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Abstract: Firefighters face numerous challenges when entering burning structures to rescue trapped
victims, assess the conditions of a residential structure, and extinguish the fire as quickly as possible.
These challenges include extreme temperatures, smoke, toxic gases, explosions, and falling objects,
which can hinder their efficiency and pose risks to their safety. Accurate information and data about
the burning site can help firefighters make informed decisions about their duties and determine
when it is safe to enter and evacuate, reducing the likelihood of casualties. This research presents
unsupervised deep learning (DL) to classify the danger levels at a burning site and an autoregressive
integrated moving average (ARIMA) prediction model to forecast temperature changes using the
extrapolation of a random forest regressor. The DL classifier algorithms provide the chief firefighter
with an awareness of the danger levels in the burning compartment. The prediction models forecast
the rise in temperature from a height ranging from 0.6 m to 2.6 m and the changes in temperature over
time at an altitude of 2.6 m. Predicting the temperature at this altitude is critical as the temperature
increases faster with height, and elevated temperatures can weaken the building’s structural material.
We also investigated a new classification method using an unsupervised DL autoencoder artificial
neural network (AE-ANN). The prediction data analytical approach included using the autoregressive
integrated moving average (ARIMA) with random forest regression implementation. The proposed
AE-ANN model, with an accuracy score of 0.869, did not perform as well compared to previous
work, with an accuracy of 0.989, at achieving high accuracy scores for the classification task using
the same dataset. However, the random forest regressor and our ARIMA models are analyzed
and evaluated in this work, while other research has not utilized this dataset, even though it is
open-sourced. However, the ARIMA model demonstrated remarkable predictions of the trends
of temperature changes in a burning site. The proposed research aims to classify fire sites into
dangerous levels and predict temperature progression using deep learning and predictive modeling
techniques. This research’s main contribution is using a random forest regressor and autoregressive
integrated moving average models to predict temperature trends in burning sites. This research
demonstrates the potential of using deep learning and predictive modeling to enhance firefighter
safety and decision-making processes.

Keywords: deep learning; autoencoder; ANN; ARIMA; random forest regression; firefighting; fire

1. Introduction

The level of safety risk differs with the occupation, and firefighting is a high-risk
task. Firefighters are more prone to be injured and possibly killed while doing their jobs
compared to other workers. They put their lives in danger to rescue victims (humans
and pets) from burning structures and dangerous situations. The National Fire Protection
Association (NFPA) reported that out of an estimated 58,250 firefighter injuries in the line of
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duty in 2018, 22,975 injuries (39%) happened at the fire site [1]. These first responders were
exposed to highly dynamic environments, including elevated temperatures and convective
and radiant thermal flux, significantly affecting the firefighters’ protective equipment (PPE).
There are numerous ways that a firefighter can be injured on the job at the fire site: strains
and sprains caused 38% of the above injuries; 13% percent were caused by gas inhalation;
11% were caused by wounds, cuts, bleeding, and bruises; and 10% percent were caused
by thermal stress reported by the NFPA [1]. Research showed that one of the causative
factors in individual firefighters’ death and injuries is thermally degraded and melted
self-contained breathing apparatus (SCBA) facepieces [2].

Modern residential buildings and businesses contain tons of synthetics, plastics, and
chemical materials that increase the rate of explosions in a burning building. These explo-
sions also coat firefighters with toxic soot. According to the NFPA, a rapid-fire blast is the
second highest cause of firefighter fatalities, with about six deaths or 13% of the fatality
rate annually, and is only behind overexertion, which causes 26 deaths annually, or 54% of
the fatality rate [3]. Explosions pose a significant danger to firefighters because they have
little or no knowledge of when they occur. With all these uncertainties while carrying out
their task, it is crucial to provide the firefighters with informed data about the fire scene to
assist in making vital decisions about when to evacuate the burning compartment.

Current ways to improve firefighters’ safety involve providing data on the firefighters’
situations to make informed decisions. The data could be collected and made available by
furnishing buildings with sensors and methods of communication between facilities and
introducing the smart city concept to firefighting. Smart firefighting is regularly improved
by integrating recent artificial intelligence (AI) techniques [2,4,5]. The research conducted
in [6] designed an autonomous embedded system vehicle (AESV) installed with different
sensors, including light detection and ranging (LiDAR) and a global positioning system
(GPS), to navigate burning sites autonomously; capture environmental, imaging, and audio
data; and transmit it to a base station in a fire bus outside the burning area for analysis. The
vehicle measures approximately from four to six inches in height, inhibiting its capability
to capture temperature at the ceiling. The unit consists of a Teensy 3.6 board by which the
sensor peripherals process the collected data and communicate with the NVIDIA Jetson
Nano over a USB connection. The Jetson runs the Robotic Operating System 2 (ROS2) for
data telemetry and navigation.

Extreme temperatures, low visibility, falling objects, toxic air pollutants such as Carbon
Monoxide (CO), and the uncertainty in the fire ground make rescuing victims difficult [7].
These factors increase firefighters’ risk of injury, safety, and long-term health issues. Smoke
inhalation for a short time can cause acute effects. Research shows that people exposed
to heavy smoke experience temporary changes in lung function, making breathing more
difficult. Smoke contains two primary agents, CO and fine particles, or PM2.5, that cause
health effects. CO inhalation reduces the body’s oxygen supply, leading to headaches
and exacerbating a heart condition known as angina. Firefighters’ protective equipment
includes SCBA, which offers minimal protection because it melts at 300 ◦C [2].

To tackle the abovementioned challenges and increase firefighters’ safety on the fire
site, it is necessary to develop a solution that enhances the firefighters’ situational awareness
by exploiting the environmental data actively captured by the AESV on the scene. This
solution uses DL models to classify the data into dangerous levels and predicts temperature
at the height of 2.6 m, where sensor data cannot be collected. This solution can accurately
inform the decision-making process of firefighters with real-time scene information by
processing and analyzing essential data. Utilizing the output of this framework, firefighters
can effectively decide when it is safe to enter and evacuate the fire ground with minimal
health and safety risk.

Figure 1 depicts the overview scope of the presented work. This work aims to improve
firefighters’ safety during victims’ evacuation from burning sites. This solution develops
an algorithm to generate a custom dataset from a database of environmental data captured
in a burning area by considering the AESV unit’s possible movements. The solution also
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uses deep learning (DL) models to classify the burning site into three danger levels and
prediction models on environmental data to predict the temperature at heights closer to the
ceiling and the effect of time on temperature. The classifiers use the impact and influence
of ecological factors on the firefighters’ PPE to classify the danger level of the fire site. At
the same time, the predictor forecasts the fire growth at heights closer to the ceiling using
environmental data captured at the height of 0.6 m. Time is of the essence in firefighting
because firefighters’ PPE and the structural building members deteriorate with time. The
longer the firemen or firewomen stay at the fire scene, the higher their chances of getting
injured or killed.
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Figure 1. Solution for predicting firefighters’ safety.

The environmental and positional data needed to train the machine learning model
are collected from the NIST-CLT (Cross-Laminated Timber) database. These data were
modeled to create different scenarios in the burning structure to train the DL models. The
output of these models is used to guide how the AESV navigates the fire scene. A High-
Performance Engineering (HiPE) research group member designed the AESV to enable
wireless communication. It captures data as it navigates the scene and transmits it to a
base station in a fire bus outside the burning site for analysis [6]. Since the AESV works
independently, all the available firefighters on the fire site focus on firefighting.

This research mainly aims to develop a model to classify fire sites into dangerous levels
and predict temperature changes in real-time using deep learning and predictive modeling.
This research provides real-time information about temperature and danger levels on the
ground, which can reduce uncertainty at the scene and increase firefighter safety. The
study uses an open-source dataset from the Fire Calorimetry database, which captures
temperature, carbon monoxide (CO), and smoke levels during different fire conditions.
The proposed models, including the random forest regressor (RFR) and autoregressive
integrated moving average (ARIMA) models, are evaluated and compared to traditional
machine learning models. This research can benefit firefighters and other high-risk occupa-
tions such as mining, oil exploration, and construction, and future research can focus on
improving the performance of the proposed models.

1.1. Classification Literature Survey

The authors in [8] proposed using an improved stacked autoencoder (SAE) model
based on a deep learning network to refine traffic flow prediction performed by the Intelli-
gent Transport System (ITS). This model improved the traffic flow forecasting accuracy to
easily control the traffic with high-dynamic change and various noises in the real world.
The SAE model successfully extracts the attributes among the traffic flow data, and the
forecasted result shows that the proposed model has better accuracy than other traffic
flow prediction methods. This was achieved by using the dropout method to tackle the
over-fitting problem faced by other ML models (LSTM, DNN, SVM, and DBN). A greedy
layer-wise unsupervised learning algorithm was used to train and enhance the parameters.
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The authors in [9] proposed using a stacked denoising autoencoder, SDA, and its
extended version for the short-term forecasting of electricity prices. The researchers investi-
gated two types of forecasting, online hourly forecasting and day-ahead hourly forecasting.
The results showed that the SDA could predict electricity prices, and the extended version
SDA model increases the prediction performance. The extended version combines the con-
cept of Random Sample Consensus (RANSAC) and stochastic neighbor embedding (SNE).

1.2. Prediction Literature Survey

The authors in [10] investigated three prediction models for forecasting pest bird
distribution density. Their experimental results showed that the random forest regression
(RFR) model produced the best performance metrics (MSE = 5.52% and MAE = 1.49%)
for predicting the pest bird distribution density of transmission lines compared to linear
regression and decision tree regression models. The authors in [11] reported that using the
RFR model for near-surface air temperature prediction in the glacier region produced lower
error metrics than the actual values. The authors in [12] performed a comparative analysis
to predict electrical strength and boiling temperature using MLR, ANN, and RFR models.
They reported that RFR outperforms ANN and MLR architectures with better forecasting
accuracy and stability. The authors in [13] compared RFR and a backpropagation neural
network for a State-of-Change (SOC) estimator, concluding that RFR has higher accuracy
in estimating the battery SOC.

The authors in [14] compared the weather forecast results using the autoregressive
integrated moving average (ARIMA) and the exponential smoothing method (ETS). They
recorded that ARIMA outperformed ETS with an MSE of 0.34%. The authors in [15] used
ARIMA to simulate the rule of weather change to forecast time series temperature and
rainfall in the next ten years for Shandong province. They concluded that the prediction
effect of ARIMA is good, with relatively small errors between the predicted data and the
actual dataset. The authors in [16] used ARIMA to develop suitable models to forecast
monthly precipitation. They tested the final model and concluded that, based on its
high accuracy, it could be used to predict the monthly variations in precipitation and
mean temperature of Shiraz. The authors used the ARIMA algorithm in [17] to predict
energy consumption for industrial drying systems. They reported that the model predicted
temperature correctly with 99.09%, humidity with 98.24%, and energy consumption with
96.31% accuracy. The authors in [18] conducted a comparative study of ARIMA and
adaptive neuro fussy inference system (ANFIS) models for predicting weather conditions
in Dhaka, Bangladesh. They compared both models using their errors and concluded that
the ARIMA model outperformed ANFIS.

The scope of this research is to develop a solution to classify environmental factors
into dangerous levels and predict temperature values at heights close to the ceiling of a
residential building. We will use a DL model to classify the ecological data into hazardous
levels. RFR will generate data for the 2.6 m height beyond the AESV capabilities to capture
data. The generated data will train the ARIMA model to forecast temperature values
with time.

2. Materials and Methods

The fire site is volatile and unpredictable. The volatility and unpredictability makes it
a dangerous place to work as there could be falling objects, the structure/building could
collapse, and environmental factors, such as temperature, CO, and smoke level, can change
within a twinkling of an eye. Knowing when the difference in these factors exceeds the
firefighter’s equipment threshold is good, but predicting when this harmful environmental
condition is reached is better. Furnishing the chief firefighter with accurate forecasted data
would enable better planning and informed decision-making, allowing the firefighters to
quickly carry out their tasks while reducing their exposure to risk in the burning structure.
For this research, the methodology will concentrate on classifying and forecasting the
environmental data.
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This section discusses the development of the DL architecture for danger level classi-
fication of the burning site and prediction models for predicting temperature at heights
beyond which the autonomous vehicle can capture temperature data. The DL will dictate
the action of the AESV based on its classification of the scene. Depending on the output of
the DL models, the AESV will be instructed to either keep navigating the site, slow down,
or stop as the situation progresses. This is performed to prevent the AESV from being
burnt and to alert firefighters of dangerous spots in the building. Figure 2 shows the overall
execution flow of the research design approach.
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Figure 2. High-level block diagram for predicting firefighter’s safety.

Environmental factors such as temperature and CO are considered for classifying
danger levels and predicting height in a burning structure. Due to the randomness, un-
predictability, and dangers of a burning site, performing experiments in these conditions
to generate or capture data is almost impossible. The data generated from firefighters’
training sessions would not be helpful for this research because the maximum tempera-
ture observed is low compared to what is experienced in an actual fire site. Due to the
unavailability of a dataset captured in a real fire scene, we decided to use and customize
the dataset from the Fire Calorimetry database [19]. The datasets were recorded during
the CLT (Cross-Laminated Timber) compartment fire tests jointly conducted by the Na-
tional Research Council Canada and the National Institute of Standards and Technology
(NIST). The conditions under which these datasets were obtained are like what firefighters
experience when they go to rescue victims (people and pets) in a burning site.

The dataset captured during the CLT fire tests consists of temperature levels that
show all the fire growth stages, the changes in CO, and the smoke levels as the fire grows
and diminishes with time. The appearance and location of smoke give insight associated
with the fire’s location and the phase of fire in different compartment locations. Since the
conditions in a burning site differ with height and location, and the fire propagates from
the source to other cooler areas, the temperature data contain readings taken at different
heights and distances of the compartment. Other factors, such as ventilation, that affect
the burning site’s conditions were considered in the experimental setup. Ventilation and
the nature of the fuel involved affect the fire’s speed and the burning duration [20]. Less
ventilation equals lower heat release. For this research, we considered the dataset captured
from CLT-Test 1-1 to CLT-Test 1-6.

CLT-Test 1-1 and CLT-Test 1-2 are the baselines with fully protected CLT compartments,
while CLT-Test 1-3 to CLT-Test 1-6 contain partially exposed CLT structures. Varying the
size of the ventilation and other openings resulted in different times when flashovers
and decay occurred. For example, in CLT-Test 1-6, the flashover happened 5 min earlier
than in the base experiment (CLT-Test 1-1); though they have similar peak compartment
temperatures, the compartment stayed at the peak temperatures until the end, and there
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was no decay phase during Test 1-6 [20]. Additionally, in CLT-Test 1-2, the larger ventilation
opening increased the rate of combustion of the fuels in the room while reducing the intense
burning time. This causes the fire to decay earlier in CLT-Test 1-2 than in CLT-Test 1-1. The
variability in the dataset obtained from each experiment depicts the different scenarios
firefighters may encounter on the fire ground. Table 1 summarizes the purpose of each test
and the total number of samples obtained.

Table 1. Purpose of CLT-Test Experiments.

Experiments Purpose Samples

Test 1-1 Effect of 1.8 × 2.0 ventilation 11,762
Test 1-2 Effect of 3.6 × 2.0 ventilation 8563
Test 1-3 Effect of 3.6 × 2.0 ventilation and opened wall 16,497
Test 1-4 Effect of 1.8 × 2.0 ventilation and opened ceiling 12,181
Test 1-5 Effect of 1.8 × 2.0 ventilation and opened wall 15,229
Test 1-6 Effect of 1.8 × 2.0 ventilation and opened ceiling and wall 10,238

Figure 3 depicts the randomness and instability of the burning site presented in [21].
The plot shows three different clusters representing the three classes of our dataset. The
classes are classified as ‘safe’ as zero, ‘caution’ as one, and ‘danger’ as two. The plot showed
some overlapping samples between the three classes. This explains how quickly the fire
stages change in a burning site. The t-SNE plot brings to our attention that our dataset has
overlapping and imbalance problems, which would increase the difficulty of our trained
model in distinguishing between the classes present in the overlapping region and lead to
the deterioration of the model’s performance [22].
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result in overfitting. A DL model is as good as the data you train it with. Training the model
with 30 columns of temperature readings will increase the computational cost of model
training and impair the model’s performance. Since the AESV can only be in one place at a
given time and has features that can only capture temperature readings at the height of
0.6 m, we must train the model with sensor readings captured at this height. To mimic
how the AESV could navigate and capture data from the actual fire scene, we developed
a program in Python to randomly select temperature readings from the dataset from dif-
ferent locations at heights of 0.6 m and 2.6 m. Figure 4 shows the steps for extracting the
custom dataset from the CLT-Test dataset and executing the program, which generated two
columns of temperature readings containing data from six locations at heights of 0.6 m and
2.6 m.
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After loading the dataset, fourteen columns were selected, partially comprising one
column of smoke, one column of CO, and six other columns, each representing temperature
readings at different parts of the burning compartment at heights of 0.6 m and 2.6 m. We
assumed the AESV would capture five observations per movement. The number of possible
AESV movements is the total number of observations (data length) divided by the number
of observations selected per movement. Next, we created a dictionary of the AESV’s current
location and where it could move to, considering the layout of the compartment. A new
data frame is designed to store the captured data every time the AESV changes position.
After randomly selecting the AESV starting point, the first set of five observations was
picked. For every iteration (representing AESV movement), five observations were chosen
from one of the six positions of temperature readings at heights 0.6 m and 2.6 m and
appended in two different columns, titled t◦C (0.6 m) and t◦C (2.6 m), without picking from
the same set of observations twice. The iteration continues until the maximum possible
AESV movement is attained. We can generate unlimited datasets for each CLT-Test data to
train and test the classifier and predictors by running the algorithm as often as we want.
Ten other datasets will be generated from each experiment for this research work.

The temperature readings captured by all the temperature sensors at 0.6 m were
used to train the DL models to classify the fire scene into dangerous levels because of the
height of the AESV. However, to understand the fire progression with height, the predictive
models would use temperature readings at 0.6 m and 2.6 m for predicting the temperature
as height increases. This enables the AESV to capture readings at 0.6 m and indicates the
temperature at the ceiling without having to fly the unit.

The algorithm generates two columns of temperature readings containing data from
six areas at heights of 0.6 m and 2.6 m. We used the algorithm to generate ten other
experimental datasets for each CLT-Test data. The average of these datasets was taken
to create the customized dataset for training the models. This ensures that the random
selections capture the population of the dataset. Six customized datasets were created
to represent the actual six CLT-Test datasets. In this research, because compartment fires
are often different due to factors such as the size of the structure, fuels, ventilation and
other openings, availability of sprinklers, and other factors, we used the six experimental
datasets (a total of 74,470 samples) to train and test our models, developing a solution that
is flexible to different fire conditions.
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2.2. Data Preprocessing

Data are a fundamental part of DL models. The data quality and the knowledge
derived from a dataset impact the learning capacity of any model. Real-world data often
contain noises, missing values, outliers, imbalance classes, and non-categorical data, which
cannot be used directly for ML models. Hence, it is paramount to preprocess the data before
feeding it to the model. Data preprocessing is a data mining approach used to prepare the
raw data in a valuable and efficient format to provide concise data for an ML model [23].
Data preprocessing is the key to developing high-quality models. The aim of preprocessing
the environmental dataset before they are fed to the classifier or predictor models, either for
training or testing, is to improve the data quality in a way that enhances the performance
of the models. As shown in Figure 2, the following data preprocessing steps were used to
clean and prepare the dataset.

2.2.1. Sampling

Sampling is a technique used to address the problems associated with imbalanced
classes. A recurring problem in ML is a disproportionate ratio among class distribution,
known as an imbalanced class [24]. Simply put, an imbalanced dataset means the number
of observations is not the same for all the classes in a classification dataset. Using an
imbalanced dataset to train a model could create a model biased towards the majority class
only. The ML models’ performance metrics are optimal when an equal number of samples
are present for each category [25]. In this research, we used the random oversampling
method on the training data to deal with the problems associated with the imbalanced
dataset. This technique generates new synthetic data by randomly duplicating samples
in the minority classes. However, random undersampling can also address the class
imbalance by randomly removing instances from the majority class. We did not explore
this approach in this study, but it could be interesting to investigate its influence on the
classifier’s performance in future studies.

2.2.2. Labeling

The dataset was classified into three danger levels based on the firefighter’s equipment
threshold, protecting the firefighter against elevated temperature and CO levels. High lev-
els of CO can be expected in every firefighting environment, ranging from 50 ppm to several
thousand ppm, depending on the type of fire. Safety is critical for all firefighters responding
to a fire call. As firefighters can be at the burning site to rescue victims and extinguish the
fire for long periods of time, the firefighters’ safety should be a high priority. According to
safety conditions stated by the Occupational Safety and Health Administration (OSHA),
the permissible exposure of any human to CO is 50 ppm, which might cause mild neuro-
logical impairment after several hours of exposure; the short-term exposure limit of CO is
400 ppm; and the level of CO that is immediately dangerous to life and health is 1200 ppm
(fatal after some minutes of exposure) [26,27].

Present-day protective clothing for firefighters can handle temperatures below 300 ◦C
and starts to char at temperatures above 300 ◦C [26–28]. Additionally, the authors of [27]
state that the maximum exterior lens temperature a self-contained breathing apparatus
(SCBA) can withstand before it degrades is 300 ◦C. In a burning compartment, the rate
of temperature increases could be random and unpredictable. The temperature ranges
between 10 ◦C (at ignition on a cold day) and 1200 ◦C +. The authors in [28] state no
possibility of survival in the vicinity at 500 ◦C and above. Based on these criteria and the
level of protection the SCBA and firefighter’s garment can provide, the dataset was labeled
into three danger levels as follows: the CO range from 0 to 800 ppm and temperatures from
0 to 270 ◦C are labeled ‘safe’; 801–1600 ppm and 271–599 ◦C are labeled ‘caution’; above
1600 ppm and 600 ◦C are labeled ‘danger’.
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2.2.3. Standardization

The standardization technique was used to scale the range of features of an input
dataset to have zero mean and unit variance. It prevents elements with more significant
variance from dominating the objective function and hinders the classifier’s ability to learn
from other features. Standardization gives all input elements the same influence on the
classifier and speeds up the algorithm’s calculation.

2.2.4. Missing Values

The dataset contains a few missing values. Missing data are dealt with by omitting
the entire row containing the missing value or replacing it with mean, median, or most
frequent observation. Missing values are treated as NaN, known as not-a-number in ML.
To tackle this, omitting the rows containing the missing values was not an option because it
could distort the hidden information the predictor models have to learn in the time series
dataset. We used the SimpleImputer library from scikit-learn to impute the mean value to
replace the missing values.

2.2.5. Combing Dataset

Six sets of experimental data were obtained from the CLT-Test. To develop a robust
model that can efficiently classify or predict the temperature with time in every scenario
captured in the CLT-Test, we trained the classifiers with five sets of experimental data and
used one for testing. We used Tests 1-2 as the test data. This dataset was not introduced in
training the classifiers. To combine the training dataset for the predictive model, we took
the mean of every time series sample to generate a new dataset containing information
on all the training datasets. However, for the classifiers, we combine all the Excel sheets
containing the datasets into one because they do not require a time series dataset.

2.3. Autoencoder

The Autoencoder (AE) is an unsupervised ML technique often used for feature ex-
traction and dimensionality reduction [29]. An AE is a feed-forward neural network and
consists of three parts: the input layer, the hidden layer (encoder), and the output layer
(decoder) [30,31]. Each layer contains neurons. The reduction in the number of neurons
in each layer starts from the input layer and is followed by the mirroring of the layers
at the center, known as the bottleneck, to build the autoencoder’s decoding section. An
AE aims to constrict the input into a lower-dimensional code and reconstruct the new
representation’s output to obtain the initial picture [8,30,31]. Like the multilayer perceptron,
the AE framework consists of NN with one or two hidden layers. Compressing the input
vectors into lower dimensions increases the learning efficiency [7]. AE’s input and output
layers should contain the same number of neurons [8,9] because the AE aims to initialize
the latent layer parameters that will reconstruct the multidimensional input data [31].

AE performs similar functions as the principal component analysis (PCA) but is more
flexible than it. Unlike the PCA, which serves only linear transformation, the AE can
perform linear and non-linear transformations in encoding. AE network reconstructs data
using the encoder and decoder functions. AE aims to learn the essential features present in
the data by reducing the reconstruction error between the input and output data [30]. We
consider using AE to classify the environmental data into three danger levels because the
AE learns the essential features present in the data by reducing the reconstruction error
between the input and output data. The primary objective of this technique is to investigate
if the hidden representation of the data carries enough information to classify the samples
into their respective classes efficiently. Thereby reducing the number of dimensionalities
needed and increasing learning efficiency [9]. This will increase the computational speed
of the model because we do not have to perform the decoding phase of the AE. This makes
it suitable for this research because time is of the essence in a fire ground.

The AE in our proposed model accepts an input vector x that belongs to the three-
dimensional space x∈R3. The input is then passed through six hidden layers. The initial
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three hidden layers of the AE contain 8, 4, and 2 neurons (source code link is given in
Supplementary Materials). Their function is to compress the input data into two dimensions
to form the encoded representation. Because we want to investigate the information in
the latent representation of AE, we disconnected the decoder after training the model to
achieve good reconstruction. In so doing, we achieved a neural network that encodes the
input data into two dimensions. Unlike supervised learning, the model we developed does
not look for a specific pattern associated with a target. However, it learns to use the input
space in any way that maintains the most characteristic and predominant information of
the input data to allow good reconstruction in the decoder. We used the Keras functional
API in Python to model the AE. In the encoding layers, the input layer describes the
dimensionality of the input vector, which is three. The Dense class constructor accepts the
neutrons and the activation function as attributes, and the input to the layer is included.
As an activation function, we used neurons 8, 4, and 2 for the three layers in the encoder
and ‘tanh’. The ‘tanh’ function suppresses the input value to a bounded range. This restricts
the network weights to a range, preventing exploding gradient problems. To classify the
latent representation of the AE, we used an artificial neural network, ANN, as the classifier.
Table 2 shows the results of changing the number of layers and neurons in the encoder of
the proposed AE-ANN model. Four different encoder structures were tested with from
2 to 64 neurons, and the best accuracy was achieved with an encoder structure of 8, 4, and
2 neurons, which achieved an accuracy of 80.96%. The bottom half of Table 2 shows the
results of changing the number of layers and neurons in the ANN of the AE-ANN model
while keeping the encoder structure constant. Three different ANN structures were tested,
with from 4 to 8 layers and from 4 to 32 neurons per layer. The best accuracy was achieved
with an ANN structure of 4, 8, and 4 neurons, which achieved an accuracy of 80.96%

Table 2. Adding Layers and Changing Number of Neurons for the Encoder and ANN.

Changing Encoder (Neurons) ANN (Neurons) Accuracy

4, 2 4, 8, 4 67.79%
8, 4, 2 4, 8, 4 80.96%

16, 8, 4, 2 4, 8, 4 67.27%
32, 16, 8, 4, 2 4, 8, 4 67.77

64, 32, 16, 8, 4, 2 4, 8, 4 76.41

Encoder (Neurons) Changing ANN (Neurons) Accuracy

8, 4, 2 4 80.57%
8, 4, 2 4, 8, 4 80.96%
8, 4, 2 4, 8, 16, 8, 4 80.62%
8, 4, 2 4, 8, 16, 32, 16, 8, 4 67.33%

The model’s performance was evaluated by experimenting with different activation
functions in the hidden and output layers. The models were trained and tested using
various activation functions to determine the impact on performance. The ‘linear’ activation
function, commonly used in regression tasks, achieved an accuracy of 80.61%. However,
it is not typically used in classification tasks due to its inability to model non-linear re-
lationships. The ‘tanh’ function achieved a higher accuracy of 80.85% and is commonly
used in hidden layers of an ANN due to its ability to model non-linear relationships. The
‘relu’ activation function achieved an accuracy of 67.69%, which was lower than the other
functions. Based on these results, the ‘tanh’ activation function was the best choice among
the tested functions for this specific classification task. The ‘softmax’ function was utilized
to obtain the normalized probability values of the classification decisions. The results are
further discussed in the Results section.

The ANN takes the encoded data as input and classifies them into three danger levels.
We used the Keras sequential modeling approach in Python to develop this classifier. The
input layer has two neurons with a ‘tanh’ activation function. Three hidden layers were
deployed with 4, 8, and 4 neutrons with the ‘tanh’ activation function. The output layer has
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three neutrons with a ‘softmax’ activation function. A dropout of 0.5 was used to prevent
overfitting. The effect of increasing the size of the epoch and batch size was examined
to evaluate its impact on model performance. Several experiments were conducted with
different batch sizes ranging from 8 to 64 and epochs ranging from 10 to 200. The model’s
accuracy was recorded for each variation of batch size and epochs. The results showed
that the model’s accuracy ranged between 78.13% and 80.95% across different batch sizes
and epochs. Increasing the epoch or batch size did not significantly change the model’s
performance. This lack of significant impact on performance may be attributed to model
convergence, architecture, data size, and complexity. For this research, the model achieved
optimal performance with a batch size of 50, epochs of 100, and SGD as optimizer with a
learning rate of 0.005 and momentum of 0.9.

2.4. Random Forest Regression

The random forest algorithm uses the same concept as the decision tree on a larger
scale. A random forest consists of multiple unrelated trees used in making decisions [10].
It is an ensemble learning algorithm that creates the effect of classification and regression
more effectively than that of a single decision tree. We utilized random forest regression
(RFR) to predict outputs with numerical or continuous values. The RFR utilizes several
regression trees, each producing a prediction value, and the mean value of all the prediction
values is taken as the final output. RFR is used in this research to predict temperature
values at the height of 2.6 m, given the CO, smoke, and temperature values at an altitude
of 0.6 m (source code link is given in Supplementary Materials). The chief firefighter needs
this interpolated data to decide when to call off the rescue operation. In a burning site,
the temperature rises rapidly with height, and these elevated temperatures weaken the
building structures with time.

We developed the RFR model by importing the random forest regressor from the
sklearn package of Python containing ensemble learning. The main hyperparameter in RFR
is the number of estimators used. The estimators are the decision trees, and the more
estimators used, the better the predicted value. Several experiments were conducted to
determine the optimized n-estimators parameter, determining the number of trees created
in the random forest. Using n-estimators = 1000 generated the best model performance
metrics. The trained RFR model was used to predict the six CLT-Test datasets. Then, we
combined the predicted values of the six experiments by averaging them so that the final
data used to train the ARIMA model contains components of the six CLT-Test datasets.

2.5. ARIMA

As the name implies, the autoregressive integrated moving average (ARIMA) inte-
grates two models: the autoregression model and the moving average model [15]. Unlike
the multiple regression model, which forecasts the target variable using the linear com-
bination of predictors, an autoregressive model predicts the variable of interest using a
linear combination of historical values of the variable. In simple terms, autoregression is
the regression of the variable versus itself. On the other hand, the moving average model
uses past forecast errors in a regression-like model [32]. The predictors in an ARIMA model
comprise both the lagged values of the variable of interest and lagged errors.

An ARIMA model uses the autoregressive moving average to fit series with stationary
time. Typically, the environmental data are non-stationary time series. To use ARMA on
this dataset, it must first undergo differencing transformation to convert it to a stationary
time series. Hence, the word integrated. The concept of predicting a future time series
value using past time series data is known as ARIMA [17,18]. The ARIMA model assumes
that the current value of a variable within a time series has a linear relationship with the
historical observations of the time series and random errors. Additionally, the random
errors are assumed to be independently and identically distributed with an average of zero
and constant variance.
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The ARIMA model is used in this research to predict the future values of temperature
readings at 2.6 m (source code link is given in Supplementary Materials). The fire reaches
its fully developed phase at a height of 2.6 m faster than at 0.6 m. This model gives the
chief firefighter informed temperature data of what the temperature would be in time
tn+1 in the future from past time series data, tn−1. The model is developed to predict the
whole fire development stages using temperature data at 2.6 m. We trained the ARIMA
with data from the RFR (generated temperature readings at 2.6 m). Several experiments
were performed to optimize the p, d, and q values. The p-parameter is the order of the
autoregressive part, d is the degree of first differencing, and q is the order of moving
average part. The value of d impacts the prediction intervals. The higher the value of d, the
more rapidly the prediction intervals increase in size [32]. The optimized p, d, and q values
used are 1, 2, and 1, respectively.

3. Results
3.1. Autoencoder Classifier Analysis

The classifier was evaluated based on classification accuracy, precision, recall, F1-score,
and misclassification. The accuracy gives the percentage of correctly classified samples.
It measures how well the model performed in predicting samples from the dataset. In a
case like ours with the class-imbalanced dataset, in which there is a significant disparity
between the number of classes, accuracy alone does not describe the model’s efficiency.
We cannot conclude a model’s performance based on its accuracy value because accuracy
depends on the class distribution. It does not differentiate between the numbers of correctly
classified samples of the different classes, and the number of misclassified samples for each
category cannot be deduced from accuracy. For this research, we must know how well the
model classifies each sample into its actual classes. A good model for this research would
be efficiently classifying the ‘danger’ class because this is the class that poses the greatest
danger to the firefighters’ safety.

Performance metrics focused on class-independent quantities are more appropriate in
choosing the best model. Precision, recall, and F1-score fall into this category. Precision
and recall provide insight into a model’s ability to classify individual classes. Precision
calculates the ratio of samples classified as positive, which is true-positive. It tries to answer
what proportion of true-positive identifications was correct. It considers how both the
positive and negative samples were classified. A high precision value denotes a model
that makes many correct positive classifications, while a low precision value is that with
many false-positive classifications. Recall, on the other hand, measures the percentage of
actual positives identified correctly. It measures the model’s ability to classify true-positive
samples. A high recall denotes a model that can correctly classify all the positive samples as
accurate. Recall and precision are jointly used because the number of examples incorrectly
labeled as positive cannot be deduced from recall.

In contrast, precision is sensitive to the distribution of the classes [33]. Both metrics
provide knowledge of the model classification efficiency on individual classes. F1-score
is interpreted as the weighted, or harmonic, mean of the precision and recall. The values
for accuracy, recall, precision, and F1-score for the AE-ANN model when tested on the
held-out (test) samples can be seen in Table 3.

Table 3 summarizes the performance metrics for the AE-ANN architecture trained with
an imbalanced and balanced dataset. The training accuracy indicates a good classification
convergence during the training phase. The imbalanced AE-ANN is the DL architecture
that was trained with the actual data without adding synthetic data points, and it recorded
the low-performing metrics, as shown in Table 3. Its recall value of 66% means the model
struggles with classifying the classes correctly.
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Table 3. Comparing performance metrics of AE-ANN model trained with imbalanced and balanced
datasets on the held-out dataset.

Metrics Imbalanced Balanced

Training set:test set 77.5%:22.5% 75%:25%
Data samples in test dataset 14,826 of 65,890 30,024 of 120,096

Training accuracy 82.00% 84.00%
Test accuracy 82% 84%

Misclassified samples 2665 of 14,826 4883 of 30,024
Recall 66% 84%

Precision 84% 86%
F1-score 62% 84%

The confusion matrix in Figure 5a,b gives more insight into how the model classifies
each class. Figure 5a shows that the model did exceptionally in classifying ‘safe’ and ‘danger’
samples but struggled with ‘caution’. The AE-ANN model trained with an imbalanced
dataset could correctly classify only 6% of the ‘caution’ samples.
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The confusion matrix is a performance metric that separately shows the number of
correctly and incorrectly classified examples for each class. It visualizes the performance of
the classifiers by showing the numbers of samples of a particular class predicted correctly
and incorrectly. Figure 5 shows the confusion matrices for the two models. Figure 5a
shows that the imbalanced AE-ANN wrongly classified 1889 ‘caution’ and 145 ‘safe’ samples
as ‘danger’. This indicates that the firefighters were falsely alerted to immediately aban-
don the rescue mission and evacuate the burning site because of their safety 2034 out of
14,826 times (13.72%). This is very high compared to the results reported in [21]. Figure 5b
shows an improvement as the number of samples falsely classified as ‘danger’ reduced
drastically, with 121 ‘caution’ samples. However, it increases the number of ‘danger’ samples
misclassified as ‘caution’. This means that 2911 of 10,088 (28%) firefighters will be misled
to stay in the burning site when the situation has escalated. The misclassified samples in
these models could be because of overlapping or boundary samples. It can be noticed that
the two models do not confuse ‘safe’ with ‘danger’ because the boundary conditions for
labeling these classes are far apart.

Table 4 summarizes the performance metrics of the classifiers when tested on totally
unseen data (EXP2) and other data (EXP3). The EXP2 dataset was not used in developing
the training dataset, and it was not used in training the models. It is a new dataset used
for testing. The EXP3 dataset components were used to develop the training data. The DL
classifier could not classify the data samples correctly, as seen in its performance metrics.
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This tells us that the latent representation used to train the AE-ANN did not portray the
information in the dataset. The poor performance of the DL could be because deep learning
models require a considerable amount of data, and we used the latent representation of the
data to train the model.

Table 4. Comparing performance metrics of AE-ANN model trained with imbalanced and balanced
datasets on new datasets.

Metrics
Imbalanced AE-ANN Balanced AE-ANN

EXP2 EXP3 EXP2 EXP3

Accuracy 82% 82% 84% 84%
Misclassified samples 5845 5821 5845 5821

Recall 33% 33% 20% 33%
Precision 20% 20% 33% 20%
F1-score 25% 25% 25% 25%

3.2. RFR Analysis

Table 5 compares the predictive models in [30] with RFR regarding errors and R2.
All the models present R2 solid values, which represent the proportion of variance in the
dependent variable that the predictors have described in the model. The R2 values in
Table 5 show that the variance in the temperature values at 2.6 m can be explained well by
the predictor variable values. This metric must be used with help to determine the best
model because it needs to tell us how precise the prediction interval will be.

Table 5. Comparing performance metrics of RFR and multiple linear regression models.

Predictors R-Squared MAE MSE RMSE

MLR-Up 0.96 63.29 7469 86.43
MLR-Down 0.99 16.06 424.9 20.61

MLR 0.96 40.25 3408.36 58.38
RFR 0.99 5.3 25.89 5.09

The mean square error (MSE) measures the prediction error per square in the test data.
A low MSE value signifies that the predicted data are close to the observed values. The
mean absolute error (MAE) measures the mean of the absolute error values. The root mean
square error (RMSE) explains how far off the expected model’s next prediction should be.
It gives a good estimator for the standard deviation of the distribution of errors. RFR has
the best performance metrics in predicting temperature at 2.6 m. It has better R2 values
and produces far fewer errors than the MLRs, and, here, we do not have to split the dataset
into fire development stages to develop the model. Based on this result, we used the RFR
to generate the data to train the ARIMA model.

3.3. ARIMA Analysis

We fed the RFR-trained model with the data from CLT-Test 1-1. This generated
temperature data at the height of 2.6 m. The temperature data at 2.6 m were used to train
an ARIMA model. The trained model was evaluated on randomly generated Test-Data
EXP1 and Test-Data EXP2 datasets. Testing the model on Test-Data EXP2 is easier because
we have the ground truth of CLT-Test 1-2. Table 6 summarizes the performance metrics
of the ARIMA model on the test datasets. Figure 6a shows that the model performed
exceptionally well in predicting the trend and temperature values of Test-Data EXP1 with
a 0.995 correlation, an MAE of 18.79, and an RMSE of 32.78, as shown in Table 6. The
results reflect that the ARIMA model was trained with a dataset containing components of
CLT-Test 1-1. Evaluating the model on Test-Data EXP2, for which datasets were obtained
from a different experiment, proved the ARIMA model’s reliability.
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Table 6. Comparing performance metrics of two test data.

Dataset Correlation MAE MAPE RMSE

Test-Data EXP1 0.995 18.79 0.069 32.78
Test-Data EXP2 0.873 167.47 0.519 206.35

1 

 

Figure 6. Visualization of ARIMA output on different Test-Data. (a) ARIMA 
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Figure 6. Visualization of ARIMA output on different Test-Data. (a) ARIMA output of Test-Data
EXP1; (b) ARIMA output of Test-Data EXP2.

The prediction made by the model was relatively accurate, as shown in Figure 6b,
with a correlation of 0.873, an MAE of 167.47, and an RMSE of 206.35. However, the errors
would be expected to increase due to the differences between the two fire grounds. The
conditions at a fire scene can vary significantly from one location to another and from one
time to another, making it invalid to assume that fire behaves consistently. This is especially
evident when firefighters move from one room to another. The situation in the new
room can be very different from the previous room due to factors such as ventilation and
fuel availability.

As seen in Figure 6b, the trained model correctly senses the rising temperature and
starts predicting high temperatures. Still, it takes longer for the prediction to match the
actual temperature. However, both lines eventually converge and follow the same trend.
The issue with this model is that the prediction line (blue) is on the right side of the actual
line (orange), indicating that the model is predicting temperature changes (fire development
phases) to occur later, which could be dangerous for the firefighters’ safety. It would be
safer if the prediction line were on the left side, where the model predicts the fire stages to
happen sooner, giving firefighters more time to evacuate the fire ground before conditions
escalate. To address the limitations of the above ARIMA model, we combined the six
experimental datasets by averaging or taking the median of every data point to create a
more robust and flexible model that can better handle variations in fire conditions.

In Figure 7a–f, the orange line represents the actual dataset, while the blue line
represents the predicted data. The ARIMA model trained with one experimental dataset
could make relatively accurate predictions on test data with similar conditions, but it is
likely to produce significant errors when applied to other experimental test data due to
overfitting. The errors in some experiments increased as the model was trained with more
observations by taking the average or median of the six experimental datasets to create a
more robust model. Overall, developing a model that could perfectly predict fire grounds
with different conditions was not possible. An examination of all the outputs of the ARIMA
model on datasets that it had not previously seen in Table 7 showed that it was impossible
to develop a model that could perfectly predict fire grounds with different conditions.
However, it was possible to create a robust and flexible model with a slightly higher error
rate that was not prone to overfitting.
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Figure 7. Visualization of robust ARIMA output on different test data. (a) robust ARIMA output of  
Figure 7. Visualization of robust ARIMA output on different test data. (a) robust ARIMA output of
Test-Data EXP1; (b) robust ARIMA output of Test-Data EXP2; (c) robust ARIMA output of Test-Data
EXP3; (d) robust ARIMA output of Test-Data EXP4; (e) robust ARIMA output of Test-Data EXP5;
(f) robust ARIMA output of Test-Data EXP6.

Table 7. Summary of Performance Metrics of Robust ARIMA Model on Six Test Datasets.

Datasets Correlation MAE MAPE RMSE

Test-Data EXP1 0.9 199.85 1.13 234.32
Test-Data EXP2 0.86 268.38 1.03 299.48
Test-Data EXP3 0.8 106.91 0.228 144.5
Test-Data EXP4 0.81 152.82 1.19 204.29
Test-Data EXP5 0.67 177.1 0.21 256.82
Test-Data EXP6 0.6 295.77 0.3 358.27
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The ARIMA prediction model’s results showed that it could accurately predict the
trends of temperature changes at a burning site. While there was a discrepancy between
the predicted and actual values, the predicted values rose and fell as expected, indicating
that the model successfully predicted the trends. At specific points, the prediction line
crosses over the actual line, with the prediction being higher or lower than the actual. If the
prediction line was above the actual line, the model predicted a higher temperature than
the measured one. On the other hand, if it was below the actual line, the model predicted a
lower temperature.

In the early stages of a fire, the position of the prediction line relative to the actual line
can have different implications. If the prediction line is to the left of the actual line, the
model predicts aggressively, suggesting that the fire will reach the fully developed phase
sooner. Conversely, if it is to the right of the actual line, the prediction is more conservative,
expecting the fire to reach the fully developed phase later. The aggressive predictions
made by this model can provide firefighters with the time they need to evacuate the scene
safely before the fire escalates and potentially causes an explosion, the building collapses,
or fatalities occur. This knowledge can enhance the safety and efficiency of both staff
and materials.

However, it is essential to note that aggressive predictions may also result in some
victims not being saved if the firefighters choose to evacuate before the fire escalates. In
these cases, the risks and benefits must be carefully weighed. Ensuring the firefighters’
safety and health can save them more lives in the future. On the other hand, if the
model predicts more conservatively, the firefighters may believe that the site is at a lower
temperature than it is, posing an increased risk as they may not be aware of the severity of
the fire and the structural damage it has caused. As a result, they may be more inclined to
continue working, potentially increasing their safety risk.

We investigated the amount of data that the AESV needs to capture for the ARIMA
model to make a good prediction at a fire scene. Time management is crucial in a burning
site, and Table 8 shows that as little as 5 min worth of data is sufficient. This means that
while the firefighters are putting on their protective equipment (PPE) and gathering the
necessary materials for the rescue operation, the AESV can navigate the scene to collect
enough data to predict temperature changes at the location.

Table 8. Summary of Performance Metrics of Robust ARIMA Model using 5 Min Worth of Data.

Datasets Correlation MAE MAPE RMSE

Test-Data EXP1 0.894 195.22 1.1 229.64
Test-Data EXP2 0.854 259.88 1.02 293.33
Test-Data EXP3 0.823 106.65 0.252 144.45
Test-Data EXP4 0.819 152.7 1.23 204.42
Test-Data EXP5 0.72 180.98 0.22 256.55
Test-Data EXP6 0.65 287.55 0.27 345.6

Overall, the ARIMA model showed firm performance in predicting temperature
changes from inception to the fire growth stage, as seen in Figure 8. This is likely because
most fires behave similarly during this stage, requiring fuel combustion for the fire to prop-
agate. Table 9 summarizes the performance of using 5 min of captured data to predict the
next 55 min of temperature changes in different fire ground conditions. On the other hand,
the model had more difficulty predicting temperature changes from the fully developed
phase to the decay phase as the decay rate depends on various factors, such as the amount
of fuel available. Fires with more fuel tend to have a longer decay rate, leading to more
significant errors in the prediction.
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Figure 8. Visualization of robust ARIMA output showing its effectiveness in predicting from inception
to the first 60 min. (a) Robust ARIMA output of Test-Data EXP1; (b) Robust ARIMA output of Test-
Data EXP6.

Table 9. Summary of Performance Metrics of Robust ARIMA Model in Predicting from Inception to
the first 60 min.

Datasets Correlation MAE MAPE RMSE

Test-Data EXP1 0.953 119.94 0.35 163.91
Test-Data EXP2 0.945 125.51 0.703 169.38
Test-Data EXP3 0.95 120.85 0.421 147.05
Test-Data EXP4 0.91 134.43 0.26 197.78
Test-Data EXP5 0.97 72.55 0.22 95.61
Test-Data EXP6 0.95 73.3 0.19 114.55

4. Discussion

The dataset used in this research was obtained from the Fire Calorimetry database.
The joint effort of the National Research Council Canada and the NIST to investigate
the impact of CLT elements on structure fires produced the dataset. They performed six
different experiments, which represented six different fire conditions. The conditions under
which this dataset was obtained are what firefighters experience when they go to rescue
victims (people and pets) in a burning site. The dataset captured during the CLT fire tests
consists of temperature levels that show all the fire growth stages, changes in the CO, and
smoke levels as the fire grows and diminishes with time. We developed a program in
Python to randomly select temperature readings from the dataset from different locations
at heights of 0.6 m and 2.6 m. This data selection mimics how the AESV would capture
data when navigating the fire ground. The datasets were labeled into three classes based
on the firefighter’s equipment threshold, which protects the firefighter against elevated
temperatures and CO levels.

A combination of an AE and an ANN was used for the DL model approach. The
AE-ANN technique was used to investigate if the latent representation of the data carries
enough information to classify the samples into their respective classes efficiently. We have
reported an accuracy score of 86.9% in comparison to the three ML models showing a high
percentage of correctly classified samples with test accuracies of 92%, 93%, and 99% for
its SVM, logical regression, and k-NN, respectively, in [30]. The poor performance of the
DL could be because deep learning models require a considerable amount of data, and we
used the hidden representation of the data to train the model.

The RFR model produced much better results than MLR models for predicting tem-
perature to help us understand the temperature rise with height. The RFR was used to
generate temperature data at the height of 2.6 m using environmental data captured at
the height of 0.6 m. Thus, eliminating the need to mount an additional ecological sensor
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capable of capturing data at 2.6 m. The ARIMA model excellently predicts the trend, but
the errors are high due to significant variations in the decay phase of fire development
stages exhibited by different fire grounds. The results showed that our ARIMA model
could predict the entirety of the fire development stages with as little as 5 min worth
of data.

This research is vital because it presents a DL and predictive approach to reduce the
number of firefighting casualties at the burning sites. In the past, the decision to evacuate
the firefighters from burning structures, based on experience and protocol, resulted in some
firefighter injuries, entrapments, and fatalities. With these research models’ abilities to
efficiently classify burning sites into dangerous levels and predict temperatures, firefighters
have informed data of their surroundings. The classification and prediction reduce uncer-
tainty at the scene and increase safety. Firefighting is a daunting profession, and firefighters
deserve resources that reduce risks. This technology could benefit firefighters and other
high-risk occupations such as mining, oil exploration, and construction.

The next step is to reduce the errors in the ARIMA model. The ARIMA model is
limited in its predictions because of the initial conditions of the available dataset. The
ARIMA model can be more fine-tuned with more data samples exhibiting different fire
conditions. We must use the reward action modeling system known as reinforcement
learning to achieve this. Reinforcement learning is an ML technique that teaches an agent
via trial and error in an interactive environment using feedback from its actions and
experiences. Here, the agent learns from mistakes. With reinforcement learning, the AESV
can be taught different scenarios in simulations. The simulations will involve the AESV
navigating different floor plans to capture sensor data. The reinforcement learning will
teach how to better predict the trends and durations of fire by rewarding the AESV for
every correct prediction. If appropriately implemented, this solution can generate more
random datasets for the better adjustment of the ARIMA.

5. Conclusions

In conclusion, this research aimed to classify burning sites into danger levels using
deep learning and to predict the progression of temperature with height using predictive
models on environmental factors captured in the burning area. The dataset was obtained
from the Fire Calorimetry database and represented the different fire conditions firefighters
may encounter when rescuing victims in a burning site. The dataset included temperature
readings from different locations at heights of 0.6 m and 2.6 m and CO and smoke levels.
An autoencoder-artificial neural network (AE-ANN) was implemented to classify the data
into dangerous levels. Still, the results were disappointing compared to those achieved
with three traditional machine learning models. A random forest regressor (RFR) model
produced much better results for predicting temperature and was used to generate temper-
ature data at 2.6 m. An autoregressive integrated moving average (ARIMA) model was
then trained on this generated data and demonstrated excellent prediction of temperature
trends. However, the amount of errors was high due to variations in the decay phase of
fire development stages exhibited by different fire grounds. Testing the ARIMA model
on randomly generated datasets showed that it could predict temperature changes with
as little as 5 min of data. Overall, this research demonstrates the potential for using deep
learning and predictive modeling to enhance the safety of firefighters and improve their
decision-making processes in burning sites. While the AE-ANN model did not perform
as well as expected, the RFR and ARIMA models showed promising results. They could
be used in future firefighting technologies to provide real-time information about temper-
ature and danger levels on the ground. Further research could focus on improving the
performance of the AE-ANN model and developing more robust and flexible models for
predicting temperature changes in burning sites with different conditions.

Supplementary Materials: The following supporting information can be downloaded at https:
//github.com/Saishola/Danger-Levels (accessed on 23 January 2023).
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