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Abstract: With the increasing growth of IoT applications in various sectors (e.g., manufacturing,
healthcare, etc.), we are witnessing a rising demand of IoT middleware platform that host such
IoT applications. Hence, there arises a need for new methods to assess the performance of IoT
middleware platforms hosting IoT applications. While there are well established methods for
performance analysis and testing of databases, and some for the Big data domain, such methods are
still lacking support for IoT due to the complexity, heterogeneity of IoT application and their data.
To overcome these limitations, in this paper, we present a novel situation-aware IoT data generation
framework, namely, SA-IoTDG. Given a majority of IoT applications are event or situation driven,
we leverage a situation-based approach in SA-IoTDG for generating situation-specific data relevant
to the requirements of the IoT applications. SA-IoTDG includes a situation description system,
a SySML model to capture IoT application requirements and a novel Markov chain-based approach
that supports transition of IoT data generation based on the corresponding situations. The proposed
framework will be beneficial for both researchers and IoT application developers to generate IoT data
for their application and enable them to perform initial testing before the actual deployment. We
demonstrate the proposed framework using a real-world example from IoT traffic monitoring. We
conduct experimental evaluations to validate the ability of SA-IoTDG to generate IoT data similar to
real-world data as well as enable conducting performance evaluations of IoT applications deployed
on different IoT middleware platforms using the generated data. Experimental results present some
promising outcomes that validate the efficacy of SA-IoTDG. Learning and lessons learnt from the
results of experiments conclude the paper.

Keywords: IoT; IoT middleware platforms; benchmarking; Fuzzy Situation Inference; IoT data
generation; situation transition; performance evaluation

1. Introduction

The rise in IoT applications is unparalleled in the last few years [1]. IoT middleware
cloud platforms are used extensively for IoT deployments as they provide many function-
alities such as managing IoT devices, real-time data processing, distributed data storage,
among others. This complicates the already strenuous comparison of IoT middleware
platforms, making it essential to have a standard solution that enables IoT application
developers to compare different IoT middleware options best suited for their application.
A key step in developing such a solution is to be easily conduct performance evaluation
of IoT middleware platforms running the IoT applications. One key step in being able
to achieve this is to be able to generate IoT data that is close to real-world data to un-
dertake performance evaluation of IoT application running on different IoT middleware
platforms and identify performance bottlenecks. Such data for IoT scenarios for evaluating
the performance of IoT middleware platforms can either be real-world data from various
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real-world domains of IoT, which require access to large volumes of data generated by the
IoT devices, or they can be simulated data that has been artificially generated which mimics
real-world data, with known underlying patterns. While using real data in performance
evaluation in not always recommended [2], it is difficult to replay the data sequentially
with the real frequency. Additionally, real data may not always be available to represent
real-world events such as earthquakes or road accidents. However, developers need access
to data to test and debug their application and often rely on synthetic data suited for
their needs which often does not properly represent real-world scenarios, which motivates
the need for efficient data generation techniques. While domains such as databases have
well-established standard datasets [3,4], and Big Data domain has some emerging data
sets [5–7], IoT still lacks a methodology to generate comprehensive data that can capture
the properties of IoT applications (e.g., real-time dynamic data)and hence can be used to
evaluate the performance of IoT middleware platforms. To generate data while keeping
the significant features of real IoT data, it is important to understand the different needs
and requirements for IoT applications. However, relatively little effort has been given to
considering the application requirements to generate data. Additionally, data generators
in the existing literature do not properly represent the data generated by IoT devices,
which are usually in the form of continuous stream of data. One such example is the
frequency with which the data should be generated. RIoT Bench [8] for example, addresses
the conventional data analytic tasks that are carried out over real-time IoT data streams.
However, the data are not representative of event-based data, which is generated in most
IoT applications, since IoT applications are mostly event or situation driven.

IoT applications are often associated with real-world situations. The notion of ‘Situa-
tions’ is used to represent any real-world events, activities or situations such as ‘road acci-
dents’, ‘fire’, ‘walking’. It has been established from the literature that sensory data combined
with contextual information can help in better understanding of the environment [9,10].
With the evolution of IoT, and the increasing use of such IoT applications, it is crucial to
have an additional layer of contextual information to generate IoT data corresponding to
real-time situations. For example, let us consider the example of an IoT application for
real-time monitoring of traffic conditions of a road segment. The situations associated
with such an application that describe real-world scenarios can be: ‘low_traffic’, ‘moder-
ate_traffic’, and ‘high_traffic’. Sensory data such as location, speed, density, and trip time,
combined with context information such as location, and weather can be used to define
the situations. The defined situations can then be used as a baseline to generate real-world
IoT data. Moreover, in real-world, the situations gradually transition from one situation to
another. For example, a situation of ‘low_traffic’ gradually transition to ‘moderate_traffic’
and then to ‘high_traffic’. Capturing such details to generate data makes data more realistic.

Existing research efforts in IoT data generation have used different methods. Some of
them are discussed below: TPCx-IoT [11] benchmark generated data based on the Yahoo
Cloud Serving Benchmark framework (YCSB) [12]. The dataset is based on data from
sensors from an electric power substation. The authors in [13,14] used machine learning
based models to generate time series smart meter data. However, there is a prevalent gap
in the literature since data has not been generated considering real-world situations, and
their transitions. To address the aforementioned challenges, in this paper, we propose
a novel framework, SA-IoTDG, to generate data that is similar to real-world data and
takes into consideration the IoT application requirements, the real-world situations and
their transitions. Hence, rather than randomly generating data without considering the
IoT application requirements, we aimed to address the need for simulating situation
aware data for IoT applications. Two key components of proposed SA-IoTDG are: (1) a
data generation tool for generating sensor data, keeping the significant features of real
data, and (2). A SySML model that captures the requirements of IoT applications. This
model is an extension to our past work [15]. We extend this model to capture the IoT
application situations and the transitions. Our proposed framework allow users to define
their application entities, the situations for their application, and generate IoT data. This
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enables them to perform simulations prior to having the actual dataset. In addition, most
IoT applications, rely on supervised learning algorithms, where, training the dataset is
essential. The accuracy of these algorithms depends highly on the training and test process.
It is very difficult to find a comprehensive training dataset that gives high accuracy. Hence,
in this paper, we use a Fuzzy Logic based situation theory approach to generate relevant
IoT data that does not require training the dataset.

Our approach to defining situations for IoT applications and generating data to test and
evaluate IoT middleware platforms running IoT applications is based on Fuzzy Situation
Inference (FSI) [16], which combines Fuzzy Logic and Context Spaces theory. While Fuzzy
Logic provides the flexibility for reasoning and considers the uncertainties and inaccuracies
of a situation for an IoT application, Context Spaces theory provide an additional layer of
contextual information to provide enhanced reasoning about real-world situations. In [16],
the authors state the usage of FSI for situation inference under uncertainty. The situation
transitions are handled by a Markov chain-based model integrated into the framework. The
proposed framework can help both researchers and IoT application developers to generate
IoT data for their application. The generated dataset can be pushed to different middleware
platforms to compute relevant benchmarks. The tool is extensible, and can be configured
and tailored to user specific needs and requirements. The innovation of the system lies
in its ability to deal with the uncertainty and transition between different situations and
generate data in near-real-time that reflects the dynamic properties of IoT data.

The contributions of the paper are as follows:

• We propose a novel situation based data generation framework which serves as
a starting point for identifying performance bottlenecks of IoT deployments. The
framework is configurable and can be extended for multiple IoT use cases.

• We extend the IoTSySML model [15] to represent IoT situations and transitions.
• We introduce a Markov chain-based approach for situation transition to generate

real-world IoT data to support performance evaluation of IoT middleware platforms
running IoT applications.

• We evaluate the data generation capability of the framework by simulating a traf-
fic monitoring application that validates the dynamic data generation as situation
transitions occur.

The outline of this paper is as follows: Section 2 gives an overview of the related
work. Section 3 introduces the basic concepts required for this work. Section 4 presents
the proposed framework for situation aware data generation. Section 5 demonstrates
the implementation of the proposed framework. Section 6 presents the experimental
evaluations and the analysis. Finally, Section 7 concludes the paper.

2. Related Work

As discussed above, IoT middlewares are being used extensively in IoT. However, there
is limited literature in IoT Middleware benchmarks and how the different middlewares
can be compared with each other. The most notable work in this area is of [17,18] where
the authors have compared two publish-subscribe based middlewares, FIWARE and M2M,
based on a set of qualitative and quantitative metrics. The middleware platforms have
been considered as a black box without considering the internal implementation. Other
works [19,20] that compare middleware platforms are limited to conventional metrics
such as reliability, scalability, price, and availability. However, the complexity of IoT
applications gives rise to the need for metrics tailored for IoT domain. For example,
Medvedev et al. [21], evaluated the performance of OpenIoT platform from data ingestion
and data storage perspective. The authors in [22] use contextual queries for benchmarking
IoT context management platforms. In another research by Salhofer et al. [23], the different
components (General Enablers) of the FIWARE platform has been thoroughly analyzed and
evaluated from an application deployment point of view. The authors reported that IoT
application could benefit by utilizing the various services offered by the platform. However,
the lack of updated documentation makes the process of application development difficult.
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Cruz et al. [24] presents a performance evaluation study of a few existing middleware
platforms and establish qualitative and quantitative metrics to evaluate the performance
of the middleware platforms, such as InatelPlat, Konker, Linksmart, Orion+STH and
Sitewhere. There have also been a few works on evaluating the performance of Fiware
platform to investigate its usability in various domains of IoT. For example, Araujo et al. [25]
evaluated the performance of FIWARE with respect to scalability to report its usage in smart
city applications. Similarly, another study [26] was carried out to explore the applicability
of FIWARE platform in the smart farming domain. Table 1 summarizes the related work
in this area. From the table, we can see that benchmark studies in IoT are fragmented.
Existing research in this area targets the different layers of the IoT ecosystem. For instance,
ref. [27] is a device level benchmark for IoT edge devices. Similarly, while TPCx-IoT [28]
targets the IoT gateways, RIoTBench [8] evaluates the stream processing capabilities for
IoT applications. However, it is limited to DSPS applications that are centrally hosted in
the cloud. In addition, ref. [29] targets cloud-based applications. Hence, while standard
holistic benchmarks exist in other related areas such as big data [5,7,30–32], databases [3,4],
RDF stream processing [33,34], the same cannot be said for IoT.

Table 1. Summary of existing IoT benchmarks.

Paper Benchmarking
Targets

Evaluation
Metrics

IoT Application
Requirements

IoT Data
Generation

[27] IoT device 7 7

[35] IoT Gateways IoTps 1 7 smart meter data

[36] IoT
Middleware
Platform

IoTps 1 7 smart meter data

[8] IoT
middleware
platform

latency,
throughput,
CPU,
memory
utilization

7 7

[21] IoT
middleware
platform

IPS 2,
resource
utilization

7 7

[23] IoT
middleware
platform

7 7

[22] IoT
middleware
platform

Contextual Queries 7 7

Our work IoT
middleware
platform

IPS, DID 3,
Query
Response Time

3 3

1 Performance Metrics, 2 Ingests Per Second, 3 Data Ingestion Delay.

It can be established from the literature [5,31–33,36,37] that a dataset is an important
factor for conducting performance evaluation of a system. However, there is limited
work around real world data generation in IoT targeted for performance evaluation of IoT
middleware platforms. Some of the prominent works in the area are IoTSim [38] which
aims to analyse IoT applications, but is limited to Mapreduce models. The other notable
work is of Cardoso et al. [17] where the dataset used is data from a traffic monitoring
scenario that publishes the average speed of traffic in each street of the city on an hourly
basis. Another research [39] proposed a dataset that targets Intrusion Detected Systems
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for IoT and IIoT application domain. Iftikhar et al. [14] used a predictive based model
to generate time series smart meter data. Similarly, Liu et al. [13] generate smart meter
datasets using a regression model. There are a few simulators that have been used in the
IoT space, most of which are applicable to cloud and Wireless Sensory Network (WSN).
Full stack simulators such as Cloudsim [40], the OASIS standard Devices Profile for Web
Services (DPWSSim) [2], and iFogSim [41] have been used to simulate IoT application
scenarios. iFogSim is limited to fog and edge computing. Simulators such as IoTSim [38]
and SimIoT focus on the data processing of IoT applications. While IoTSim is restricted
to simulating MapReduce programming model, SimIoT is currently unable to simulate
different types of sensors. Simulators such as OMNET++ [42], Cooja [43], NS2 [44] are
network simulators and have been widely used in WSN. However, these simulators hardly
provide support for performance evaluation in IoT.

As stated earlier, our key objective is to use the generated data for evaluating the
performance of different IoT middleware platforms. So, we want data to be generated that
mimics real-data. To achieve this, we might take into consideration the requirements of IoT
applications and other details, for example, real-world situations that they are associated
with. For example, in a fire monitoring application, the severity of a fire can be classified
into situations such as ‘low threat’, ‘medium threat’ or ‘high threat’ and actions can be
taken accordingly. We have reviewed the literature to investigate the methods used for
modelling and representing situations of IoT applications. In [45], the authors propose a
domain specific language for representing IoT applications. Some of the works based on
context modelling technique have defined situations using a form of predicate calculus [46].
Pre-defined rules are triggered when a situation occurs and situations are inferred based on
the result set ‘true’, ‘false’ or ‘possibly true’. Other context modelling approaches focused
on the temporal aspects of a situation [10,47]. This work was further extended to address
the uncertainty aspect of IoT [48]. Other works leveraged Fuzzy Logic-based approaches to
represent the uncertainty and dynamic situations of IoT applications [49,50]. However, just
using Fuzzy Logic to represent IoT applications was not enough, and not suitable for IoT
environments. Hence, it can be seen in the literature that Fuzzy Logic has been integrated
into Context Spaces theory as a formal method of representing situations for ubiquitous
environment, which is more suitable for IoT applications [16,51]. IoT applications based
on real-world situations can benefit using FSI modelling, as it enables generating data
according to the application requirements. Additionally, FSI captures the minor and gradual
changes which occurs in real-world situations. As an example, in the fire monitoring
application discussed above, if the fire threat is ‘low’, the fire situation can be handled
by just sending a warning message, whereas if the fire threat is ‘high’, actions to put out
the fire and an alarm should be issued. In this way, the false alarm rate can be decreased.
Without an FSI approach, there are no intermediate values, but absolute values: Is there a
fire? yes/no or 0/1. Based on the FSI modelling technique, a set of rules are used to define
Situations. These FSI rules are then triggered to infer a situation. Multiple rules can be used
to define a situation [16]. However, most of these existing approaches do not consider the
transition between these situations. In real-world situations, gradually transition from one
state to another. If we take the same traffic monitoring scenario described above, a situation
of low_traffic gradually transitions to moderate_traffic. Capturing these granular details
enables generating a more realistic, looking dataset. Based on the literature, Markov chain
is one of the most common approach that has been used to handle state transitions [52,53].
Some approaches [54–56] combine Markov chain and Fuzzy Logic to take into consideration
the uncertainties while computing the transition probability matrix by replacing the crisp
transition probabilities by fuzzy numbers.

In summary, benchmarks in IoT are under researched and there is limited research
work around generation for evaluating the performance of IoT middleware platforms.
Table 1 illustrates that none of the existing studies take into consideration the IoT appli-
cation requirements in generating data that is similar to real world data. IoTAbench [36]
is the closest to our work, which addresses our goal partially. The authors have devel-
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oped a Markov chain-based synthetic data generator for their framework. While the data
generation approach is interesting and generates realistic time-series data, the data gener-
ator does not consider IoT application requirements to generate relevant data. We have
highlighted in Table 1 how our proposed framework will address the existing gaps in the
literature including (a) devising a template for specifying IoT application requirements,
(b) generate IoT data taking into consideration application’s requirements. Furthermore, to
the best of our knowledge, there is no data generator in the IoT domain which considers
IoT situations and their transitions for generating IoT data. The IoT data simulator is a
more recent attempt [57], that generates data on the fly while also having the capability
of replaying existing data with modified data. However, it does not provide support for
simulating situation based IoT data, generating data for multiple situations or simulating
the situation transitions.

3. Preliminaries

In this section, we discuss some of the concepts used for this research for representing
situations and generating relevant IoT data.

3.1. Fuzzy Situation Inference Theory

The Fuzzy Situation Inference (FSI) Theory [16] can be used for representing and infer-
ring real-world situations. FSI builds on the theory of Context Spaces [10] which is a formal
approach for context modelling and reasoning context-aware applications. To overcome the
limitations of this theoretical modelling approach, in dealing with uncertainty of real-world
situations, the FSI approach combines Context Spaces with Fuzzy Logic-based approach to
benefit from both approaches in one methodology. We will first give a brief overview of the
Context Spaces Theory (CST) and then discuss the FSI theory.

The Context Space Theory (CST) [10] was developed as a formal approach for rea-
soning about context in multidimensional space, known as Situations. Some other basic
concepts of CST are described below:

• situation space, where real-world situations are perceived as sub-spaces within a n
dimensional application space.

• context attributes, which are the data generated from sensors that can be used for
reasoning or inferring situations. Context attributes can be either measured by sensors
directly, or derived from sensory data. For example, air temperature, light level, noise
level, air humidity, etc., can be the context attributes for a smart office scenario.

• region which is a domain of allowed values for a context attribute.
• context state which represents a data point within an n application space at a point of

time, where n is the number of context attribute.

The term situation is commonly used to represent a contextual state in an application
space. There exists several real-world situations in the IoT application space, such as ‘meet-
ing’ in a smart office scenario [48] or a situation of ‘hypertension’ in a health monitoring
scenario [16]. Situation awareness is the specification of such complex real-world situations
by taking into consideration its relationship in space and time [58].

In FSI, we use the term ‘linguistic variable’ to represent any contextual parameters.
A situation is represented using FSI rules. The rules comprise linguistic variables, each
of which constitute a fuzzy set. An FSI rule consists of an antecedent and a consequent,
similar to fuzzy rules. The antecedent can be associated with more than one fuzzy set. FSI
rules consists of multiple conditions joined by fuzzy operators. The most commonly used
are an ‘AND’ or ‘OR’ operators. A single FSI rule has the form:

R01: If CA1 is A and CA2 is B, then the Situation is C

where the ‘if’ part is the antecedent, and the ‘then’ denotes the consequent. CA1, CA2 and
CA3 are linguistic variables defined by fuzzy sets A, B, and C. These rules are evaluated
using membership functions. Some of the commonly used membership functions are
triangular function, trapezoidal function among others. FSI uses the notion of weights,
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and confidence to infer a situation [10]. Each variable in the rule is assigned a weight (a
value between 0 and 1) which determines the importance of the variable in determining
a situation. The consequent of the rule determines the degree of certainty with which a
situation is occurring and is given by the below equation:

Con f idence =
n

∑
i=1

wiµ(xi) (1)

where µ(xi) is the membership degree of ith element in the fuzzy set x, and wiµ(xi) is the
weighted membership degree of the element xi. A situation is said to occur if its degree of
certainty tends to 1. We will discuss this in details in Section 4.3.

3.2. Markov Chain

In conditional probability theory, a Markov chain Xn, n ≥ 0 is a stochastic model,
whose state space S is a finite set, for T = (0, 1, 2, . . . ). Xn denotes the state of the system at
time n. It can be used to calculate the probability of moving from one state to another and
is expressed as Xn = i, which denotes Xn being in state i. Markov chains are characterized
by the Markov property, which states that the transition to a state at time t+1 depends only
on the current state at time t. Figure 1 illustrates a generic Markov chain.

Figure 1. A Generic Markov Chain.

For any j, x0, x1, . . . , xn, the Markov property is defined by:

P(Xn+1 = j|X0 = x0, . . . , Xn = in) = P(Xn+1 = j|Xn = i} (2)

The above equation (Equation. 2) emphasizes that the probability of Xn+1 depends
only on the probability of Xn. The idea is that given the present state, the past states have
no influence on the future state or simply put, the future state depends only on the present
state. Hence, the Markov chain is ‘memory less’, since the probability of transitioning to
a different situation depends on the current situation, but not on the past situations. The
multitude of these probabilities to transition from one state to another is represented in
a matrix form, called a transition probability matrix P, where P = [Pij], where Pij is the
probability of moving from state i to state j. The rows represent the current state and the
columns represent the next state. The probability of Xn+1 being in state j, given that Xn is
in state i, is denoted by Pn

i jn+1, i.e.,

Pn
i jn+1 = Pr{Xn+1 = j|Xn = i} (3)

The above equation explains that the transition probabilities are not only a function of
initial and final states, but also of the time of transition.

4. Situation Aware IoT Data Generation Framework

This section presents the SA-IoTDG (Situation Aware IoT Data Generation) framework
that can be used to define situations, simulate the transition between the situations and
generate IoT data based on the order of the occurrence of the situations. In the following
subsections, we start with a high-level system overview, followed by the key components
of the proposed framework.

4.1. System Overview

As shown in Figure 2, the system broadly comprises SA-IoTDG, our proposed frame-
work (gray dotted box), communication channels, and IoT middleware platforms to run IoT
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applications. Users provide their application requirements 1 to the framework to generate
IoT data. The generated data can be sent to different cloud managed IoT middleware
platforms over various communication channels 7 .

Figure 2. High-level System Overview.

SAIoT-DG Architecture: SAIoT-DG comprises a user interface 2 to register the situ-
ations and run simulations, IoTSySML_X 5 , a domain reference model to capture user
specific application requirements, components to model the situations 4 and their transi-
tions 5 , and a component to generate the data 6 . We describe briefly the key components
for developing the SA-IoTDG framework. The framework is divided into four major parts:

• IoTSySML_X: We extend on our previous IoTSySML model [15] which was developed
to capture the requirements of IoT applications. We integrate the concepts of situations
and context from the domain of CST [10] to strengthen the model.

• Situation Description System: We define real-world situations of IoT application using
an FSI [16]-based approach.

• Situation Transition Model: We handle the various transitions between the situations.
The transitions have been modelled using Markov Chain concepts [53,59].

• IoT Data Generation: We focused on generating data with respect to the defined situa-
tions. The generated data should mimic the real-time IoT data as much as possible.
Another essential feature we wanted was to enable users give their desired config-
uration. By configuration, we mean a set of parameters that controls the data being
generated. An example is a parameter to declare the frequency of the data generation.

In the following subsections, we discuss each of these components in details.

4.2. IoTSySML_X

In this section, we extend on our previous model [15] to enhance its functionality. Our
previous model IoTSySML [15] was developed to provide a formal way to capture the
requirements of IoT applications, which was missing in existing literature. Identifying
and modelling the application requirements enables generating data relevant to the IoT
applications. For this paper, we have extended this model to include situation theory,
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Context Spaces and Fuzzy Logic concepts. By adding these new elements, we are providing
support for more context to represent an IoT application scenario and their requirements in
a better way. For example, we represent IoT applications, using situations from real-world
scenario. If we take the same example of the IoT traffic monitoring scenario discussed
above, the application can be represented by situations of ‘high_traffic’, ‘low_traffic’, or
‘moderate_traffic’. Adding contextual information such as location (e.g., parking areas),
weather conditions (e.g., snow or rain), or road conditions (e.g., road work, accidents)
provides granular details which enable realistic data generation for evaluating the perfor-
mance of IoT middleware platforms. The model has been conceived using a UML class,
where we extend existing UML concepts using Stereotypes. A concept is encapsulated
using a ‘block’. Each block is a stereotyped (customized) extension of a UML Class and has
a set of properties and defined relation with other blocks. We first explain the extension
we applied to the traditional UML. Figure 3 shows the stereotypes that we used for the
model. The stereotype ‘Context’ has been extended from existing UML model. The ‘Con-
text’ class represents the context information of any IoT application scenario and is defined
by elements ‘ContextSpace’, ‘ContextualParameter’, and ‘ContextElements’. The ContextSpace
stereotype represents the situations or events a context element might be involved in.
ContextElement describes the entity itself in a situation. A context element can be a user,
or any physical object. ContextualParameter represents the observable properties from
an IoT device. Similarly, the stereotype ‘Situation’ has been extended from existing UML
and entails all information related to defining a situation and is defined by stereotypes
‘SituationProperty’ and ‘FSIElements’. SituationProperty represents the characteristics of a
situation. For example, the transitions a situation might go through. FSIElements represent
the conditions applied to defining a situation.

We now illustrate the class diagram of the domain concepts depicted in Figure 4. The
green elements represent concepts from our previous model [15]. The purple boxes in-
dicate the extended concepts. The ‘IoT devices’ element is the virtual representation of a
physical IoT device. IoT device class comprises ‘Sensor’, which makes ‘Observation’, a class
provided by SOSA [60] to capture a sensor observation. It represents the data generated by
the sensors and have attributes: ‘Phenomenon Time’ to capture the temporal aspect of an
observation as a window or in intervals, and ‘Values’ to represent the observations made by
the sensors (for example, acceleration values generated by accelerometer or temperature
values generated by temperature sensors). Values are represented as a key-value pair.
A geolocation observation for example has two key value pairs of latitude, longitude and
can have a type which can have value such as circle. Every sensor is associated with
‘metadata’ [61], which has attributes type and value. An example of metadata to represent
the unit of a temperature sensor data is : ‘type’ = “string’, ‘value’ = “Celsius’.

Figure 3. Extended class stereotypes.
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Figure 4. UML class diagram of the domain concepts.

‘Entities’ are a representation of any physical object or individual, and are involved in
‘Situations’. ‘Situations’ are any real-world situation such as ‘low traffic’ or any activity such
as ‘working’. They are characterized by ID, name, timestamp, definition, previous state and
certainty (probability with which a situation is occurring). An example of an entity ‘worker’
being involved in a situation would be (id=S1, name = ‘cutting meat’, prev_state = ‘idle’,
certainty = 0.7). A situation comprises a set of attributes involved in defining the situation
at a particular time. These attributes have been modelled as a ‘Context’ class and refers
to characteristics or information associated with ‘Sensor Observation’. It also entails data
and behavior of the entity class [48]. Hence, we see a relationship between Entity and
Context. Additionally, we can observe that every instance of ‘Context’ has an association
relation with ‘Variables’ which refers to characteristics or information associated with
‘Observation’. Table 2 summarizes the relationships between the different classes in the
model. Variable are stereotyped as ‘ContextualParameters’ and are characterized by name,
definition, weight (the relative importance of the parameter in inferring a situation) and is
associated with a ‘FuzzyRule’ element stereotyped as ‘FSIElelements’. Another FSIElement
is the element Fuzzy Rule, which is involved in defining a situation. A situation can be
defined using multiple ‘Variables’. Similarly, there can be multiple FSIRule instances to
define one instance of any situation. The ‘Transition’ element allows the situation class to
move from one state to another and is stereotyped as a feature of the situation class. To
allow the transitions, three types of triggers were considered: time-constraint, rule based,
and external environmental factors. Each of these has been captured by the ‘Triggers’ class.

4.3. Situation Description System

In this section, we describe our situation description system. The components of
the system are a fuzzifier, a fuzzy inference engine, a rule base, and a situation reasoner.
Figure 5 illustrates these components. We explain the process of FSI based situation defini-
tion, with our traffic monitoring motivating scenario.
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Table 2. Description of Relationships.

Relationship Description Base Class Target Class

Composition Objects that are associated
with each other can not
remain in the scope of a
system without each other.
The target class cannot
exist without the base class
i.e..if target class is deleted,
base class gets deleted

Metadata Sensor
Sensor IoT Device
Entity Situation
Situation Context
Situation Transition
Variables Context
FuzzySet FSIRule

Aggregation Objects that are associated
with each other can remain in
the scope of a system without
each other

Metadata Sensor
Metadata Observation

Generalization Represents an “is-a” relationship Entity IoTDevice

Association Semantic relationship
between classes representing
a logical connection
between them

IoTApplication IoTDevice
Observation Variables
Variables FuzzySet

Figure 5. FSI based Situation Description System.

4.3.1. Fuzzifier

Fuzzification entails defining the input and output parameters to the FSI system to
determine the traffic condition of a road segment. The fuzzifier receives the crisp context
information as input from the sensors. In FSI, these crisp inputs are converted to a fuzzy
set by the fuzzifier. Fuzzy sets are stipulated by their membership functions, µA(x) which
determined how an input is mapped to membership values between 0 and 1 given by
Equation (4)

xk = µA(xk) (4)

where xk is the input data and µA(xk) is the is the degree of membership of an element x in
the fuzzy set A for every xεA.

A traffic monitoring scenario discussed in Section 1 can be involved in situations such
as ‘low_traffic’, ‘moderate_traffic’, and ‘high_traffic’. We use three linguistic variables to
define these traffic situations. These variables and their fuzzy subsets are described below:
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Speed, α: Denotes the average speed of the cars on the road segment.

α =


1 slow, 0 ≥ α ≥ 50
2 normal, 40 ≥ α ≥ 80
0 fast, 70 ≥ α ≥ 120

(5)

Density, β: Average density or the number of cars on a road segment.

β =


1 low, 0 ≥ β ≥ 15
2 normal, 10 ≥ β ≥ 35
0 high, 30 ≥ β ≥ 45

(6)

Trip time, γ: Average time taken to cross the road segment.

γ =


1 less, 0 ≥ γ ≥ 15
2 usual, 10 ≥ γ ≥ 30
0 longer, 25 ≥ γ ≥ 40

(7)

4.3.2. FSI Inference

The FSI Inference component consists of a rule base and an Inference Engine. It
receives the contextual parameters as inputs from the fuzzifier component and uses them
to evaluate the FSI rules. A rule base in an integral part of an FSI based inference system.
These fuzzy rules are defined by domain experts and are stored in a Rule repository. The
rules are subjective and rely on the discernment of domain experts. An example of an FSI
rule is shown below:

R01: If A AND B AND C, THEN X

where A, B and C are rule conditions to define a Situation X. As an example, the condition
A can be written as ‘speed is slow’, B is another condition ‘density is ’high’. Similarly, the
variable C can be written as ‘trip_time is longer’. These conditions denote Situation X is
occurring. To simplify, the same rule can be written as:

R01: If speed is ‘slow’ AND density is ‘high’ AND trip_time is ’longer’, THEN situation is
‘High Traffic’

Table 3 shows a subset of the defined FSI rules for our traffic monitoring scenario.

Table 3. FSI rule base for a traffic monitoring scenario.

Input Output

IF AND AND THEN

A B C X

speed is fast density is less trip_time is less Low Traffic
speed is normal density is less trip_time is less Low Traffic
speed is normal density is normal trip_time is usual Moderate Traffic

speed is slow density is high trip_time is longer High Traffic

The inference engine evaluates these pre-defined rules to define a situation. We
formulated the rules based on an extensive analysis of IoT traffic monitoring scenario
applications [62–65]. We adopt the Mamdani fuzzy inference algorithm [66] for defining
our situations for IoT applications. We have categorized each input variables into different
fuzzy subsets. We represent the fuzzy subsets by a trapezoidal membership function.
Figure 6 shows that an input variable can belong to two fuzzy subsets simultaneously,
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with varying degrees of membership. A single xεX may be associated with multiple
fuzzy subsets. As an example, the for the input linguistic variable speed, a crisp value of
45 km/h can either belong to fuzzy subset ‘slow’ or ‘normal’ (Figure 6). The membership
function assigns a degree of similarity to these values. If applied to the ‘slow’ fuzzy
subset, the membership function might assign a degree of 0.2 (µslow(45) = 0.2). The
same value, when applied to the ‘normal’ fuzzy set, might have a degree of 0.9 assigned
(µnormal(45) = 0.9). This signifies, a speed of 45 km/hr has greater chances of belonging to
the fuzzy subset normal.

(a) (b)

(c)
Figure 6. Fuzzy subsets for the input variables of a traffic monitoring application. (a) α. (b) β. (c) γ.

4.3.3. Situation Descriptor

Each situation is associated with a confidence value, which is calculated using:

Con f idence =
n

∑
i=1

wiµ(xi) (8)

We illustrate the final step for defining the situation ‘Low Traffic’ for the below rule:

R01: If speed is ‘normal’ AND density is ‘less’ AND trip_time is ’less’, THEN situation is
‘Low Traffic’

Table 4 shows the input values of the linguistic variables speed, density and trip_time.
Each of these variables have been assigned a weight, which indicates its relevance in
defining a situation. For example, we have assigned a weight of 0.4 to ‘speed’ and ‘density’
which denotes both these variables have the same importance in defining the situation
‘low_traffic’. Additionally, these variables have been mapped to fuzzy subsets and assigned
a degree of membership by a trapezoidal membership function (Equation (4)) depicted by
the µx(i) column.
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Table 4. Example of calculating the confidence value for the occurrence of a situation ’Low Traffic’.

Input Variables Values Conditions Weights µx(i)

speed 45 speed is normal 0.4 0.9
density 15 density is less 0.4 0.3

time 10 trip_time is less 0.2 0.5

We calculate the confidence value below using Equation (8):

Confidence = wα.µnormal(45) + wβ.µless(15) + wγ.µless(10)
= (0.4 ∗ 0.9) + (0.4 ∗ 0.3) + (0.2 ∗ 0.5) = 0.58

The situation descriptor defines the occurrence of a situation based on this confidence
value. From the confidence value, we can say that there is 0.58 probability that the situation
Low Traffic is occurring. Hence, the FSI based model discussed above gives a mapping
between the inputs (α, β AND γ) and the output (δ) and hence define the situations.

4.4. Situation Transition Model

After situations have been defined using FSI, in this section, we present our proposed
situation transition model which has been conceptualized using Markov chains [67].

Markov models can be represented by state machines, where the transition of each
state can be modeled as a continuous-time Markov process as shown in Figure 7, where Pi
and Pj are the probabilities of transitioning from state i to state j. These transitions between
the states generates a sequence of states over time. For example, Figure 7 shows a Markov
model with two states, S = S1, S2. The possible sequence of states could be:

{S1, S2, S1, S1, S1, S2, S2, S1, S2, S2, . . . }

The probability of transitioning to the next state can be estimated by performing exper-
iments and can be expressed as a transition probability matrix. The transition probability
matrix can be determined based on experimental data, such as from a measured sequence of
events [56]. In Figure 7, if there is a transition of state Si to state Sj, the transition probability
matrix can be calculated by [56], where

πij =
Nij

Noi
(9)

πij is the probability of transitioning from state Si to state Sj, Nij is the number of observed
transitions from state Si to state Sj, and Nio = ∑M

j=1 Nij, is the total amount of data that
belongs to state Si i.e., the total number of transitions that are initiated from state Si.

Figure 7. Two State Markov Chain.

We explain our proposed model with our traffic monitoring motivating scenario and
define some of the concepts used for this research below:
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1. Situation Space S = {S1, S2, . . . , Sn} : corresponds to the possible situations of an IoT
application. For our scenario the situation space would be:

(a) low_traffic
(b) moderate_traffic
(c) high_traffic

2. Transition Kernel = k(Sn|Sn+1): denotes the probability of transition from situation Sn
to situation Sn+1 given that situation Sn has already occurred, with certain restrictions
shown below:

Ý k(low_tra f f ic|low_tra f f ic) = p, probability of staying in the same situation,
which is semantically equivalent to moving to the same state

Ý k(low_tra f f ic|moderate_tra f f ic) = 1− p, probability of moving to moderate_traffic
from low_traffic

Ý k(low_tra f f ic|high_tra f f ic) = 0, no direct transition from low to high_traffic
Ý k(moderate_tra f f ic|low_tra f f ic) = p, probability of making a transition to low_

traffic to moderate_traffic
Ý k(moderate_tra f f ic|moderate_tra f f ic) = 1 − p2,, probability of staying in the

same state of moderate_traffic
Ý k(moderate_tra f f ic|high_tra f f ic) = 1− p2, probability of moving to high_traffic

from moderate_traffic
Ý k(high_tra f f ic|low_tra f f ic) = 0, no direct transition from high to low_traffic
Ý k(high_tra f f ic|moderate_tra f f ic) = p, probability of making a transition to

high_traffic to moderate_traffic
Ý k(high_tra f f ic|high_tra f f ic) = 1− p, probability of staying in the same high_traffic

situation

As seen in the above conditions, we restrict the direct transition of situation low_traffic
to a situation of high_traffic or a direct transition from high_traffic situation to
low_traffic situation. Simply put, we cannot transition from low_traffic to high_traffic
situation in a single step, we need two steps in making the transition. The two-step
transition probability is given by matrix P2:

P(S2 = j|S0 = i) = P(Sn+2 = j|Sn = i) = P2
ij (10)

By Equation (2), the two-step probability for our traffic scenario is represented as:

P(low_tra f f ic|high_tra f f ic) = p(low_tra f f ic, moderate_tra f f ic)
p(moderate_tra f f ic, high_tra f f ic = P2

3. State Space s = {InitialState, TransitionState, TargetState}: corresponds to the possi-
ble states in a situation transition sequence:

(a) initial state —corresponds to the starting state for a transition sequence;
(b) transition state—refers to the intermediate states a situation goes to before

transitioning to the target state;
(c) target state—corresponds to the final state a situation transitions into.

4. Target Triggers: corresponds to the triggers that might result in a situation transition.
For this work, we have considered two triggers:

(a) time-based—situations transition according to a time specified by users. Af-
ter the threshold time is crossed, situation S1 transitions to situation S2 and
continues the current execution, and

(b) probability based—based on the probabilities given, situations transition from
one state to another

5. Situation Transition Probability Matrix tPr: denotes the probability with which a situa-
tion would move to another. The elements of the transition matrix tPr are defined as:

(tPr)ij = Pij = P(S1 = j|S0 = i) = P(Sn+1 = j|Sn = i)
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for any n, where Pij is the probability of making a transition from state ‘i’ to state ‘j’.

Assuming there are n situations defined in our Situation Space which are denoted by
S1, S2, . . . Sn, and we represent each situation with a state in the Markov model, we will
have n the number of states. The situations gradually transition from one state to another,
i.e., there is a probability of the situations happening in a sequence P(Si, Sj . . . Sn). The
transition probability from the ith to jth state is given by a probability transition matrix Pij.
Hence, a Markov chain having n possible states, has a n ∗ n transition probability matrix
given by:

P =



P11 P12 . . . P1n
P21 P22 . . . P2n

. . . .

. . . .

. . . .
Pn1 Pn2 . . . Pnn


Our system contains a finite set of states, and we represent the states by a finite state

machine, where the transition of each state has been modeled as a continuous-time, finite-
state Markov process. For our IoT traffic monitoring motivating scenario, we assume we
have three situations, where each situation is modelled as a Markov state illustrated in
Figure 8. However, our framework can be configured to add more situations if required.
The user interface developed as part of the framework enables users to add situations as
required by their IoT application. The diagram outlines the probabilities associated with
making a transition from one situation to another. For example, it shows that there is a 50%
chance to move from S3 to S2, and a 30% chance to transition to S3 from S1.

Figure 8. Three State Markov Chain.

Each state or situation in the Markov model has been characterized using Fuzzy
Situation Inference Theory, as discussed in Section 4.3. There might be multiple situations
occurring at the same time, with varying degrees of confidence. Hence, our proposed
approach leverages Markov chains and incorporates fuzzy based reasoning to enhance the
prediction accuracy of the situation transitions.

Next Situation Prediction

The execution of the situation transition model is given by a Markov model in the form
of a deterministic finite automata (DFA) shown in Figure 8. The transitions in a Markov
chain are probabilistic rather than deterministic, which means that there is no absolute
certainty about what situation will occur at time t + 1. Each situation Si is associated
with a Markov state and the transition probability matrix determines the probability of
transitioning between the states, i.e., between the situations Si, i = 1, . . . , n. The transition
probability of the occurrence of a traffic situation at time t + 1, given the current traffic
situation at time t, can be written as:
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siTPr = P(St|St+1) (11)

As stated above, we have three situations for our scenario, the transition model for
these situations has been illustrated in Figure 8. A Markov chain model can be described
completely based on two key factors:

Transition Probability: We express the transition probabilities in the form of a transi-
tion matrix below. For this experiment, for convenience we assume, equally likely probabil-
ities to transition from one situation to another. Hence, the next situation prediction model
is given by

Sn+1 = Sn ∗ tPr (12)

where tPr = (Pij) is the situation transition probability matrix given by:

tPr =

P11 P12 P13
P21 P22 P23
P31 P32 P33


The above transition probability matrix, tPr describes the traffic situation of a road

segment and has the following properties:

(i) Property 3.1 The matrix is a stochastic matrix, i.e., Pij in a row should add to 1
(ii) Property 3.2 If Pij ≥ 0, then the situation Sn can transition to Sn+1

The transition probability matrix defines the probability of transitioning from one
situation to another. Hence, the next situation can be determined as a function of the current
state and the transition probability, as given by Equation (12). Additionally, the probability
of staying in the same state is semantically equivalent to moving to the same state, which
are shown by self loops in Figure 8. Furthermore, if situation S1 moves to situation S3,
and passes another transition state s2, the probability of going to s3 after n steps can be
determined by:

p(S1, S3) = p(S1, S2) ∗ p(S2, S3) = p2 (13)

An Initial State Vector: This is a probability vector which initializes a Markov chain
and denotes the probability distribution of the initial states, i.e., each element in the vector
represents the starting probability of a transition sequence at a given state. We initialize
our Markov model and denote the initial state probability vector by:

Pinitial = (p1, p2, p3)

The initialization can be conducted in multiple ways, we might assume a fixed starting
point, or we can allocate probabilities for starting the Markov process. For our work, we
assume equally likely probabilities for starting the sequence of transitions, where our initial
state probability vector would be Pinitial = (0.33, 0.33, 0.33) since we have three states in our
Markov model.

4.5. IoT Data Generation

The IoT Data Generation is a key component of SA-IoTDG framework, which handles
the data generation aspect. It has been built on the existing IoT data simulator stack [57].
Since, we aim to generate IoT data for the purpose of evaluating IoT middleware platforms,
we would ideally want the generated data to be similar to real-world IoT data. Hence,
to enable a realistic data generation, we consider the context of IoT applications, so the
data generated is more close to real world IoT data. To achieve this, we have extended
the functionality of the IoT data simulator to enable data generation for situation aware
IoT applications. To elucidate further, as seen in the previous subsections, we define our
situations leveraging FSI theory (Section 3.1), and specify the transition between these
situations based on a Markov model (Section 4.4). The data generation component receives
inputs from these modules: component 4 and 5 (Figure 2) and generates data based
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on information received from these components. Hence, the framework is able to adapt
dynamically to the changing configuration, and generate data based on that.

Furthermore, IoT applications might have different requirements in terms of gener-
ating data. Some applications might require data to be generated more frequently than
others. For example, a smart farming application [68] might require data from soil sensors
every few minutes to monitor the soil quality. On the other hand, our traffic monitoring
motivating scenario might require data to be generated every few seconds to obtain the
real-time location and speed information of vehicles. Hence, rather than randomly gen-
erating data, we aimed to address the need for simulating situation aware data for IoT
applications by considering the IoT application requirements. As an example, for this work
we conceptualized an IoT traffic monitoring scenario, and generated a traffic dataset. The
entity here is a road segment under consideration. The generated data mimics data from
on road camera sensors in the particular road segment and consists of the average speed
of the vehicles on a particular road segment, the vehicle count, and the estimated travel
time. The frequency of the generation of the observations can be configured by the user.
Furthermore, since most IoT smart city applications are location aware, we generate the
data with geolocation coordinates of the users. For our experiment, we have generated
observations with a sampling frequency of 1/5 (i.e., observations every 5 s). The data
generation component is capable of generating data in near-real-time. We demonstrate the
entity, the IoT devices involved in such a scenario, and the data they generate. SSN [69]
and SOSA [70] ontologies are often used to represent sensor data observations. Figure 9
shows a sample ontological representation of generated traffic data observations using
SOSA ontology. The data generated by the framework correspond to a one traffic data. We
generated data with a sampling frequency of 1/5 s, to align it with real-world traffic data.

Figure 9. Illustration of the traffic sensor data.

5. Implementation of SA-IoTDG

In this section, we discuss the implementation details of the proposed framework
(SAIoTDG) and explain how an application developer can use the framework to generate
data relevant to his IoT application using sequence diagrams. SAIoTDG allows users
to define situations corresponding to their IoT application with respect to the situation
description system discussed in Section 4.3, which is illustrated in Figure 10. SAIoTDG
also provides a functionality for users to configure the sequence of the situation transitions,
which is illustrated in Figure 11. When the order and occurrence of a known situation
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is detected, the framework starts generating IoT data for the situation according to the
configuration set by the user (sense frequency, number of data records to be generated).

At the beginning, ‘users’ (IoT Application Developers) enter their application require-
ments to IoTSySML_X which is an extension of our previous work [15]. The SySML model
returns an XML specification document of the application requirements, which is first
parsed into intermediate JSON and then a template is generated containing all the required
details to register a situation. In the next step, the Situation Manager validates and stores the
situation details in the Situation Repository. (Step 2 and 2.1) We used a MongoDB database
to store the situation specific details. When a request is made to obtain the situation de-
tails (Step 3), a connection is established with the Situation Repository, that connects to
MongoDB service, and fetches the situation details as a response in JSON format (Step 3.1).

Figure 10. Registering situations.

After successfully, registering the situations, users can specify the situation transition
sequence to generate data. The workflow for running the simulation is illustrated in
Figure 11. First, users need to specify the order of the situation transitions (Step 1). At
this step, the parameters for data generation can be configured (Step 2). Once the desired
sequence of transitions and the configurations have been selected, we establish a web-
socket communication for generating the data. Parameters can be updated (Step 2.2) and
data are generated with the new settings in near-real-time as the situation transitions occur.
We use web sockets in FAST API (python web framework) for instantaneous data transfer
without HTTP overhead. The generated data are then displayed to the user (Step 2.2.1)
and then data can be sent to IoT middleware platforms for further performance evaluation
(Step 2.2.1).

User Interface: We developed a User Interface (UI) to allow users to generate and visu-
alize data based on their IoT application. The user interface has been developed using react
JS and is responsible for: (i) registering new situations for IoT applications, (ii) enabling the
transitioning between situation, and (iii) generating data based on defined situations and
the configured sequence of situation transitions. The UI consists of different components
for each functionality. The ‘Add Situation’ component (Figure 12a,b) enables to register
situations and consists of several input fields: application name, context attributes, the
fuzzy sets, fuzzy ranges, etc. After the application details have been added, a summarized
view of the registered situations can be seen on the application dashboard (Figure 12c).
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Figure 11. Running situation-based IoT data generation.

(a) (b)

(c)
Figure 12. Snippets of the user interface to register situations and perform simulations: (a) register
application details, (b) contextual information for registering situations, (c) dashboard view of
registered situations.

The situation transition sequence is specified by the ‘Run Situation Transition’ compo-
nent. It has been developed using ReactJS. Redux has been used to pass data between the
components as a centralized way of managing react states in the application. The required
APIs for the situation repositories have been developed using NodeJS Express framework
for smooth interoperability between the different components. The application can be
deployed using docker for seamless integration of the services deployed in different docker
container and to enable the application to run in any environment. The application is run
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using the docker-compose.yaml file. Additionally, Axios library has been used to send
HTTP requests to the REST endpoints. The ExpressJs framework has been used to create
REST API endpoints, and to request data from the database. It handles the functions to
process various CRUD operations. ExpressJs uses mongoose as an Object Data Model
library and connects with MongoDB service. Hence, when the request is made from ReactJS
to the ExpressJS Rest API, a connection is established and the generated data are displayed
to the UI console.

6. Case Study and Evaluations

This section presents the evaluation of the proposed SA-IoTDG framework in terms of
its ability to generate data based on the defined situations, enable situation transitions and
evaluate performance of IoT middleware platforms. We will be using the POC prototype
implementation to show the applicability of the entire framework. For that, we are using
the same traffic monitoring IoT application to generate the data for the application and
publish the generated data to different IoT middleware platforms to compute performance
metrics. Hence, the purpose of the section is three-fold. In the rest of this section, we will
first discuss a case study based evaluation to validate the proposed IoTSySML model.To this
end, we have modelled a traffic monitoring IoT application based on real-world scenarios.
For the second part of the evaluation, we are running in-depth evaluations by designing
experiments to validate the capability of the entire framework as well as the situation
transition model, which is a core part of the framework. Finally, since our aim is to use the
generated data to evaluate the performance of IoT middleware platforms, we will show
that our framework can be used to compare different IoT middleware platforms based on
defined metrics. We will discuss the performance metrics in the subsequent sections.

6.1. Case Study: Modelling IoT Traffic Monitoring Scenario

In this section, to exemplify the proposed IoTSySML model, we apply the modelling
to a traffic monitoring IoT application to validate our modelling approach. We first present
a brief overview of how a real-world IoT application scenario can be modelled in terms
of context theory and situations, which is illustrated using a simplified block diagram in
Figure 13.

(a) (b)
Figure 13. High-level overview of a traffic monitoring scenario: (a) concept, (b) example.

The figure depicts the concepts followed by the example of the traffic monitoring
IoT application scenario. We then discuss the modelling of our case study. Figure 13a
illustrates the high-level concepts: sensors send the raw sensed to the context information
layer. The contextual information combined with the sensory data enables reasoning
about the situations. This is instantiated in Figure 13b where data from camera sensors
combined with contextual information such as current location, and weather are used to
define situations such as ‘low’, ‘moderate’, or ‘high’ traffic scenarios.

We now discuss the modelling of the case study. With reference to IoTSySML_X,
we present a SySML diagram to represent our situation aware traffic monitoring IoT
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application (Figure 14). We are interested in identifying the situations an entity might
be involved in. For instance, our entity here is road_x, a road segment, which can entail
situations representing the traffic flow in road_x, which can be broken down to a situation of
‘low_traffic’, ‘moderate_traffic’ or ‘high_traffic’. Hence, we have a ‘involved in’ relationship
between road_x and low_traffic situation. Situations are ‘associated With’ transitions, i.e.,
a situation of low_traffic might transition to moderate or high_traffic based on certain
triggers. These have been captured by the Transition block in Figure 14. Situations can be
associated with multiple transitions, shown by one-to-many multiplicity. The road_x entity
has a geoLocation which represents context information. It also ‘has’ CameraSensor which
‘makes’ Observations. Figure 15 shows a JSON representation for the entity instance road_x.
Camera sensors and Observations are associated with Metadata shown my one-to-many
multiplicity in Figure 14. The observations have values ‘speed’, and ‘density’ represented
by ContextualParameters, which are ‘associated with’ Fuzzy Sets for each observation. The
fuzzy sets are in turn ‘described By’ FSI rules depicted by the IF.AND.THEN block. These
rules are triggered to define the situations for our traffic scenario.

Figure 14. SySML diagram representing a Traffic Monitoring Scenario.

6.2. Experiment 1: Validating Situation Transition Model

The purpose of this section is to validate the situation transitions, which is a core
component of SA-IoTDG. This experiment was conducted to evaluate the ability of the
framework to support scenario based data generation. We evaluate this using our IoT
traffic monitoring scenario, where we define three situations (S1,S2, and S3)each allocated
a probability for moving between states. For this experiment, we have assumed that the
transition sequence is initiated with equally likely probabilities. Figure 16 illustrates the
states involved in the transition model and the conditions which would trigger a situation
to transition between the states. ‘Initial state’ is the state from which we begin our transition
sequence. ‘Target State’ refers to the final state a situation transitions to, and ‘Transition
state’ is any intermediate state, a situation reaches before moving to the target state. If we
exemplify the transition model with our traffic monitoring scenario, we have three pre-
defined situations: ‘low_traffic’, ‘moderate_traffic’, and ‘high_traffic’. We start the transition
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with ‘low_traffic’ and restrict the direct transition of ‘low_traffic’ to ‘high_traffic’ situation.
To transition to ‘high_traffic’ situation, situations must first transition to ‘moderate_traffic’.
Hence, our Initial State is ‘low_traffic’, the Target State would be ‘high_traffic’ and the
Transition State would be ‘moderate_traffic’.

Figure 15. Sample JSON representation for an entity.

Figure 16. States and Conditions for Situation Transitions.

Situation transitions occur based on ‘time’ or based on allocated ‘Transition Proba-
bilities (tPr)’ as illustrated in Figure 16. For a time based transition, users can specify the
time during which a situation would occur, after which the next situation occurs as defined
in the pre-defined sequence. For situation transitions based on transition probability, we
initialize our Markov chain, define our start or initial state and allocate the probabilities
for probability based transitions. We initialize our Markov model using an initial state
probability vector given by:

Pinitial = (p1, p2, p3)

The initialization can be conducted in multiple ways: We can either assume a fixed
starting point, or we can allocate probabilities for starting the Markov process. For this
experiment, we assume equally likely probabilities for starting the sequence of transi-
tions. However, this is configurable by users. Hence, they can change this depending on
their application requirements. The situation transition module has been implemented
in Python using the SciPy [71] library. We explain the situation transition model with the
example of our traffic monitoring scenario. Since, we have three situations, ‘low_traffic’,
‘moderate_traffic’, and ‘high_traffic’, we define our initial state probability vector as:

pinitial = (0.33, 0.33, 0.33)
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Next we also define our transition probability matrix as below:

tPr =

0.5 0.5 0
0.3 0.3 0.3
0 0.5 0.5


Based on the above transition probability matrix tPr, and Figure 17, we can say that

the situation ‘low_traffic’ can transition to ‘low_traffic’ and ‘moderate_traffic’ but not
to ‘high_traffic’ since the transition probability from ‘low_traffic’ to ‘high_traffic’ is zero.
Similarly, ‘high_traffic’ can move to ‘moderate_traffic’ and ‘high_traffic’ but not directly to
‘low_traffic’. In addition, ‘moderate_traffic’ can transition to all the situations: ‘low_traffic’,
‘moderate_traffic’ or ‘high_traffic’ as illustrated by the transition probability matrix in
Figure 17. Figure 18 shows our Markov model based on our transition probability matrix.

Figure 17. Transition Probability Model of Traffic Monitoring Scenario.

Figure 18. Markov Chain for traffic situations.

Experimental Results for Situation Transitions

We have simulated the situations of a traffic monitoring scenario. To validate our
situation transition model, we have implemented a random walk based on this model
in Python. We initiated our transition sequence with a situation of ‘low_traffic’, and the
generated random walk is shown below:

low_tra f f ic→ moderate_tra f f ic→ low_tra f f ic→ low_tra f f ic→
moderate_tra f f ic→ high_tra f f ic→ moderate_tra f f ic→ moderate_tra f f ic→

high_tra f f ic→ moderate_tra f f ic→ low_tra f f ic→ stop

We evaluate our model by simulating a Markov sequence and visualize the result.
As discussed earlier, to make the transition of situations realistic, we restricted our model to
directly transition from situation ‘low_traffic’ to a situation of ‘high_traffic’ and vice-versa.
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However, ‘moderate_traffic’ can transition to both ‘low_traffic’ and ‘high_traffic’. This is
validated in Figure 19, where the graph illustrates that there is no direct transition from
situation ‘low_traffic’ to ‘high_traffic’. The sequence starts with situation ‘low_traffic’, then
gradually transitions to ‘moderate_traffic’ followed by ‘high_traffic’. Hence, the model
enables accurate transition from one situation to another.

Figure 19. Markov Simulation for Situations in a Traffic Monitoring Scenario.

6.3. Experiment 2: Evaluating the Capability of the Entire Framework, SA-IoTDG

In this section, we perform a set of experiments and analysis to validate the feasibil-
ity and applicability of the proposed framework. We evaluate SA-IoTDG based on the
following aspects:

• mimicking the properties of IoT time series data i.e., we aimed to investigate if SA-
IoTDG is capable of producing data that have similar properties of real-world data
(Experiment 2.1 and 2.2)

• capturing different user requirements and generating data dynamically (Experiment 2.3)

We performed three sets experiments to achieve the above. We will first discuss the
set-up used and then discuss the designed experiments.

6.3.1. Experimental Setup and Metrics

To evaluate the proposed framework, the following set-up was used.
Open Source Tools: For this experiment, we used the IoT Data Simulator, imple-

mented in Java, which allows both simulation and data replay. It also enables adding
multiple devices and sending the device data to different target systems. We extended the
tool to simulate the situations of an IoT application.

SA-IoTDG: The proposed framework for generating IoT data in line with defined
situations is implemented using ReactJS, Node and Python. We have leveraged the Python
FAST API framework to implement the situation description system using FSI. The situation
transition module is conceptually modeled using Markov chains, and the simulations have
been implemented using python and React JS. The framework is locally run using Visual
Studio Code. It can be deployed using Docker as well.

IoT managed cloud platforms: The experiments were conducted on two different
IoT middleware platforms, FIWARE [72] and AWS [73] to test their performance with
different configurations.

We ran our experiments on a system running on MAC M1 chip, 16 GB RAM, with
1 TB SSD. During all experiments conducted, IoT data simulator were deployed using
Docker. Similarly, FIWARE was also deployed as a docker container on the same system.
For our experiments, we have developed a React application for simulating IoT application
situations and generating relevant IoT data.

We will now discuss the metrics used to evaluate our implementations. To explore
the similarities in the real and generated data by the framework, statistical parameters and
autocorrelation function metrics were used.

To compute the performance of IoT middleware platforms, two main metrics that
were considered are: (i). data ingestion rate and (ii). query response time. We explain these
metrics below:
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• Data Ingestion Delay: The difference in the time when the data is being generated and
the time at which it is being inserted into the platform.

• Query Response Time: By query response time, we mean the time taken to execute a
query after it is triggered on detection of an event.

The next two experiments have been designed to validate the applicability of SA-
IoTDG based on the two factors discussed in the beginning of this subsection.

6.3.2. Experiment 2.1: Investigating Data Distributions

To validate the data generation capability of our framework in keeping the significant
features of real data, we identified the distribution of real and generated data. To achieve
this, we compared the distribution of our generated traffic data with a real traffic dataset
(Minnesota Department of Transportation). We found the best fitted distribution using the
SciPy python library [71]. It is observed that both datasets follow a Burr distribution as the
best fit based on the sumsquare_error parameter. The results are illustrated in Figure 20
which indicates that the distribution of the generated data is consistent with real-data.
Hence, SA-IoTDG generates data following the same trend as real-data.

(a) (b)
Figure 20. Investigating the best fit distribution. (a) Distribution of generated data. (b) Distribution
of real data.

6.3.3. Experiment 2.2: Exploring Similarity in Data Patterns

We examine the similarity between the two datasets using statistical methods. We
compute statistical properties of the generated traffic data and compare with the real traffic
dataset (Minnesota Department of Transportation) to evaluate if they follow similar trends
and patterns. We generated high frequency time-series data with a sampling frequency of
1/5 s. We expect to observe multiple patterns in the data. Hence, we decompose our data
to examine for trend and patterns. Figure 21 illustrates the components of the data. The
top panels in Figure 21a,b shows the original data labelled as ‘data’. The remaining panels
show the existing patterns in the data. From the figure, we can infer that both datasets
exhibit a similar seasonal and trend component.

(a) (b)
Figure 21. Comparing trends and patterns in generated and real data. (a) Components of generated
data. (b) Components of real data.
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Since the generated data exhibits a trend component, we can say that the data are
non-stationary. We confirm the non stationarity of the generated traffic data using au-
tocorrelation function (ACF). ACF gives the correlation between the present values of
a time-series data and the past values. The gradual decrease of the ACF in Figure 22a
illustrates that the generated data are non-stationary. In order to fit the generated data
in any model for further analysis, we need stationary data, so we transform the data to
stationary by differencing them. Figure 22b shows the differenced data.

(a) (b)
Figure 22. Autocorrelation functions of generated data. (a) ACF of generated traffic Data. (b) ACF
of differenced data.

Additionally, we compute a statistical summary presented in Table 5. It can be ob-
served that both datasets have very similar statistical properties, which can be used to infer
that generated data follows properties similar to that of a real dataset.

Table 5. Comparing statistical summary of datasets.

Input Variables Generated Data Real Data

Mean 0.00 0.00
SD 18.34 17.34

1st Quartile 10.00 11.00
Median 29 30

3rd Quartile 40 44

6.3.4. Experiment 2.3: Data Generation with Varying User Configuration

These experiments were designed to validated that SA-IoTDG is capable of capturing
user specific requirements and generate data based on the specified configuration. We
instantiate this using two examples. (1). Generating data by specifying a threshold time,
and (2). specifying the data generation frequency in seconds. Figure 23a illustrates a
configuration specified for 8 min (480 s) of data to be generated for each situation. We have
modelled a traffic monitoring application as discussed, entailing situations of low_traffic,
moderate_traffic, and high_traffic. Figure 23b illustrates data being generated for 8 min for
each traffic situation.

(a) (b)
Figure 23. (a) Specifyingtime configuration. (b) Generated data based on configured time.

Figure 24 illustrates a snapshot of data being generated by SA-IoTDG at a user config-
ured frequency of 5 s. We also simulated data, mimicking a traffic monitoring application
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scenario. The data was aggregated at hour level. Figure 25 shows a sample of simulated
data with the peaks’ representation data for a situation of high_traffic.

6.4. Experiment 3: Using SA-IoTDG to Conduct Performance Evaluation of IoT
Middleware Platforms

This experiment was conducted to validate the frameworks’ capability to evaluate
the performance of different IoT middleware platforms. To this end, we used the same
traffic monitoring IoT application to generate the data for the application and published
the generated data to two IoT middleware platforms AWS and FIWARE. The performance
was analyzed based on metrics data ingestion delay and query response time as discussed
in Section 6.3.1. Data ingestion delay was calculated by publishing the generated data to
the two middleware platforms with a data ingestion rate (rate at which sensor data being
inserted to a system per second) of 500 data points per second. Figure 26a compares the
data ingestion delay of AWS and FIWARE. The result shows that the data ingestion delay
is slightly more in FIWARE than that of AWS. Other metrics such as the query response
time can also be computed by querying the ingested data on both platforms. Figure 26b
illustrates how query response time varies with different data ingestion rates and varying
complexity of queries. The experiment was conducted with data ingestion rates of 200, 500
and 1000 data per second, while varying the query complexity at the same time. The query
complexity was varied by changing the number of joins and filter conditions. Since, the
focus of the paper is not on evaluating the performance of the IoT middleware platforms,
we did not provide a detailed technical evaluation. The aim is rather to show that the
proposed framework can be used to conduct such performance evaluations.

Figure 24. Data generated every 5 s.

Figure 25. Visualizing generated data of a traffic monitoring scenario.
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(a) (b)
Figure 26. (a) Data ingestion delay. (b) Query response time of AWS and FIWARE [15].

7. Conclusions

In this paper, we proposed, implemented and evaluated SA-IoTDG, a novel framework
to capture and simulate situation based IoT different application requirements and generate
data. The proposed framework can: (1) define rules that can simulate real-world situations
and stipulate the transitions of the defined situations, (2) generate IoT data based on the user
specified configurations, and (3) use the framework to conduct performance evaluations of
IoT middleware platforms. In existing works, we can currently generate data for single
situations. The advantage of our proposed method is that, with our proposal, we can model
multiple situations, specify the transition sequence and generate data. To the best of our
knowledge, this is the first work to consider the transition of situations for generating IoT
data. We illustrated that the proposed SA-IoTDG is capable of working with different
configurations, and generates data with features similar to that of real data. Hence, SA-
IoTDG is configurable and dynamic and is a step towards accelerating the development of
a benchmark solution for IoT middleware platforms.

In this paper, our main focus was on generating IoT data relevant to situation specific
IoT applications for evaluating IoT middleware platforms. Despite the contribution, there
are some open issues that require further investigation. One of the interesting aspects we
are planning to work on is:

Data Extrapolation: By data extrapolation, we mean generating data based on a sample
data. In this paper, we have conducted experiments, where data was generated based on
pre-defined rules by users. However, to provide more flexibility to users, and generate
more realistic data, the framework should be able to generate data based on a sample data.
To address this requirement, we plan to investigate and develop a mechanism to provide
a dataset as seed and generate similar data for relevant IoT applications. Additionally,
considering this work as a starting point, as future work, we plan to conduct further
evaluations considering additional metrics to evaluate the performance of IoT middlewares.
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