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Abstract: Lane-keeping assistance design for road vehicles is a multi-objective design problem that
needs to simultaneously maintain lane tracking, ensure driver comfort, provide vehicle stability, and
minimize conflict between the driver and the autonomous controller. In this work, a cooperative
control strategy is proposed for lane-keeping keeping by integrating driving monitoring, variable
level of assistance allocation, and human-in-the-loop control. In the first stage, a time-varying phys-
ical driver loading pattern is identified based on a relationship between lateral acceleration, road
curvature, and the measured maximum driver torque. Together with the monitored driver state that
indicates driver mental loading, an adaptive driver activity function is then formulated that replicates
the levels of assistance required for the driver in the next stage. To smoothly transition authority
between various modes (from manual to autonomous and vice versa) based on the generated levels
of assistance, a novel higher-order sliding mode controller is proposed and closed-loop stability is
established. Further, a novel sharing parameter (which is proportional to the torques coming from the
driver and from the autonomous controller) is used to minimize the conflict. Experimental results on
the SHERPA high-fidelity vehicle simulator show the real-time implementation feasibility. Extensive
experimental results provided on the Satory test track show improvement in cooperative driving
quality by 9.4%, reduction in steering workload by 86.13%, and reduced conflict by 65.38% when com-
pared with the existing design (no sharing parameter). These results on the cooperative performance
highlight the significance of the proposed controller for various road transportation challenges.

Keywords: human-machine shared control; lane keeping assistance; higher order sliding mode;
conflict minimization; ADAS; driver assist system

1. Introduction

Advanced driver assist systems (ADASs; acronyms of this manuscript are defined in
the Acronyms section) such as lane keeping assist (LKA), adaptive cruise control (ACC),
and collision avoidance (CA) systems have been widely employed in commercial vehicles.
These systems greatly reduce the workload of human drivers and reduce the risk of
accidents, and crashes by warning or supporting the driver for particular maneuvers [1].
The ADASs developed for semi-autonomous driving scenarios can be categorized into
human-guided, human-supervised, and human-assisted architectures [2]. In recent works,
it has been established that driver-in-the-loop (DiL) human-assisted ADAS architectures
can be employed to address various human–machine interaction (HMI) challenges inclusive
of authority allocation [3], the transition of authority [4], conflict management [5], and
human driver workload reduction and skill enhancement [6]. Such cooperative driving
architectures have been explored for adaptive cruise control, collision avoidance systems,
and lane departure/keeping systems among others [7,8]. To design cooperative control
architectures for ADAS, DiL architectures are typically formulated by integrating driver
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attributes such as workload, experience, and skill in the control design. For effective action
which reflects such attributes, various driver models based on neuromuscular dynamics [9],
data-driven [10], hand impedance [11], and vision/preview have been developed [5]. In
this work, the avenue of cooperative control for lane-keeping assistance (LKA) systems
considering the steering input (angle or torque) as a control signal is explored with a focus
on HMI management and vehicle positioning error minimization.

1.1. State of the Art

Many works can be found in the literature dealing with the design of controllers for
trajectory following [12]. Among of all the robust controllers, the sliding mode law is world-
wide recognized as one of the most effective to reject external matched perturbations [13], so
they can be used to reject perturbations that affect road vehicles. The system disturbances
and parameter uncertainties introduced by human–machine cooperation driving are also
inevitable. Ref. [14] proposed a control method to solve the above problems. Optimiza-
tion algorithms have also been used to reduce the computational cost of implementing
the control law in real-time applications [15]. Active fault-tolerant controllers have been
largely used to increase plant availability and reduce the risk of safety hazards, preventing
simple faults from developing into serious failure [16,17]. The last decade witnessed a
great development of automated driving vehicles and vehicle intelligence. The significant
increment of machine intelligence poses a new challenge to the community, which is the
collaboration between human drivers and vehicle autonomy. In [18], a literature review
was conducted and perspectives on the human behaviors and cognition (HBC) for ADVs
toward human-autonomy (H-A) collaboration were proposed.

Various cooperative control architectures have been proposed in [5,7,8,19,20] based
on DiL designs. In [21], a driver model using a weighting process of visual guidance
from the road ahead and haptic guidance from a steering system for a lane-following task
were proposed. In [3,22–24], haptic feedback from the steering wheel was used to ensure
both driver and the autonomous controller participated in the driving action. In [25], an
extended shared steering control system with an authority adaptive allocation model was
proposed to improve the reliability of the shared steering control system, and weaken
the influence of uncertain driver behavior on driving safety. Ref. [26] presented a shared
control framework based on handling inverse dynamics and driving intention for lane
changing, in particular, the influence of the driver’s lane-changing start point and end point
is considered in the design of the shared controller. In [6], a cooperative control approach
for lane keeping based on H2 preview control was proposed by incorporating a neuro-
muscular driver model. Similarly, in [20], a haptic shared control between driver and e-
copilot considered the use of driver torque as haptic feedback to design T-S fuzzy controllers
for lane keeping. In [19], for varying driver steering characteristics such as delays, and
preview time, a DiL gain-scheduling H∞ robust shared controller was proposed. These
approaches typically validated the cooperative performance of the DiL design for lane-
keeping tasks in presence of driver parameter uncertainty and environmental disturbances
such as crosswinds, and road curvature. Although efficient lane-keeping performance
under various driving conditions was validated, issues of conflict between human driver
and autonomous controller, driver workload management and performance enhancement
were not explicitly addressed.

Driver workload typically characterizes the driving action required by the human
driver to perform a typical task. Based on monitored cognitive states (mental workload)
and physical driving effort (physical workload) applied by the driver, the workload can be
categorized into under-load, normal and over-load regions [5,27]. The mental workload of
the driver reflects the state of involvement of the driver in the driving task. Typically, driver
state of drowsiness [5,28], the intention of driving action [28], and meticulous steering
action [29] are employed as indicators of the mental workload. The physical workload of
the driver can be determined by monitoring the driver torque/steer input applied, and the
steer reversal rate. The objective of a cooperative LKA strategy is then adapting the driver
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activity in terms of workload into the controller design for effective management of HMI
and keeping vehicles on the lane. In [30], an optimal modulation policy was designed with
a cost function, then a nonlinear stochastic model predictive approach was used to solve
the cost function subjected to probabilistic uncertainties in human’s biomechanics. In [27],
the relationship between driver workload and level of assistance required was explored
for the design of an LKA controller to improve driver performance. Takagi-Sugeno (T-S)
models [31,32] used driver activity functions considering driver state, torque, and intention,
which replicate the level of assistance required during a typical task [27].

The conflict between the human driver and the autonomous controller typically
occurs when both agents have different actions for the same driving task. Such scenarios
arise during the transition of authority between the agents, sudden maneuvers executed
by driver/automation which is not predicted by the other agent, and during extreme
maneuvers i.e., sharp curve negotiation. In [4,6], based on cooperative status detection,
a conflict-free smooth transition of authority between human driver and autonomous
controller was proposed. Similarly, in [23], conflict mitigation by adapting the parameters
of the controller with respect to individual drivers was proposed. Extending the work
of [31], a cooperative control approach employing T-S models was proposed in [5] to
perform lane keeping and conflict minimization simultaneously. In [33], a haptic control
architecture was developed for the smooth transition of control authority with adaptation
to driver cognitive workload. In the works of [6,19,20,31,32], the controllers designed were
based on the linear bicycle model which did not account for varying tire friction forces.
The works in [6,19] assumed constant longitudinal speed in the design of lane-keeping
controllers. Further, conflicts between the driver and the automated driving system were
not explicitly addressed in [19,32]. In [5,31,33], by the design of shared control dependent
on driver attributes, the issue of conflict between the driver and automated system was
addressed for variable longitudinal speeds and fixed longitudinal speeds. However, these
works were analyzed for the linear bicycle model that did not consider the aspect of
saturated tire friction forces during extreme maneuvers.

1.2. Proposed Methodology

To account for tire-force non-linearities and environmental disturbances, management
of HMI between human drivers and autonomous controller with respect to driver workload,
and conflict management, a robust cooperative control approach is proposed in this work.
Based on the non-linear representation of tire-friction dynamics [34] integrated with a
human driver model developed using visual cues [5], a DiL design is formulated. The HMI
between the human driver and the driver torque is then developed based on adaptation to
driver workload and subsequent driver performance. For adaptation to driver performance,
a non-linear representation of driver activity based on physical and cognitive workload
is formulated. For quantifying adaptive physical workload, a rule-based logic is used
to explore the relationship between lateral acceleration, predicted road curvature, and
maximum driver torque. Based on the developed DiL model dynamics, a novel robust
nonlinear feedback controller based on adaptive higher order sliding mode (HOSM) [35,36]
is developed for the system. The conflict is managed by the introduction of a sharing
parameter, which is a function for driver and assistance torques in the input-dependent
sliding surface. The developed feedback control is then modulated using the non-linear
function developed on the relationship of driver performance-level of assistance required,
for effective HMI management. The closed-loop stability of the time-varying system
dynamics involving the non-linear modulating function, DiL dynamics, and environmental
disturbances is then established.

1.3. Contribution

The main contributions of this work are:

• The introduction of a shared control parameter into the control design to minimize
conflict between the human driver and automated driving system.
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• The design of a novel higher-order sliding mode control algorithm with linear and
nonlinear terms.

• The addressing of multiple objectives of lane position error reduction, enhancement
of driver satisfaction, and conflict management.

The manuscript is organized as follows. Section 2 introduces the driver–vehicle–lane
model. Section 3 focuses on the design of the proposed controller. Extensive discussions
about the performance of the proposed approach with regard to lane position error re-
duction, driver satisfaction, and the influence of the conflict parameter are provided in
Section 4.

2. Problem Formulation: Driver Adapted Lane Keeping

The time-varying dynamics governing a DiL vehicle model in the presence of en-
vironmental disturbances for lateral control and the problem of designing a closed-loop
controller to manage the HMI between a driver and an autonomous controller are discussed
in this section. The symbols of this manuscript are defined in the Nomenclature section.

2.1. DiL Modeling: Vehicle-Road-Driver Dynamics

The DiL model development is carried out by integrating the vehicle’s lateral and yaw
motion dynamics with the steering column dynamics, the lane tracking dynamics, and a
linear model of the human driver’s torque. The governing dynamics for the lateral motion
of the vehicle under assumptions of negligible influence of the longitudinal dynamics
can be efficiently represented using the non-linear bicycle dynamic model [1,37] as in
Equation (2).

Mvx β̇ = Fyr + Fy f cos(δ f )−Mvxψ̇v + Fw (1)

Izψ̈v = l f Fy f cos(δ f )− lrFyr + Mw (2)

where β is the side slip angle, δ is the steering angle, ψ is the heading angle, Fy f , Fyr are the
front and rear friction forces, Fw is the crosswinds force, and vx is the longitudinal velocity.
To represent the tire–road friction conditions, several linear, adaptive, uncertain, and non-
linear models like the Brush-Tire (BT) friction model, LuGre friction model among others
are employed [38]. Although the nonlinear models represent the dynamic characteristics of
tire–road friction, these models are not easily applicable in control approaches due to their
highly complex behavior and dynamics. The linear uncertain friction model [39] has been
employed in this work for controller development. The lateral tire friction forces and the
self-align torque of the steering wheel are then given as in Equations (3) and (4).

Fyi = 2Cpiαi + ∆Fi (3)

Ts =
KptpFy f

Rs
(4)

with α f , αr denoting the front and rear slip angles, Ts denoting the self-aligning torque, and
∆Fi denoting the lumped uncertain part of the tire friction forces indicative of the effects of
changing road conditions, tire pressure variations, saturation, etc., which can be modeled
using any of the above-discussed dynamic friction models. The variable Kp ∈ (0, 1] is a
ratio denoting the level of assistance from the active steering system. In the absence of any
active steering support, the value of Kp = 1. The front and rear slip angles under small
angle assumptions are given as in Equation (6).

α f = δ f −
βvx + l f ψ̇v

vx
(5)

αr =
βvx − lrψ̇v

vx
(6)
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Under the small angle assumptions, the above non-linear bicycle model dynamics appropri-
ately represent the vehicle motion for low curvature roads and have been widely employed
for shared lateral control [5,7].

The vehicle’s lane tracking performance can be modeled using two error variables, yl
and Ψl , which indicate the lateral deviation error and the orientation error of the vehicle
with respect to the lane center-line at a specified look-ahead distance as shown in Figure 1.
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Figure 1. The nonlinear bicycle model of vehicle.

These lane errors are readily obtained using vision-based sensors from the vehicle
perception unit. The dynamics of these error variables are given, as [5], in Equation (8).

ẏl = βvx + lsψ̇v + Ψlvx; (7)

Ψ̇l = ψ̇v − ρrvx (8)

with yl , Ψl representing the lateral offset error and the heading error respectively. With
the road-vehicle dynamics considered, the interaction between the human driver and the
vehicle is then modeled by considering the steering-column dynamics with only basic assist
provided [5,7] as in Equation (9).

Is δ̈d = Td + Ta − Ts − Bu δ̇d (9)

where Td, Ta represent the driver and the automation torques, respectively. Integrating the
dynamics (8) and (9), an autonomous controller can be designed to generate the assistance
torque Ta which can maintain the vehicle on the lane. Further, the consideration of the
steering column dynamics also helps in informing the human driver of the external road
conditions directly.

2.2. HMI Management: Driver Workload-Level of Assistance

Driver-adaptive LKA systems intend to provide assistance to human drivers for
difficult and adverse scenarios [5,40–42]. Specifically, adaptation techniques are designed
such the physical and mental workload of drivers during driving can be easily managed.
Using measured vehicle responses such as steering torque, steering wheel reversal rate,
and jerk among others, the physical workload of a driver is quantified [5,27,42]. Similarly,
based on measured driver responses such as gaze monitoring, drowsiness, and intention to
perform a maneuver, the mental workload of a driver can be quantified [5,7,9]. Integrating
both these indicators via a nonlinear mapping and relating them to driver performance,
various adaptive functions have been proposed by our research group for shared lane-
keeping tasks [5,28,42]. On similar lines, we consider the use of normalized driver torque
and driver distraction levels as indicators of the driver’s physical and cognitive workloads,
respectively. The entire procedure is carried out in three steps as shown below:

• Identification of driver workload: The measured driver torque at the steering wheel is
typically dependent on many factors such as road curvature, lateral acceleration, the
preview time, and the far point distance, and dynamics of the human arm among
others. In this work, the adaptive driver torque Tdm for various drivers/driving
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scenarios is computed using a simple rule-based logic with the inputs being lateral
acceleration and predicted road curvature [43]. With the increase in lateral acceleration
and road curvature, the value of the Tdm increases, to show more physical workload
of the driver. Mathematically, the normalized maximum driver torque is represented
in Equation (10).

Tdn = |Td/Tdm| (10)

Similarly, the mental workload is accounted for by the driver state (DS ∈ [0, 1])
which categorizes the driver’s involvement into different levels such as attentive,
sleepy, drowsy, and distracted. With the increase in DS the driver is more involved
in the driving task and vice-versa. In the case when DS = 0, the driver is completely
distracted, and when DS = 1, the driver is actively involved in the driving task. For
practical purposes, the DS is obtained from the driver monitoring unit (DMU) installed
in vehicles comprising of a vision system to monitor driver activity [44]. It is of note
that, although different states of driver are monitored, generally the output of the
DMU is binary indicating an active driver or a distracted driver [28].

• Mapping driver workload to activity: In the context of driver workload, effective driver
performance decreases with an increase in workload levels. Similarly, for low activity
(corresponding low workload) level, also the performance of the driver is low, as the
driver is not significantly involved in the driving task. Analytically, this relationship
is expressed as in Equation (11).

γ = 1− e(σ1TdN)σ2 DSσ3 (11)

where γ ∈ [0, 1] indicates driver activity, σ1 = 2, σ2 = 3, and σ3 = 3 selected appropri-
ately to consider the degree of influence of the physical and cognitive components on
the driver activity. This relationship is presented graphically in form of a U-shaped
function in [27].

• Activity-based level of assistance generation: The level of assistance (LOA) required to
complete a driving task can be determined similarly to [27], by using the inverse-
U relationship between driver performance and LOA. Considering the objective of
providing high assistance to the driver during under-load and over-load (i.e., low
activity) regions, an analytical mapping for driver performance-LOA is defined as in
Equation (12).

µ(γ) =
1

1 + | γ−p3
p1
|2p2

+ µmin (12)

The time-varying parameter µ(γ) ∈ [µmin, 1] represents a modulation factor that
relates the driver workload-based performance with the LOA for task completion.
The parameters p1 = 0.355, p2 = −2, p3 = 0.5 are chosen to replicate the U-shaped
relationship as discussed in [27] and shown in Figure 2. A minimum assistance level
of µmin = 0.2 is used to consider the influence of sensor noise, drift, etc.

The computed level of assistance function can be then used to modulate the assistance
torque Ta and thus adapt the autonomous control action to the driver as in Equation (13).

Ta = µ(γ)Tf b (13)

where Tf b is a robust feedback control torque to be designed. Employing the modulated
assistance torque, the HMI between the driver and the autonomous controller can be
effectively managed for completing a specific driving task.
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Figure 2. The driver workload and corresponding level of assistance required.

3. Robust DiL Lane Keeping Control: A HOSM approach

The shared control between the human driver and an LKA controller typically focuses
on tracking the desired reference while improving the driver comfort [7,20,42].

3.1. Control Oriented DiL Modeling

For DiL tasks, we incorporate the influence of driver effort by using a two-point visual
driver torque model [5] for developing the control specific model as in Equation (14).

Td = Kcθnear + Kaθ f ar (14)

with θnear, θ f ar representing the near and far visual points of the driver along a road curva-
ture. Based on information of these angles, the driver generates anticipatory action and
compensatory action corresponding to the near and far angles respectively. Subsequently,
he/she predicts the future road and generates the anticipated steering action before en-
tering the curve based on the far visual angle. The compensatory behavior of the driver
is emphasized for lane-keeping aspects. This driver behavior is represented using the
anticipatory and compensatory gains Ka and Kc respectively as shown in (14). For further
details, please refer to [5].

Integrating the above dynamics in Equations (2) and (14), a DiL lane-keeping model
of the following form can be formulated in Equation (15).

ẋ(t) = A(t)x(t) + B(t)Ta(t) + E(t)ω(t) (15)

with the states as x =
[
x1 x2 x3 x4 x5 x6

]T
=
[
β ψ̇v yl Ψl δd δ̇d

]T . The
system matrices are given as in matrices (17).

A(t) =



a11 a12 0 0 a15 0
a21 a22 0 0 a25 0
0 1 0 0 0 0
vx ls vx 0 0 0
0 0 0 0 0 1

a61 a62 a63 a64 a65 a66

, B =



0
0
0
0
0
b1

 (16)

E(t) =


e1 e2 0 0 0 0
0 0 0 −vx 0 0
e1 e2 0 0 0 e3
e4 e5 0 0 0 0


T

, w(t) =


Fw
ρr

∆Fy f
∆Fyr


T

(17)
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with a11 = −2(C f + Cr)/Mvx, a12 = 2(lrCr − l f C f )/Mv2
x, a15 = 2C f /MvxRs, a21 =

2(lrCr − l f C f )/Iz, a22 = −2(l2
r Cr + l2

f C f )/Izvx, a25 = 2C f l f /IzRs, a61 = (2C f ηt/(IsRs)) +

Kcτ2
a a21, a62 = (2C f l f ηt/(IsRsvx)) + Kc(τa + τ2

a a22), a63 = Ka/Is, a64 = Ka/(Isvxτp), a65 =

(−2C f ηt/(IsR2
s )) + Kcτ2

a a25, a66 = −Bs/Is, b1 = 1/Is, e1 = 1/Mvx, e2 = lw/Iz, e3 = l f /Iz,
e4 = −lr/Iz, and e5 = −Kpηt/IsRs.

The autonomous assistance torque Ta for completing the driving task in the presence
of disturbances ω and the uncertainties ∆ can be now designed. Integrating the assistance
modulation factor developed earlier, the DiL model used for controller design can be
expressed as in Equation (18).

ẋ = A(t)x(t) + B1(t)Tf b(t) + E(t)ω(t) (18)

with B1 = Bµ(γ) and Tf b as the control torque to be designed for stabilizing the DiL system.

3.2. Control Objectives for LKA

The control objectives for the above DiL lane-keeping task are formulated as:

• Minimization of lane tracking errors: The lane tracking errors as given in Equation (8)
comprise the errors lateral deviation and the heading angle. To quantify the lane error
at a look-ahead distance, the parameter el is defined as in Equation (19).

el = yl + lsΨl (19)

The control objective is then to ensure that the front wheels of the vehicle are simulta-
neously located in strip (±d = 1.5 m) along the lane center line. In other words, the
following condition in Equation (20).

|el | ≤
2d− wr

2
(20)

where wr denotes the width of the vehicle.
• Improvement of driver comfort: The comfort of the driver while navigating the road

can be understood as a measure of the vibrations or oscillations at the steering wheel.
As such, the steering rate δ̇d or the lateral acceleration can be used as a measure to
quantify the driver comfort [45].

• Conflict Minimization: The mismatch of control actions between the human driver
and the autonomous controller categorized as conflict, must be minimized for having
a good shared control performance [5]. This can be achieved by passing over the
authority to the human driver. Accordingly, the following fictional state is introduced
to achieve the above action in Equation (21).

ẋc f = Ts
d − λcTa (21)

where λc is any positive parameter reflecting the level of sharing, and Ts
d represents

the driver torque measured at the steering wheel. In case of conflict, the value of
ẋc f −→ 0. In such a case, it can be deduced that λcTa ≈ Ts

d . Hence, by the appropriate
design of the parameter λc, the influence of the assistance torque can be reduced.

For the above control objectives, we now propose a robust HOSM controller for the
DiL dynamics in Equation (18) to design the torque Tf b and Ta subsequently.

3.3. Robust HOSM Controller

Integrating the above control objectives, a linear error surface to be regulated can be
defined as in Equation (22).

σc = k1el + k2 ėl + k3δ̇d + k4xc f (22)
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for the gains ki > 0, i = 1 . . . 4 designed to ensure convergence of the error surface.
To stabilize the DiL system and ensure that the tracking error σc converges to a stable
equilibrium, the following finite time controller is proposed.

Theorem 1. For the DiL system in Equation (18), the feedback control Tf b which ensures that the
tracking error σc in Equation (22) converges to a practically stable equilibrium can be designed as in
Equation (23).

Tf b =
1

Ωuµ(γ)

(
−Ωc + ν(σc)

)
(23)

where Ωc, Ωu are defined later and a novel robust HOSM control ν(σc) to reject the effect of
disturbances is defined as in Equation (24).

ν(σc) = −α1ν1(σc)− α2

∫ t

0
ν2(σc) dt (24)

with, ν1(σc) = |σc|η1 sign(σc) and ν2(σc) = |σc|η2 sign(σc), 1− 2η1 + η2 = 0, 1 > η1 ≥ 0.5,
and α1, α2, α3 > 0 are positive constants.

Proof. The dynamics of the tracking error σc can be expressed as in Equation (25).

σ̇c = k1 ėl + k2 ël + k3δ̈d + k4λc ẋc f (25)

= β f1 + ψ̇v f2 + Ψl f3 + δd f4 + f5 + ∆t + (k3b1 − k4λc)µ(γ)Tf b

= Ωc + Ωuµ(γ)Tf b + ∆t

where Ωc = β f1 + ψ̇v f2 + Ψl f3 + δd f4 + f5, Ωu = k3b1 − k4λc, f1 = k1vx + k2vxa11 +
2k2lsa21 + k3a61, f2 = 2k1ls + k2vxa12 + 2k2lsa22 + k2vx + k3a62, f3 = k1vx + k3a64, f4 =
k2vxa15 + 2k2lsa25 + k3a65, f5 = k3a63yl + k3a66δ̇d + k4Ts

d, ∆t = fdt + fdt1 − k1lsvxρr +

e3∆Fy f , fdt = k2[β
∂vx
∂dt +Ψl

∂vx
∂dt − ls ∂vx

∂dt ρr− lsvx
∂ρr
∂dt ], and fdt1 = k2vx(e1Fw + e1∆Fy f + e4∆Fyr)+

2k2ls(e2Fw + e2∆Fy f + e5∆Fyr)− k2ρrv2
x.

Substituting for the feedback control designed in Equation (23), the error dynamics
can be now expressed as in Equation (26).

σ̇c = ν(σc) + ∆ (26)

The lumped disturbance ∆ consists of the effects of road curvature, crosswinds, and
uncertain tire friction forces. For all practical operating conditions, these disturbances
and their time derivatives can be assumed to be bounded. It can be further shown that
the lumped disturbance can be divided as ∆ = ∆1(σc) + ∆2 with simplifications of the
expression in Equation (25). The disturbance terms can be shown to be bounded as in
Equation (28).

‖∆1‖ ≤ χ1‖σc‖ (27)

|∆̇2| ≤ χ2 (28)

where χ1, χ2 > 0 are any positive parameters.
Now consider the following Lyapunov function in Equation (29).

Vc = ΣTQcΣ (29)

with Σ =
[
ν1 σc

∫ t
0 ν2(σc) dt

]T
and the matrix Qc = QT

c > 0 denoting a positive definite
matrix defined, as [35], in Equation (30).
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Qc =
1
2

(4α2 + α2
1) α1α3 −α1

α1α3 (1 + α2
3) −α3

−α1 −α3 2

 (30)

The above Lyapunov function satisfies the condition in Equation (31).

λmin‖Σ‖2 ≤ Vc ≤ λmax‖Σ‖2 (31)

with λmin, λmax representing the minimum singular value and the maximum eigenvalue
respectively. The rate of evolution of this Lyapunov function can be computed, similarly
to [35], as in Equation (32).

V̇c = −
1

‖σc‖(1−n1)
ΣTQc1Σ− ΣTQc2Σ (32)

where Qc1 and Qc2 are two positive definite matrices. By the choice of the gains as
α1 > [(2α2χ1 + α3χ2 − α2α3)/(2α3 − 0.5χ1)]

0.5, α2 > (2χ2 − α2
1)/2, and α3 > χ1(α

2
1/2 +

2α2)/(α2 + 2α2
1 − χ2), it can be shown, similar to [35], that Equation (33) is valid.

V̇c = −
1

‖σc‖(1−n1)
λminQc1‖Σ‖2 − λminQc2‖Σ‖2 (33)

Thus, with the proper selection of the gains αi > 0, the Lyapunov function V̇c is negative
definite and the sliding surface converges to attain practical bounded stability.

In the designed closed loop shared control in Theorem 1, the sharing parameter µ(γ)
is directly accounted for in the design of the feedback input Tf b as shown in Equation (23).
Thus, the stability of the DiL closed-loop system in Equation (18) in the presence of road
disturbances and tire-friction uncertainties for any authority transfer or shared driving
between the driver and the automation system can be ensured.

Remark 1. In the designed feedback control Tf b, singularity condition can arise when Ωuµ(γ)→
0, i.e., if (k3b1 − k4λc)→ 0 or if µ(γ)→ 0. However, the modulation factor is a positive bounded
entity i.e., µ(γ) ∈ [µmin, 1] as presented earlier, and will not result in a singularity condition for
the controller. Further, by the selection of the gains κ, λc such that k3b1 6= k4λc, the design of the
control input would always be feasible.

A flowchart for the methodology of implementation of the proposed control scheme is
presented in Figure 3.

DYNAMIC MODELING FOR LANE KEEPING

CLOSED CONTROL FOR INTERACTIVE SYSTEM

ATTRIBUTE IDENTIFICATION 

Modulated Assistance
Torque

Driver Workload
Identification

Driver Activity
Quantification

Level of Assistance

Control oriented
driver-in-the-loop

model 

Robust feedback control 

Vehicle 
Dynamics

Driver 
Dynamics

Road 
Dynamics

Effort

HUMAN
DRIVER

 

Lane Keepin

[Eq. (10)]

g

+

+

Driver Steer Torque

Shared
Torque 

for

Driver
State

[Eq. (7)]

[Eq. (19)]

[Eq. (8)] [Eq. (9)]

[Eq. (14)]

Figure 3. Flow chart of the methodology.

4. Validation and Results

The proposed driver activity adapted cooperative LKA controller was validated on a
MATLAB-SIMULINK platform and the SHERPA vehicle simulator for real-time testing.
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4.1. Simulation Studies

The performance of the proposed approach was evaluated to satisfy the control objec-
tives under the following constraints for safe vehicle operation in Equation (34).

|ψ̇| ≤ ψ̇max, |Ψl | ≤ Ψlmax , |yl | ≤ ylmax , |δ f | ≤ δ fmax , |δ̇ f | ≤ δ̇ fmax , |Ta| ≤ Tamax (34)

where ψ̇max = 0.55 rad/s, Ψlmax = 0.1 rad, ylmax = 1.5 m, δ fmax = 0.2 rad, δ̇ fmax = 0.15 rad/s and
Tamax = 20 Nm.

For performance evaluations the following controllers were compared:

• Auto-HOSM: Autonomous controller (i.e., Td = 0) with proposed HOSM control law.
• CLKA-HOSM: Shared controller with proposed HOSM control law.

The sliding surface gains, defined in Equation (22), without the sharing parameter
term were obtained using particle swarm optimization (PSO) [46] for optimal results.
Accordingly, each particle was defined as X =

[
k1 k2 k3

]
. Consequently, the particles

were able to obtain the optimal solutions for the gains based on an objective function which
was formulated to minimize the lane tracking errors and satisfy the system constraints in
Equation (34) discussed earlier. We considered particle size as 20 and a total of 100 iterations
for the PSO algorithm. Using the PSO approach, the sliding surface gains were computed
as k1 = 3.6085, k2 = 10.5804, and k3 = 0.9706. Subsequently, the gains of the novel STA
controller were selected as α1 = 33.9379, α2 = 150, α3 = 11.2697 and β = 0.6383 for normal
road conditions with unity road friction. The conflict parameter gains were chosen as
k4 = 0.001, λc = 1.5, respectively.

To replicate the human driver torque for the simulation study, a dynamic model based
on neuromuscular attributes, time-lags, etc., as discussed in [9,43] was employed. Employ-
ing this driver model with varying parameters, the virtual driver torque for simulations
was replicated. For all validation purposes, the driver gains were considered as Kc = 8.57
and Ka = 15.75 respectively. Accounting for the mental workload, two driver states i.e.,
watchful and distracted to compute the driver state variable DS were considered. Dur-
ing the distracted mode, the external driver torque input was scaled by a factor of 0.2 to
represent a distracted driver.

The simulations were performed on the Satory test track [5] as shown in Figure 4a
under variable longitudinal velocity conditions i.e., vx ∈ [5, 25] m/s shown in Figure 4b.
The lateral acceleration of the vehicle is limited to |ay|max ≤ 2 m/s2, indicating normal
driving conditions as shown in Figure 4c. To evaluate the shared control performance, we
considered the human driver to be distracted between t ∈ [40, 80] s while during the rest of
the driving cycle, the driver was watchful. Accordingly, the input driver torque reflecting
such conditions is shown in Figure 4d.
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Acceleration; (d) Driver input torque
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The performance of the Auto-HOSM and CLKA-HOSM controllers are presented
in Figure 5a–d along with that of the Auto-HOSM. Both controllers ensured that the
lane tracking errors and the steering rate were within the prescribed limits discussed
earlier. As the shared controller incorporates human action in the control process, the
above performance indicators of the shared controller have a higher magnitude that their
autonomous counterpart. The root mean square (rms) and maximum values of the above
indicators for the Auto-HOSM controller were computed as ylrms = 0.57, Ψlrms = 0.0131,
δ̇drms = 2.5917 and |yl |max = 1.19, |Ψl |max = 0.0469, |δ̇d|max = 7.6202, respectively. Similarly,
the performance metrics of the CLKA-HOSM controller were ylrms = 0.5267, Ψlrms = 0.0162,
δ̇drms = 2.0609, and |yl |max = 1.2750, |Ψl |max = 0.0446, |δ̇d|max = 5.9638. Such performance
metrics indicate good lane-keeping performance for both controllers. Further, the steering
rate performance shows improvement under the proposed CLKA-HOSM controller.

Along with such lane-keeping performance, the conflict between the human driver and
the autonomous controller for the CLKA-HOSM controller is also presented in Figure 5d.
Using the proposed controller, the conflict is kept within limits such that, TdTa > −5 N2.
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Figure 5. The lane tracking and driver comfort performance for the proposed controller (CLKA-
HOSM) and the autonomous controller (Autonomous-HOSM). (a) Lateral deviation error; (b) Head-
ing error; (c) steering rate; (d) Conflict product of driver and automation torques.

For further illustration of the shared control performance, the torques generated by
the human driver and autonomous agent along with the driver activity–performance
indicators are presented in Figure 6. Based on the driver’s activity, the level of assistance
torque generated varies for completing the driving task.
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Figure 6. The HMI under the CLKA-HOSM controller. (a) Driver and Assistance Torque; (b) Driver
activity and the level of assistance provided.
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To assess the performance of shared control activity, the following metrics [42] were
also a time interval η:

AFac =
Tdpow

Tapow

, SW =
1
η

∫ η

0
Ta(t)Td(t)δ̇d(t)dt, (35)

• AFac: Denotes the ratio between efforts generated by the automation and human
driver for completing the driving task i.e., in Equation (36).

AFac =
Tdpow

Tapow

(36)

If the values of AFac> 1, the assistance provided by the automation is less than that
of the driver, and inversely for AFac< 1.

• SW: This indicates the steering workload and is representative of the effort generated
by both agents simultaneously for completing the driving task i.e., in Equation (37).

SW =
1
η

∫ η

0
Ta(t)Td(t)δ̇d(t)dt (37)

A larger magnitude of negative steering workload indicates that the assistance pro-
vided by the automation to the human driver is not good for shared control.

For efficient shared control, the AFac should be less than 1 and the negative steering
workload should be low. Using the proposed CLKA-HOSM controller, these metrics are
computed as AFac = 0.8192 and Negative SW = −206.6476, indicating a good quality of
shared control. To assess the shared control performance further, performance analysis was
performed for a shared controller based on the proposed HOSM control law, but with no
conflict parameter i.e., k4 = 0 and λc = 0 (SC-NoK4) and is presented in Table 1. Please
note that the values of Neg SW (i.e., negative steer workload) and TdTamin (i.e., maximum
value of conflict) is less than zero.

Table 1. Influence of k4 and λc on HMI.

Case λc
|yl|max AFac Neg. SW TdTamin

(m) (N2m2rad/s) (N2m2)

k4 = 0 0 1.219 0.735 219.3 9.132

k4 = 0.001

0.5 1.624 0.843 202.1 5.242

1.5 1.275 0.819 206.6 5.22

2 1.389 0.818 209.6 5.92

k4 = 0.01

0.5 1.241 0.824 216.7 8.35

1.5 1.889 0.763 223.2 6.577

2 1.228 0.723 219.6 8.308

With the increase in the magnitude of k4, the negative steer workload and the maxi-
mum values of conflict increase showing deteriorating shared control performance. Further,
the lateral error also increases, from a minimum of 1.219 m to a maximum of 1.889 m,
as more control is passed on to the human driver, from K4 = 0 to K4 = 0.01. Similar
performance is seen with the increase in values of λc as well, from λc = 0 to λc = 2. From
the presented results, the best performance in terms of lane errors, |yl |max = 1.624, and
conflict reduction, TdTa = 5.242, is obtained for k4 = 0.001 and λc = 0.5. Further, the
presence of the gains k4 and λc improves the performance of the controller, in terms of
conflict minimization and negative SW, in comparison to the case when k4 = 0 and λc = 0
across all aspects.
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To ascertain the robustness of the proposed CLKA-HOSM controller, random para-
metric uncertainties in the vehicle and driver parameters were considered. Specifically,
uncertain values of M, Iz, and Is which are susceptible to the payload, wear, tear, etc. are
employed. Similarly, the uncertainty in driver model parameters Ka and Kc to account for
various driver behaviors are also considered. The lane-keeping and conflict reduction per-
formance of the CLKA-HOSM (i.e., C1) and SC-NoK4 (i.e., C2) controllers under influence
of such uncertainties are presented in Table 2.

Table 2. Influence of uncertainties on controller performance.

Unct. Cont. |yl|rms |Ψl|rms |δ̇d|rms TdTamin Neg. SW AF

5%
C1 0.508 0.019 2.054 6.514 226.4 0.797

C2 0.659 0.022 2.375 11.624 235.2 0.811

15%
C1 0.554 0.016 2.378 8.352 211.5 0.722

C2 0.585 0.016 2.252 7.599 206.8 1.01

20%
C1 0.5221 0.0172 2.165 6.705 204.5 0.822

C2 0.472 0.0182 2.037 7.169 208.2 0.599

Under the influence of vehicle and driver uncertainties up to 20%, the proposed CLKA-
HOSM controller performs well in ensuring lane keeping (|yl |rms = 0.52, |Ψl |rms = 0.017 for
CLKA-HOSM, against |yl |rms = 0.47, |Ψl |rms = 0.018 for SC-NoK4) and also minimizing the
conflict between driver and autonomous system (TdTamin = 6.705 for CLKA-HOSM, against
TdTamin = 7.169 for SC-NoK4). The CLKA-HOSM controller outperforms the SC-NoK4
controller in handling uncertainties, and thus establishes the significance of the gains k4
and λc in performance enhancement.

4.2. Experimental Results: SHERPA Vehicle Simulator

The shared DiL-LKA approach was validated in real-time on the SHERPA vehicle
simulator shown in Figure 7.

Figure 7. Experimental setup for the SHEPRA vehicle simulator.

The SHERPA simulator is built using a modified Peugot 206 vehicle on a Stewart
platform and is composed of multiple modules for handling driving-related tasks such as
perception, path planning, driver monitoring, and human–machine interface management.
For more details on the SHERPA simulator, refer to [5]. Using the driving monitoring unit,
the driver state is directly available as a binary input while the torque is measured via a
sensor on the steering wheel. With haptic feedback via the steering wheel provided, this
simulator setup has been used for validation of direct shared control works [5,43] similar
to that proposed in this work.
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Using the SHERPA setup (with a discretization time of 0.01 s), we now present il-
lustrative results to highlight the lane-keeping and conflict-reduction performance of
the proposed shared DiL controller in this work to further support our earlier presented
simulation-based analysis. All performance evaluations on the SHERPA simulator are made
on a test track represented in Figure 8 that comes from the CoCoVeA project (Cooperation
Conductor-Véhicule Automatisé).
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Figure 8. CoCoVeA track and lanes directions along with road curvature of the sections.

The results for the Auto-HOSM controller robustness against longitudinal speed and
the friction variations are first presented to highlight the robustness of the proposed novel
control law. For multiple driving tests performed, the aggregated results are presented
in Table 3. It can be seen that the variations in the longitudinal speed of the vehicle and
the road friction do not affect the performance of the proposed controller. The controller
ensures good trajectory tracking by maintaining the lateral deviation below |yl |max = 0.5824
< 1.5 m, the maximum heading error below |Ψl |max = 0.0074 < 0.1 rad, without saturating
the motor control of the steering system |Ta|max = 1.2104 < 20 N·m.

Table 3. Influence of speed variation and friction on the performance of the lane-keeping controller.

vx (m/s) Friction |yl|max (m) |Ψl|max (rad) |Ta|max (N·m)

14

1 0.1116 0.0024 0.2523

0.6 0.1188 0.0063 0.2679

0.4 0.1289 0.0024 0.2557

20

1 0.3213 0.0045 0.6807

0.6 0.3211 0.0044 0.6783

0.4 0.3111 0.0044 0.6663

25

1 0.5727 0.0074 1.2104

0.6 0.5824 0.0072 1.1257

0.4 0.5792 0.0073 1.1432

In the second case, the proposed CLKA-HOSM controller for an obstacle avoidance
scenario is tested with sharing parameter values as k4 = 15 and λc = 0.5. Accordingly, as
shown in Figure 9, three obstacles were placed on the road, and the driver was asked to
avoid them by changing the lane. For comparisons, the same test was also repeated with
the Auto-HOSM controller weighted by the LOA function presented in Equation (12). The
performance results for both controllers are presented in Figure 9.
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Figure 9. (a) The obstacle avoidance scenario; (b) comparison between the LKA controller weighted
with the LOA function and the CLKA-HOSM controller for the minimization of the conflict for an
obstacle avoidance scenario using a metric Integral of Conflict.

In Figure 9b, the metric Integral of Conflict is defined as IOC = − 1
τ

T∫
0

Ta(t)Td(t)dt for a

time period τ. It was observed that the CLKA-HOSM controller is more efficient in terms
of conflict minimization i.e., the maximum value of the integral of the conflict is 2.7. On
the other hand, the maximum value of the integral of the conflict for the Auto-HOSM
controller weighted with the LOA function was 7.8. In the case of the proposed CLKA-
HOSM controller, AFac = 0.8818, Negative SW = 14.9646, and (TdTa)min = −4.8727 was
obtained. In contrast, for the Auto-HOSM controller weighted with the LOA function,
AFac = 0.974, Negative SW = 108.218, and (TdTa)min = −24.539 were obtained. Such results
show that the proposed CLKA-HOSM outperforms the other design in terms of shared
control performance.

For further analysis of the shared control performance, the parameters k4 and λc were
varied and tests were performed. Performance results for the CLKA-HOSM controller
under such variations are shown in Table 4.

Table 4. Influence of k4 and λc on HMI.

Case λc AFac Neg. SW TdTamin
(N2m2rad/s) (N2m2)

k4 = −5
0.5 0.5923 348.7971 −61.0736

0.8 0.4794 118.1967 −70.3217

k4 = −1
0.5 0.9754 91.0878 −35.5465

0.8 0.9507 138.8792 −36.7558

k4 = 0 0 1.0192 106.8268 −27.2865

k4 = 5
0.5 1.0240 108.8057 −18.0648

0.8 1.0604 108.0537 −15.0333

k4 = 10
0.5 0.9909 40.4668 −7.5843

0.8 0.9515 36.0443 −8.4723

k4 = 15
0.5 0.8818 14.9646 −4.8727

0.8 0.9499 18.4843 −7.2032

It can be seen in Table 4 that the shared parameters have a significant impact on the
AFac metric, from 0.4794 to 1.0604, and SW metric, from−14.9646 to−348.7971. The chosen
best combination values of these metrics using the proposed CLKA-HOSM controller are
AFac = 0.8818 and SW = −14.9646, indicating a good quality of shared control. From the
presented results, the best performance in terms of conflict reduction is obtained for the
combination k4 = 15 and λc = 0.5.
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5. Conclusions

In this work, a novel robust shared controller for a DiL-lane-keeping assistance system
was proposed and evaluated. The HMI was managed via an adaptive mapping which
reflected driver performance corresponding to the identified physical and mental workload
of the driver. Along with lane tracking errors and driver comfort enhancement, the issue
of conflict between the driver and autonomous controller was also addressed by the
introduction of a novel sharing parameter. Addressing such objectives, a novel higher-
order sliding mode control algorithm was proposed and its stability for the closed-loop
DiL system affected by disturbances was established.

The performance of the proposed controller was evaluated via simulations and experi-
ments on the SHERPA vehicle simulator for different longitudinal velocity, different road
friction conditions, time-varying road curvatures of the Satory test track, parametric uncer-
tainties, and for obstacle avoidance scenarios. Comparison between the fully autonomous
controller, the proposed sharing control law without the introduction of the novel parame-
ter for conflict reduction, and the proposed sharing control law with the introduction of this
minimization parameter was extensively discussed. From the experimental results, it can
be seen that the fully autonomous controller achieved the best lane tracking and heading
error performances (30% better than the sharing control law), but the sharing control law
achieved the best conflict minimization (65.38% better than the sharing control law without
the introduction of this novel term). Further, the cooperative driving quality improved by
9.4%, and the negative steering workload was reduced by 86.13% in comparison to the
Auto-HOSM controller showing the efficiency of the proposed controller.

The proposed controller was constructed in order to deal with the goals of lane
maintenance, driver comfort improvement, and conflict reduction, which fill a particular
need in improving the driving experience for road vehicle transportation. In the future, the
driver activity function will be enhanced by including the driving style, skill, and other
attributes reflecting a wider variety of driver behaviors. An expansion of the proposed
cooperative architecture to the cruise and integrated longitudinal–lateral control will be
carried out.

Author Contributions: Conceptualization: J.J.R.; Methodology: J.J.R.; Software production: G.P. and
M.R.O.; Experiments: G.P., J.J.R. and M.R.O.; Writing—original draft preparation: J.J.R., G.P. and C.S.;
Writing—review and editing: G.P., J.J.R., C.S. and J.-C.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been done in the framework of the CoCoVeIA research program (ANR-19-
CE22-0009-01), funded by the French National Research Agency. This work was also sponsored by the
French Regional Delegation for Research and Technology, the French Ministry of Higher Education
and Research, and the French National Center for Scientific Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbol Description Value
M total mass of the vehicle 2025 [kg]
l f distance from CoG to front axle 1.3 [m]
lr distance from CoG to rear axle 1.6 [m]
tp tire length contact 0.052 [m]
ls look-ahead distance 5 [m]
Iz vehicle yaw moment of inertia 2800 [kgm2]
Is steering moment of inertia 0.05 [kgm2]
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Rs steering gear ratio 16.3 [-]
Bu steering system damping 2.5 [N/rad]
Cp f front cornering stiffness 42,500 [N/rad]
Cpr rear cornering stiffness 57,000 [N/rad]
Rs rate driver’s—vehicle’s wheel angles
wr width of the vehicle
β side slip angle
δ steering angle
δd steering angle
δ̇d steering rate
ψ heading angle
Fy f front friction force
Fyr rear friction force
vx longitudinal velocity
α f front slip angle
αr rear slip angle
Ts self-aligning torque
∆Fi uncertainty of tire friction force
Kp level of assistance
yl lateral deviation error
Ψl orientation error w.r.t the lane center-line
Td driver torque
Ta automation assistance torque
µ(γ) rate driver workload-based performance—LOA
Tf b feedback control torque
Ka anticipatory gain
Kc compensatory gain
θnear near visual points of the driver
θ f ar far visual points of the driver
λc the level of sharing
Ts

d driver torque measured at the steering wheel
ẋc f conflict dynamics
σc linear error surface of the SMC
AFac ratio between automation and human
Acronyms
Symbol Description
ADAS Advanced driver assist system
LKA Lane keeping assistance
ACC Adaptive cruise control
CA Collision avoidance
HMI Human machine interaction
DiL Driver-in-the-loop
HOSM High order sliding mode
SMC Sliding mode control
BT Brush-Tire
DS Driver state
DMU Driver monitoring unit
LOA Level of assistance
Auto-HOSM Autonomous controller with proposed HOSM control
CLKA-HOSM Shared controller with proposed HOSM control
SC-NoK4 Shared controller with proposed HOSM control with K4 = 0
PSO Particle swarm optimization
SW Steering workload
IOC Integral of conflict
SHERPA Simulateur Hybride d’Etude et de Recherche Pour l’Automobile
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