimal parameter solutions using their misspecified filter (cf. Figure 1).
Relying on the assumption that the filtered corrections ĉkτ|kτ are sufficiently precise to make
the approximation Qĉkτ|kτ

≈ 0, one may choose Q̄uh in a way to limit the sub-optimality
level of the parameter solutions. For instance, if the uncertainty involved in the time-
prediction of the time-delayed corrections ĉh|kτ can be ignored (i.e., the second term in (8) is
neglected), the inverse-weight matrix Q̄uh can then be set to the variance matrix of the user
observations uh, that is

Case 1 : Q̄uh := Quh , h = i, i + 1, . . . (10)

For this case, the user only takes the variance matrix of their own data, i.e., Quh , for
the weighting of the corrected data uh − Ch ĉh|kτ . In other words, the external corrections
ĉh|kτ are considered sufficiently precise to be treated as non-random, the scenario that is
commonly exercised in practice [7,8]. This is because the corrections’ error variance matrix
Qĉkτ|kτ

is often not provided to the user. After all, the purpose of using state-space PPP-RTK
corrections is to minimize the amount of information to be transmitted to the user [1].
The following example shows the consequence of this choice, i.e., Case 1 (10).

Example 1. To give primary numerical insight into the consequence of choosing (10), consider
a single-receiver user with a known location who is tracking the L1/L2 dual-frequency code data
of a pair of satellites to determine the corresponding single-differenced (SD) slant ionospheric
delay over 100 epochs with 1 Hz measurement sampling-rate. The user is given a satellite
clock offset- and rate-corrections every τ = 10 s. Thus, the correction latency ranges from 0
to 9 s. In this simulation example, the filtered corrections ĉkτ|kτ are assumed and simulated to
be non-random. Thus, Qĉkτ|kτ

= 0. However, the user still has to time-predict the satellite clock

corrections ĉi|kτ at every epoch i to compute their filtered ionospheric solution b̂i|i. The time-
behaviour of the undifferenced ionospheric delays is modelled by a random-walk process with a
standard-deviation of 1 mm/

√
s, whereas the undifferenced satellite clocks follow a constant-

velocity dynamic model with a standard-deviation of 1 cm/
√

s3, as can be seen in, e.g., [6].
The standard-deviation of the undifferenced code data is set to 20 cm.

To measure how the misspecified user filter under Case 1 performs, 1000 normally distributed
samples of both the correction and user data are simulated over the fixed 100 epochs. The corre-
sponding samples of the ionospheric estimation-error bh − b̂h|h (h = 1, . . . , 100), i.e., the difference
between the true simulated ionospheric parameter and its filtered solution, are shown in the left-panel
of Figure 2 (grey lines). The black solid lines indicate the associated 99.9% confidence-intervals,
whereas the dashed lines represent the corresponding incorrect confidence-intervals which are re-
ported by the user filter. As the number of user epochs increases, the dispersion of the estimation-error
becomes smaller, showing that the precision of the user filtered solution improves. However, more
than 100 epochs of data are required to have the absolute value of the 99.9% confidence-intervals
smaller than 1 dm. On the contrary, the filter reports rather optimistic confidence-intervals. The con-
siderable gap between the correct and incorrect confidence-intervals of the user parameter solutions
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is due to the choice made in (10), i.e., both the variance and time-correlation of the time-predicted
corrections are ignored.

Figure 2. Time–series of the ionospheric estimation–error bh − b̂h|h (h = 1, . . . , 100) of Example 1
(grey lines). Given 1000 normally distributed samples, the misspecified user-filter computes filtered
ionospheric solutions under two cases. (Left): Case 1 (10) in which the corrections are considered
non-random. (Right): State-augmentation (12) in which the time-correlation of the corrections is
modelled by an exponential auto-correlation function. The incorrect 99.9% confidence intervals
(dashed lines), reported by the user-filter, are compared with their correct versions (black solid lines).

As the random corrections ĉi|kτ make the observation vectors ui − Ci ĉi|kτ time-correlated, one
may employ the technique of first-order Markov state-augmentation to handle time-correlated
measurements of the Kalman filter, as can be seen in, e.g., [23] (p. 180) or [24]. In that technique, the
time-correlation of the corrections is ‘approximated’ by an exponential auto-correlation function [18],
that is (compare with (7))

Q̄ĉj|j , ĉi|i := Q̄c e−
1
α |j−i|, ∀ i, j (11)

where the matrix Q̄c is to capture the uncertainty of the correction at every epoch. Next to the inverse-
weight matrix Q̄uh in (10), the state-augmentation technique incorporates the corrections’ variance
and time-correlation via the matrices Q̄ĉj|j , ĉi|i to weight both the uncorrected user observations uh
and the time-predicted corrections ĉh|kτ . The coefficient α governs the magnitude of the correlation
between the observation vectors. The larger the coefficient α, the larger the time-correlation is
assumed between the observation vectors. To run their filter in recursive form, the user would need
to make the following modifications [18]

Bh 7→ [Bh, Ch], bh 7→
[

bh
ah

]
, Φb 7→

[
Φb 0
0 e−

1
α I

]
, Q̄uh 7→

[
Quh 0

0 Q̄c

]
, Qwb

h
7→
[

Qwb
h

0

0 Q̄c(1− e−
2
α )

]
(12)

for epochs h > i, where the notation ‘A 7→ B’ means ‘replace A by B’. Thus, the user state-vector
bh is augmented with the parameter vector ah whose process noises’ time-correlation exponentially
decays over time. For the user initial epoch h = i, the filter is initialized by the augmented state-
vector [b̂

T
i|i, âT

i|i]
T , with b̂i|i = B+

i (ui − Ci ĉi|kτ) and âi|i = 0. Thus, the initial user solution b̂i|i is
identical to that of Case 1 (10). For the upcoming epochs h > i, however, the filter aims to capture
the randomness of the corrections by updating the solutions âh|h over time.

To see the extent to which the state-augmentation technique can alleviate the effect of the
time-correlated corrections, we evaluate the ionospheric estimation errors using the coefficients
α = 50 and Q̄c = 0.02 m2. These coefficients are empirically chosen so as to approximate the
time-correlation of the corrections. The results, together with their correct and incorrect 99.9%
confidence intervals, are depicted in the right-panel of Figure 2. As shown, the precision of the
user filtered solution slightly improves, that is, the absolute value of its 99.9% confidence-intervals
reaches 1 dm after 75 epochs. The gap between the correct and incorrect confidence-intervals also
becomes smaller.
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As shown in Example 1, treating the time-delayed PPP-RTK corrections as non-random
leads to an incorrect and optimistic quality description of the user parameter solutions.
Alternatively, the state-augmentation technique may be used to ‘approximate’ both the
variance and time-correlation of the corrections via the exponential auto-correlation func-
tion (11). Such a technique does, however, not take advantage of the information contained
in the corrections’ dynamic model (5), thereby discarding the structure of the error-variance
matrix (8). We now consider another case that incorporates (8) into the user-filter. As stated
before, the approximation Qĉkτ|kτ

≈ 0 may hold by letting the duration of the provider-filter
initialization be sufficiently long. The substitution of Qĉkτ|kτ

= 0 into (8) gives an inverse-
weight matrix Q̄ĉi|kτ

for weighting the time-predicted corrections ĉi|kτ . Accordingly, the
user inverse-weight matrix Q̄uh in (10) is modified as follows

Case 2 : Q̄uh := Quh + Ci Q̄ĉi|kτ
CT

i , h = i, i + 1, . . . ,

with Q̄ĉi|kτ
=

i
∑

h=kτ+1
Φc

(i−h) Qwc
h

ΦcT
(i−h)

(13)

Thus, the inverse-weight matrix Q̄ĉi|kτ
only considers the second term in (8), i.e., the

uncertainty due to the time-prediction of the corrections. Although the randomness of PPP-
RTK corrections is taken into account under Case 2 (13), their nonzero time-correlation (7)
is still dismissed. As with Case 1 (10), such a time-correlation dismissal is required to
run the user-filter in its recursive form. In the next section, we show how Case 2 can
be generalized so as to account for the corrections’ time-correlation (7), yet allowing the
recursive estimation of user parameters.

4. User-Filter with Correctional Update

To date, the focus has been restricted to the choice of the user inverse-weight matrix
Q̄uh that can be made in Cases 1 and 2. Depending on how the user weights their corrected
observation vectors uh − ĉh|kτ (h = i, i + 1, . . .) through Q̄uh , their misspecified filter can
be recursively run in accordance with the right-panel of Figure 1. In both Cases 1 and 2,
however, the time-predicted corrections ĉh|kτ do not benefit from the information contained
in the user observations uh. In other words, the corrections are merely derived from the
correction packs ĉkτ|kτ , that is ĉh|kτ = Φc

(h−kτ)
ĉkτ|kτ over the epochs h = i, . . . , (k + 1)τ − 1.

As with the first-order Markov state-augmentation (12), the idea is to augment the
user state-vector, with a difference, so that the correction parameter vector ch now replaces
the parameter vector ah. Thus, instead of approximating the corrections’ time-correlation
by an exponential auto-correlation function (11), the goal is now to directly incorporate
the corrections’ dynamic model (5) into the user-filter. To this end, we again assume that
the approximation Qĉkτ|kτ

≈ 0 holds. The initialization of the user-filter is then executed
through the following modifications

Case 3 (initialization) : bi 7→
[

bi
ci

]
, Bi 7→

[
Bi Ci
0 I

]
, (ui − Ci ĉi|kτ) 7→

[
ui

ĉi|kτ

]
, Q̄ui 7→

[
Qui 0
0 Q̄ĉi|kτ

]
(14)

where the inverse-weight matrix Q̄ĉi|kτ
follows from that of (13). In contrast to Cases 1 and 2

in which the corrections are merely time-updated from ĉkτ|kτ , we now let the user-filter, next
to the time-updating, also measurement-update the corrections ĉi|kτ . We therefore employ the
discriminating notation ·̌ (instead of ·̂) to denote the user-augmented parameter solutions

[b̌
T
i|i, čT

i|i]
T . During the period in which no newer correction pack is available, the user-filter

recursively performs the time- and measurement-updates via the following settings

Case 3 (TU-MU) : (uh − Ch ĉh|kτ) 7→ uh, Q̄uh 7→ Quh , Bh 7→ [Bh, Ch],

Φb 7→
[

Φb 0
0 Φc

]
, Qwb

h
7→
[

Qwb
h

0

0 Qwc
h

]
, h = i + 1, . . . , (k + 1)τ − 1

(15)
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At epoch i = (k + 1)τ, when the new correction pack ĉ(k+1)τ|(k+1)τ is made available by the
provider, the new time-predicted corrections ĉi|(k+1)τ are to replace the existing user-filtered
corrections či|i. This follows from the approximation Qĉ(k+1)τ|(k+1)τ

≈ 0 (k = 1, 2, . . .), namely
that the new corrections ĉi|(k+1)τ contain all the information contained in the user-filtered
corrections či|i. The structure of our proposed user-filter is presented in Figure 3. As shown,
the user-filtered corrections či|i have to be initialized and replaced by ĉi|kτ every time a
newer correction pack ĉkτ|kτ is made available. Note that such a filter is still misspecified,
thus delivering suboptimal solutions. However, its sub-optimality level is only dictated
by the extent to which the error-variance matrix Qĉkτ|kτ

is different from zero. This is in
marked contrast to Cases 1 and 2, whose solutions’ loss of precision is also driven by the
correction latency i− kτ. To compare the performance of the proposed filter with those of
Cases 1 and 2, let us again consider the problem in Example 1.
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[
b̌i|i
či|i

]
=

[
Bi Ci
0 I

]+[ ui
ĉi| kτ

]

User-filter
initialization

i := i + 1b̌i|i−1?

[
b̌i|i−1
či|i−1

]
=

[
Φb b̌i−1|i−1
Φc či−1|i−1

]
ĉkτ | kτ , k = 1, 2, . . .

correction packs

k = b i
τ c

ĉi| kτ = Φc
(i−kτ)

ĉkτ | kτ

[
b̌i|i
či|i

]
=

[
b̌i|i−1
či|i−1

]
+ Ki(ui−Bi b̌i|i−1−Ci či|i−1) i := i + 1k ?

= b i−1
τ c

[
b̌i|i
či|i

]
=




Bi Ci
I 0
0 I



+


ui
b̌i|i−1
ĉi| kτ
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MU
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present
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Figure 3. The proposed PPP-RTK user-filter with a correctional update. In the absence of user solution
b̌i|i−1, the user picks the ‘most recent’ corrections ĉi|kτ and initializes their filter via the augmented
observation vector [uT

i , ĉT
i|kτ ]

T . The filter does not only deliver the user parameter solution b̌i|i, but
also recursively updates the corrections as či|i (i := i + 1). At every MU step, if a newer correction
pack ĉkτ|kτ is made available by the provider (i.e., if k > b i−1

τ c), then the user-filtered corrections či|i
are initialized by ĉi|kτ .

Example 2 (Continuation of Example 1). Given the same 1000 normally distributed samples
of both the correction and user data in Example 1, we evaluate the ionospheric estimation-errors
bh − b̂h|h (h = 1, . . . , 100) by the user-filter using the settings om Case 2 (13) and our proposed
settings as outlined in Figure 3. The corresponding results are presented in Figure 4. In comparison
to the results in Figure 2, Case 2 outperforms Case 1, showing a similar performance to that of the
state-augmentation technique (12), i.e., it requires at least 70 epochs to have solutions more precise
than 1 dm (with 99.9% confidence). Similar to Case 1 and the state-augmentation technique, there is
also a gap between the correct and incorrect confidence intervals. The proposed filter does, however,
deliver the most precise results in the sense that the absolute value of their 99.9% confidence-intervals
becomes smaller than 1 dm after 50 epochs. At the same time, there is no gap between the correct
and reported confidence intervals. This is because the correction packs ĉkτ|kτ are simulated in a way
to be non-random, Qĉkτ|kτ

= 0. In the next section, the performance of the proposed user-filter is
studied for a real-world GNSS data-set for which the equality Qĉkτ|kτ

= 0 does not hold. Instead,
the filter has to rely on the approximate counterpart Qĉkτ|kτ

≈ 0.
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T . The filter does not only deliver the user parameter solution b̌i|i, but
also recursively updates the corrections as či|i (i := i + 1). At every MU step, if a newer correction
pack ĉkτ|kτ is made available by the provider (i.e., if k > b i−1

τ c), then the user-filtered corrections či|i
are initialized by ĉi|kτ .

Example 2 (Continuation of Example 1). Given the same 1000 normally distributed samples
of both the correction and user data in Example 1, we evaluate the ionospheric estimation-errors
bh − b̂h|h (h = 1, . . . , 100) by the user-filter using the settings om Case 2 (13) and our proposed
settings as outlined in Figure 3. The corresponding results are presented in Figure 4. In comparison
to the results in Figure 2, Case 2 outperforms Case 1, showing a similar performance to that of the
state-augmentation technique (12), i.e., it requires at least 70 epochs to have solutions more precise
than 1 dm (with 99.9% confidence). Similar to Case 1 and the state-augmentation technique, there is
also a gap between the correct and incorrect confidence intervals. The proposed filter does, however,
deliver the most precise results in the sense that the absolute value of their 99.9% confidence-intervals
becomes smaller than 1 dm after 50 epochs. At the same time, there is no gap between the correct
and reported confidence intervals. This is because the correction packs ĉkτ|kτ are simulated in a way
to be non-random, Qĉkτ|kτ

= 0. In the next section, the performance of the proposed user-filter is
studied for a real-world GNSS data-set for which the equality Qĉkτ|kτ

= 0 does not hold. Instead,
the filter has to rely on the approximate counterpart Qĉkτ|kτ

≈ 0.
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Figure 4. Time–series of the ionospheric estimation-error bh − b̂h|h (h = 1, . . . , 100) of Example 2
(grey lines). Given 1000 normally distributed samples, the misspecified user-filter computes filtered
ionospheric solutions under two cases. (Left): Case 2 (13), in which only the variance of the corrections
is considered. (Right): Case 3 (Figure 3), in which both the variance and time-correlation of the
corrections are incorporated by the proposed filter. The incorrect 99.9% confidence intervals (dashed
lines), reported by the user-filter, are compared with their correct versions (black solid lines).

5. A Single-Station PPP-RTK Example

In this section, we make use of a Galileo dual-frequency (E1/E5a) data-set to study
the positioning performance of the misspecified user-filter for three variants: Case 1 (10),
Case 2 (13), and Case 3 (Figure 3). The data-set was collected with a 1 Hz sampling-rate
on 21 January 2022 by two permanent GNSS stations: CUT0 and UWA0, both located in
Western Australia. The precise orbital corrections are a priori applied to the data.

State-space corrections (i.e., clock, ionospheric and phase-bias corrections) are gen-
erated via a single-station PPP-RTK setup [7,13]. The setup is visualized in Figure 5.
Station CUT0 serves as correction-provider, whereas the station UWA0 serves as a user
that is approximately 8 km away from the provider. To emphasize the performance of
our filter formulation (Case 3) in handling time-delayed corrections, we consider rather
high correction latencies. Accordingly, the clock correction packs are assumed to be made
available to the user every 10 s, ionospheric correction packs every 30 s, and phase-bias
correction packs every 10 min. In order to make the approximation Qĉkτ|kτ

≈ 0 plausible, the
provider sends the corrections only after 1 h from the time of their filter-initialization. The
user then time-predicts each correction and runs their filter over 20 min (1200 epochs). To
form their observation variance matrix, the user employs the sinusoidal satellite elevation-
weighting strategy with the zenith-referenced standard-deviations of 20 cm and 2 mm for
their undifferenced code and phase measurements, respectively.

Clock correction packs (offsets and rates)

[Every 10 seconds]

Provider: CUT0 User: UWA0

~8km

Slant ionospheric correction packs  

 (offsets and rates)

[Every 30 seconds]

Phase-bias correction packs   

[Every 10 minutes]

1Hz Galileo dual-frequency E1/E5a

Ambiguities constant in time

Kinematic (position unlinked in time)

Receiver clock/biases unlinked in time

21 January 2022

Figure 5. Single-station PPP-RTK setup for the experimental data-set. The temporal behaviour of
the satellite clocks and ionospheric delays is modelled by a constant-velocity dynamic model with
process noises’ standard deviations of 3 mm/

√
s3 and 1 mm/

√
s3, respectively. The satellite phase

biases are assumed to follow a random-walk (constant-state) process with a standard deviation of
0.01 cyc./

√
s.
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Over the fixed 1200 epochs, we consider both the ambiguity-float and -fixed posi-
tioning performance of the user. To show the role played by the correction latency, we
also compare the user positioning results with those obtained with zero latency. Let us
first focus on the ambiguity-float results, i.e., before resolving the user float ambiguities
to their integers. The results are presented in Figure 6. The left-panel corresponds to the
case where no correction latency is experienced by the user. For the zero-latency case, the
results of Cases 1 and 2 coincide with those of Case 3 (green lines). This can be understood
as follows. Recall that Case 1 (red lines) treats the corrections as non-random, and Case 2
(blue lines) models the variance of the corrections, while Case 3 models both the variance
and time-correlation of the corrections. As both Cases 2 and 3 rely on the approximation
Qĉkτ|kτ

≈ 0, they deliver results identical to those of Case 1 in the case of zero latency (i.e.,
when i = kτ). Thus, the underlying difference of these three cases only lies in the way of
correctional uncertainty due to the fact that the latency is handled.

The effect of nonzero correction latency is shown in the right-panel of Figure 6. Since
i ≥ kτ, the user has to time-predict the corrections, thereby requiring that it take the associ-
ated correctional uncertainty into account. As Case 1 does not consider such uncertainty, it
delivers positioning results with the largest root-mean-squared (RMS) errors in all the three
East–North–Up directions. For the horizontal components, Case 2 delivers similar results
to those of Case 3 in an RMS sense. However, Case 3 experiences less discontinuities in its
positioning results than Case 2. Such discontinuities are owed to the periodic increase in the
latency that it varies from 0 to τ − 1 seconds for every correction pack.
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Figure 6. Time-series of the ambiguity-float positioning errors in the East–North–Up directions
when the user experiences no correction latency (left) and when the correction packs are provided
with a time-delay (right). The results of Cases 1, 2, and 3 are indicated in red, blue, and green,
respectively.

Let us now turn our attention to the user ambiguity-fixed results, i.e., after mapping
the float ambiguities to their integers. At every epoch, full ambiguity resolution using
the integer least-squares estimation is conducted without an extra ambiguity validation
procedure [25]. The results are presented in Figure 7. As before, both the zero-latency
(left-panel) and nonzero-latency (right-panel) cases are considered. While the three cases
1, 2, and 3 perform the same when the user receives corrections with no time-delay, their
performances become distinct when treating time-delayed corrections. Case 1 (red lines)
exhibits several large ambiguity-resolved positioning errors (≥1 dm) in all three East–North–
Up directions, leading to large positioning RMS errors. In other words, the corresponding
ambiguity success-rate is not sufficiently high to deliver successful ambiguity-resolved
positioning solutions. On the contrary, Cases 2 and 3 outperform Case 1 in the RMS sense.
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Similar to their ambiguity-float counterparts, the RMS errors of Cases 2 and 3 are the same
for the horizontal components.
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Figure 7. Time-series of the ambiguity-fixed positioning errors in East–North–Up directions when
the user experiences no correction latency (left) and when the correction packs are provided with a
time-delay (right). The results of Cases 1, 2, and 3 are indicated in red, blue, and green, respectively.

Observing the results in Figures 6 and 7, one may be inclined to conclude that the
performance of the proposed user-filter (Case 3) is the same as that of Case 2. From
a computational point of view, Case 2 seems to be more attractive as it does not need
the augmentation of the user state-vector with the corrections. This is in contrast to the
formulation of Case 3 which needs to recursively update both the user and correction
parameter solutions. One should, however, remark that those results only represent one
realization of the user-filter’s parameter solutions. In order to infer the overall performance
of the user-filter under the formulations offered by Cases 1, 2, and 3, one needs to instead
consider the distribution of the user parameter solutions. To that end, we generate 300
different realizations of the results by shifting the user-filter starting epoch i every 15 s.
The time-series of the medians (i.e., 50% percentiles) of these realizations are presented
in Figure 8 for both the user ambiguity-float (left) and -fixed (right) cases. The medians
of the positioning errors corresponding to Cases 2 and 3 are shown to be considerably
smaller than those of Case 1. The results also indicate that Case 3 outperforms Case 2 as it,
on average, delivers smaller medians of the positioning errors. Note also the presence of
periodic jumps of the medians for all the three cases. This behaviour is due to the periodic
nature of the correction latencies that vary from zero to τ − 1 s for each correction pack. It
is, however, observed that Case 3 exhibits smaller periodic jumps. This is because Case 3
accounts for the uncertainty of the time-delayed corrections by modelling their variance
and time-correlation through their dynamic model (5).
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Figure 8. Medians (50% percentiles) of the absolute positioning errors corresponding to 300 user-filter
realizations before (left) and after (right) ambiguity-fixing in the East–North–Up directions when the
correction packs are provided with a time-delay (cf. Figure 5). The results of Cases 1, 2, and 3 are
indicated in red, blue, and green, respectively.

6. Conclusions and Outlook

In this contribution, a new multi-epoch formulation for the PPP-RTK user-filter was
proposed (Figure 3). Under the proposed formulation, the user-filter state-vector bh is
augmented with the correction parameter vector ch as [bT

h , cT
h ]

T , thereby allowing the
corrections to be jointly measurement-updated with the user parameter solutions.

It was shown why the user-filter always remains misspecified, and therefore, subopti-
mal in the minimum-variance sense, no matter which formulation is adopted. Since the
PPP-RTK provider has the freedom to disseminate their filtered corrections ĉkτ|kτ only after
a sufficiently long period from the time of their filter-initialization, the user can, however,
benefit from the approximation Qĉkτ|kτ

≈ 0 to limit the sub-optimality level of their filter.
Instead of current formulations in which the time-correlated corrected observation vectors
uh − Ch ĉh|kτ (h = i, i + 1, . . .) serve as input of the user-filter, our proposed formulation
treats the corrections ĉh|kτ as additional observation vectors and works with the augmented
observation vector [uT

h , ĉT
h|kτ ]

T . Relying on the approximation Qĉkτ|kτ
≈ 0, the observa-

tion vectors [uT
h , ĉT

h|kτ ]
T (k = 1, 2, . . .) would then become time-uncorrelated, leading the

user-filter to deliver close-to-minimum-variance solutions. Under the proposed formu-
lation, however, the user needs to know the dynamic model that the provider uses for the
corrections. For further standardization of the State Space Representation (SSR) corrections
(https://www.igs.org/formats-and-standards (accessed on 18 December 2022)), Radio
Technical Commission for Maritime Services (RTCM) committees may therefore request
PPP-RTK providers to disclose the dynamic models underlying their SSR corrections.

A single-station PPP-RTK setup was employed to numerically demonstrate the superi-
ority of the proposed filter over existing formulations. To emphasize the performance of our
formulation, rather high correction latencies were considered, e.g., ionospheric correction
packs were provided every 30 s. It was observed that the proposed filter delivers smaller
estimation errors (in an RMS sense) when handling time-delayed corrections.

In the present contribution, attention was focused on the formulation of the user-filter
only. Addressing open research questions such as ‘how to develop measures for assessing

https://www.igs.org/formats-and-standards


Sensors 2023, 23, 229 14 of 15

the approximation Qĉkτ|kτ
≈ 0’, and ‘the extent to which such approximation drives the

sub-optimality level of the user-filter’ are topics of future works.
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Appendix A. Supplementary Proofs

Proof of (7). Combining the TU error ci+1 − ĉi+1|i = Φc (ci − ĉi|i) + wc
i+1 with its MU

counterpart ci+1 − ĉi+1|i+1 = (I − Kc
i+1 Ai+1) (ci+1 − ĉi+1|i) + Kc

i+1 ei+1 establishes a link
between the two successive MU errors ε̂i = ci − ĉi|i and ε̂i+1 = ci+1 − ĉi+1|i+1 as follows

ε̂i+1 = [(I − Kc
i+1 Ai+1)Φc ] ε̂i + (I − Kc

i+1 Ai+1)wc
i+1 + Kc

i+1 ei+1︸ ︷︷ ︸
li,i+1

(A1)

where the random quantity li,i+1 is a function of the process and measurement noises wc
i+1

and ei+1. The repeated application of (A1) for the remaining successive epochs i + q + 1
and i + q + 2 (q = 1, . . . , j− i− q− 2) gives

ε̂j =

[
j

∏
h=i+1

(I − Kc
h Ah)Φ

c

]
ε̂i + li,i+1,...,j, j > i (A2)

where the random quantity li,i+1,...,j is a function of the process and measurement noises
wc

i+q and ei+q (q = 1, . . . , i− j). Since the MU error ε̂i is uncorrelated with the process and
measurement noises of the upcoming epochs h = i + 1, . . . , j [26], it is also uncorrelated
with their linear function li,i+1,...,j. Therefore, an application of the covariance propagation
law to (A2), together with the definition Qĉi|i := Cov(ε̂i, ε̂i), gives (7).

Proof of (8). From the TU errors

ckτ+q − ĉkτ+q|kτ+q−1 = Φc(ckτ+q−1 − ĉkτ+q−1|kτ+q−1) + wc
kτ+q, q = 1, . . . , i− kτ, (A3)

follows that

ci − ĉi|kτ = Φc
(i−kτ)(ckτ − ĉkτ|kτ) +

i

∑
h=kτ+1

Φ(i−h) wc
h. (A4)

The application of the covariance propagation law to (A4), together with Cov(ckτ −
ĉkτ|kτ , wc

h) = 0 (h = kτ + 1, . . . , i), gives (8).
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