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Abstract: Telemetry data are the most important basis for ground operators to assess the status of
satellites in orbit, and telemetry data-based anomaly detection has become a key tool to improve the
reliability and safety of spacecrafts. Recent research on anomaly detection focuses on constructing
a normal profile of telemetry data using deep learning methods. However, these methods cannot
effectively capture the complex correlations between the various dimensions of telemetry data,
and thus cannot accurately model the normal profile of telemetry data, resulting in poor anomaly
detection performance. This paper presents CLPNM-AD, contrastive learning with prototype-based
negative mixing for correlation anomaly detection. The CLPNM-AD framework first employs an
augmentation process with random feature corruption to generate augmented samples. Following
that, a consistency strategy is employed to capture the prototype of samples, and then prototype-based
negative mixing contrastive learning is used to build a normal profile. Finally, a prototype-based
anomaly score function is proposed for anomaly decision-making. Experimental results on public
datasets and datasets from the actual scientific satellite mission show that CLPNM-AD outperforms
the baseline methods, achieves up to 11.5% improvement based on the standard F1 score and is more
robust against noise.

Keywords: telemetry data; anomaly detection; contrastive learning; negative mixing

1. Introduction

Satellites are currently one of the most sophisticated technological systems, performing
their mission in harsh conditions [1]. It is unlikely to be able to entirely dismiss the
possibility of faults due to factors such as inadequate design verification, extreme space
environment, damage accumulation effect and dynamic change of on-board state [2,3],
and serious anomalies will lead to mission degradation or even failure. Telemetry data
reflect the health condition of the corresponding device and are the most important basis for
ground operators to determine the status of the satellite in orbit [4]. As a result, techniques
for mining telemetry data and detecting anomalies have been developed to lessen the
monitoring burden on ground operators while also improving the reliability and safety of
satellites in orbit.

Anomaly detection is a technique for identifying unexpected patterns of deviation
from normal behavior and has attracted a significant amount of research attention in recent
years [5–7]. Satellites are usually monitored by numerous sensors, each of which measures a
distinct variable. Monitoring the devices or subsystems with correlations between multiple
monitoring indicators is critical to ensuring the normal operation of the satellite [8,9]. In
satellite anomaly detection settings, anomaly data are relatively rare and other new types of
anomalies are continually being discovered over time, owing to changing environmental
factors and command sequences, so a supervised approach is not applicable in this case.
In contrast, normal data are easily obtained, so we concentrate on identifying correlation
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anomalies using a semi-supervised approach, which means that all of the training data are
normal data.

Semi-supervised anomaly detection methods use a significant amount of normal data
to create a normal profile of correlation between variables. Samples with behaviors deviate
from the normal pattern are labeled as anomalies. Recently, deep anomaly detection meth-
ods have received a significant amount of attention, as they primarily employ well-designed
encoders to capture complex correlations between variables, such as the autoencoder-based
method [10–13], generative adversarial networks-based method [14–16], self-supervised
anomaly detection method [17,18], and so on. The reconstruction error or sample features
obtained from the learned encoder are then used to detect anomalies. However, due to
the complex and frequently dynamically changing patterns of correlations between the
variables of the telemetry data, the encoder maps normal and abnormal samples into the
feature space, making them overlapping and difficult to distinguish, failing to accurately
construct normal profiles of normal data, and resulting in unsatisfactory abnormality
detection results.

In this paper, we propose an anomaly detection method called contrastive learning
with prototype-based negative mixing for anomaly detection (CLPNM-AD). Contrastive
learning aims to learn a transformation-invariant feature representation and evenly dis-
tributes the sample on the hypersphere in representation space [19,20]. Combining en-
coders with contrastive loss to model the correlations of normal data, we find that the
learned representation can distinguish between normal and abnormal patterns. However,
with hardness-aware property [21], the contrastive loss imposes larger gradient magnitudes
on samples closer to the anchor, leading the semantically similar samples (false negative
samples) to separate, disrupting the local semantic structure between samples. Therefore,
we devise a prototype-based hard negative mixing strategy to guide network learning
to ensure that the local semantic structure between samples is not disrupted, thereby
constructing a more distinguishing profile for normal data.

Going beyond previous anomaly detection methods, CLPNM-AD can capture complex
correlations between telemetry data variables, maintaining a local semantic structure while
pushing samples with different semantics far apart, making normal and anomaly samples
as separable as possible. Specifically, we first employ an augmentation process with random
feature corruption to obtain augmented samples. Following that, a prototype consistency
strategy is used to capture the semantic category information of the samples. After that,
a prototype-based negative mixing contrast loss is used to obtain a normal profile. Unlike
the vanilla contrast loss, which maps all samples evenly onto the hypersphere, the proposed
method will make the true negative samples from all directions around the anchor point
(excluding the false negative samples) have an effective gradient such that these samples are
separable from the anchor, making normal and anomaly samples distinguishable. Finally,
anomaly decisions are made using a prototype-based anomaly score function. Extensive
experiments are conducted to verify the effectiveness of the proposed method.

The contributions of this paper are summarized below:

• We propose CLPNM-AD, a correlation anomaly detection method, which combines
prototype consistency and prototype-based contrastive loss to guide the encoder to
construct an accurate normal profile, making normal and anomaly samples more
distinguishable and thus facilitating the detection of anomalies.

• We apply a sample augmentation process with random feature corruption to generate
positive samples for contrast learning and to help capture the complex correlations
between variables.

• We combine prototype consistency and prototype-based contrast loss to learn features
that facilitate the distinguishing of normal and anomalous samples. First, proto-
type consistency is proposed to capture the semantic categories of samples. Then,
a prototype-based hard negative mixing strategy is applied to preserve local semantic
information and push samples of different prototypes farther apart.
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• We propose an anomaly score function that indicates the degree of the anomaly of a
sample by calculating the Mahalanobis distance between the sample and the prototype
conditional Gaussian distribution.

• We conduct extensive experiments to evaluate the performance of CLPNM-AD on
three public datasets and one satellite telemetry dataset from our actual mission.
The experiment results show the excellent performance of the proposed method.

The remainder of the paper is organized as follows: Section 2 describes related work.
Section 3 introduces the anomaly categories as well as the fundamental concepts of con-
trastive learning. Section 4 describes the proposed method CLPNM-AD in detail. Section 5
describes the experiment findings and analysis. Section 6 provides a summary of the paper.

2. Related Work
2.1. Anomaly Detection

Anomaly detection of satellite telemetry data has recently become a popular research
topic, with a large body of research literature emerging. Traditional anomaly detection
methods have mainly used statistical or machine learning methods to detect anomalies.
In [22], a kernel density estimates-based model was proposed, and samples with low
density were labeled as anomalies. In [23], the support vector machine was used to build a
hyperplane to keep normal data away from the origin where samples close to the origin
were detected as anomalies. In [24], Lishuai Li et al. proposed a clustering method based
on a Gaussian mixture model to detect unusual data patterns in flight data, where samples
with low probability were detected as anomalous. In [25], the authors labeled samples from
low-density regions as anomalous. Although these traditional anomaly detection methods
are efficient in most cases, they do not work well when the data dimension is too high and
the relationships between variables are too complex.

Self-supervised representation learning methods use the data themselves to construct
supervised information to achieve data representation learning. In recent years, self-
supervised deep anomaly detection methods have made significant progress, improving
anomaly detection performance and gaining much attention. In [26], an encoder was
used to map the normal samples into a hypersphere to model the representation of the
normal pattern. In [11], the authors used an auto-encoder to learn the features of the
samples, which were subsequently combined with reconstruction errors to be fed into
a Gaussian mixture model to generate anomaly scores. In [17], the data samples were
first augmented with random affine transformation, followed by a classification model
for anomaly detection. In [27], the authors used contrastive loss to obtain an encoder
and then fed the features generated by the encoder into a one-class classifier for anomaly
detection. In [28], the authors first created distributionally shifted augmentations, then
trained the encoder with contrastive loss to obtain sample features, and finally detected
anomalies based on the cosine distance between the learned features. In [18], trainable
augmentation processes were used to obtain augmented samples, and then an end-to-end
anomaly detection pipeline was built by contrastive loss.

2.2. Contrastive Learning

Contrastive learning as a type of self-supervised method aims to learn a transformation-
invariant feature representation such that multiple views (also known as augmentations)
of a sample keep attracting while repelling to other samples [20]. In [29], the authors
proposed a feature learning method using contrastive predictive coding, which uses an
autoregressive model to predict future values in the hidden space, and an InfoNCE loss
function for model training. Ref. [30] proposed an unsupervised feature learning method
that constructed an instance discrimination task via a memory bank and learned sample
features using a noise contrastive estimation loss function. In [31], the authors further con-
sidered the negative samples selection strategy and constructed a contrast task by obtaining
negative samples from a dynamic dictionary instead of a memory bank. In [19], the authors
discussed the role of sample augmentation and added a non-linear layer in the middle



Sensors 2023, 23, 4723 4 of 19

of the representations and contrastive loss to improve the quality of the learned features.
In [32], the authors used prototype vectors as the subject of contrasting rather than the
instances themselves, learned features through classification consistency between views,
and explored augmentation methods to improve the quality of the learned representation.

2.3. Debiased Negatives Sampling

Contrastive learning learns features by comparing similar or dissimilar pairs of sam-
ples, so the quality of positive and negative samples determines the quality of the learned
features. Contrastive learning is a self-supervised representation learning method that does
not have access to sample labels. When anchor samples and negative samples form nega-
tive pairs, these samples may belong to the same semantic class, and the hardness-aware
property of contrastive learning will cause these samples to be repelled, destroying the
local semantic structure and affecting representation learning. These false negative samples
continue to be a major issue in contrastive learning, but relatively little research work has
been conducted in this area.

In [33], the authors proposed a method for synthesizing hard negative samples in the
feature space by selecting the K closest negative samples to the anchor and randomly mixing
them. Ref. [34] established the distribution of difficult negative samples and proposed an
importance sampling strategy, based on which the authors designed a new contrastive
loss with adjustable hyperparameters to allow users to control the hardness. To lessen the
impact of false negatives, ref. [35] offered a debiased contrastive loss, and [36] proposed
a negative elimination and false attraction loss. In [37], the authors proposed a modified
contrastive loss that eliminates false negative samples and removes negative samples that
are similar to the anchors. To address the sampling bias problem, ref. [38] obtained the
semantic structure of graph data by clustering and then weighted the negative samples
according to the distance between semantic categories.

3. Preliminaries
3.1. Categories of Anomalies in Telemetry Data

Anomalies in satellite telemetry data are classified as point anomalies, contextual
anomalies, collective anomalies and correlation anomalies, as illustrated schematically in
Figure 1.

Point anomalies refer to a single data point or several consecutive data points that
deviate significantly from other data points. Figure 1a depicts an example of a point
anomaly in which the point in the red circle extends beyond the other points.

Contextual anomalies mean that the data points deviate a local threshold determined
by the temporal context, although not deviating the global threshold. Figure 1b shows an
example of a contextual anomaly where the point in the red circle deviates from the other
samples in the time window identified by the blue box.

Collective anomalies are consecutive points that do not exceed a threshold, but the
subsequence formed by these points violates the pattern of the original telemetry time
series. As shown in Figure 1c, the sequence of consecutive points in the red circle is a
collective anomaly, which has a different shape to the rest of the sequence.

Correlation anomalies occur when the stable correlation between multiple telemetry
parameters is broken and the correlation between parameters exhibit different patterns.
Correlations between satellite telemetry parameters include physical correlations, logical
correlations and operational mode correlations. As shown in Figure 1d, there is a positive
correlation between the two parameters in most cases, but in the red circle, the correlation
becomes negative, indicating a correlation anomaly.

The correlations between satellite telemetry parameters in real-world scenarios can be
very complex, necessitating anomaly detection methods capable of modeling such complex
correlations. The objective of this paper is primarily to propose a correlation anomaly
detection method that is sensitive to abnormal changes in the correlation between satellite
telemetry parameters.
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(a) Point anomaly. (b) Contextual anomaly.

(c) Collective anomaly. (d) Correlation anomaly.

Figure 1. Examples of anomalies in satellite telemetry data (anomalies highlighted in red circles and
time window in the blue box).

3.2. Contrastive Learning

Contrastive learning learns representations by grouping differently augmented views
of the same data sample together [19]. During the training process, a mini-batch with size
N is randomly selected, and the contrastive loss is defined on augmented views generated
from the mini-batch. Let x(1)i = A(1)(xi) and x(2)i = A(2)(xi), where A(1) and A(2) are
independent stochastic augmentation functions. Following [19,27], we define contrastive
loss as follows:

Lin f once(x(1)i , x(2)i ) =

− 1
N

N

∑
i=1

log
exp(dist(z(1)i , z(2)i )/ν)

∑N
j=1 1[j 6=i]exp(dist(z(1)i , z(1)j )/ν) + ∑N

j=1 exp(dist(z(1)i , z(2)j )/ν)
,

(1)

where dist(u, v) = uTv
||u||||v|| , z(1)i = h ◦ f (x(1)i ), z(2)i = h ◦ f (x(2)i ), f (·) is an encoder, h(·)

is a neural network layer that transforms feature vectors to the space where contrastive
loss is used, 1[j 6=i] represents an indicator function that outputs 1 when j 6= i holds and 0
otherwise and ν is a temperature parameter.

4. Proposed Method

We first present the problem definition of satellite telemetry data correlation anomaly
detection. Then, we give an overview of CLPNM-AD and briefly introduce its modules.
Finally, we describe the proposed method in detail.

4.1. Problem Definition

This paper is based on the assumption that, in routine operation, correlations between
satellite telemetry variables exhibit some common patterns, and that ground operators
should focus on the few outliers that deviate from these common patterns.



Sensors 2023, 23, 4723 6 of 19

Each sample of satellite telemetry data from a subsystem or device at time t is repre-
sented by a vector, as in the form

xt = [d1
t , d2

t , . . . , dM
t ], (2)

where dj
t is the value of the j-th dimension of telemetry data at time t and M is the dimension

of sample xt.
The semi-supervised scenario is addressed in this paper, in which the training dataset

Xtrain = {x1, x2, . . . , xN} contains only normal data samples and the test dataset Xtest
contains both normal and abnormal data samples. The goal of the anomaly detection
method is first to create an anomaly scoring model s(·) from Xtrain:

s : x → b, (3)

where b is the anomaly score that predicts how anomalous the sample x is, and then
to create an anomaly decision function ∆(·) to emit a judgment of whether x is normal
or abnormal:

∆ : b→ {0, 1}, (4)

where 0 denotes normal, 1 denotes anomalous and the anomaly decision function ∆(·) is
often implemented by a conditional judgment, which means that the sample x is determined
to be anomalous if its anomaly score, s(x), exceeds a specified threshold.

4.2. Overview of CLPNM-AD Framework

The CLPNM-AD framework is shown in Figure 2, which contains a data augmentation
module, representation learning module and anomaly scoring module.

Figure 2. The framework of CLPNM-AD.
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First, we use the augmentation functions AI and Asa to generate two augmented
samples of sample x. We then propose a contrastive learning with the prototype-based
negative mixing (CLPNM) method to learn the representation of the training data Xtrain.
As depicted in the representation learning module in Figure 2, the encoder and projection
head map the augmented samples to the feature space, then the probability values of the
feature vectors assigned to the prototypes are obtained to learn the semantic consistency
of the augmented samples and finally the hard negative samples are generated to guide
the contrastive representation learning. In this way, a representation specific to anomaly
detection is obtained. Finally, the anomaly score is calculated for each sample based on the
Mahalanobis distance between the sample feature and the closest prototype.

4.3. Data Augmentation

As a vital part of contrastive learning, techniques to generate views are domain-specific
(e.g., color distortion [19] and geometric transformation [32] in computer vision). Unlike
image data, telemetry data cannot be augmented using color and geometric transformations.
In this paper, two augmentation strategies,AI andAsa, are used as augmentation functions,
where AI is a identity mapping and Asa is a stochastic process with random feature
corruption.

Inspired by the literature [39], the stochastic augmentation generation method is shown
in Algorithm 1. In this algorithm, we denote a process Asa to obtain the augmentation view
of a sample x. It first computes the empirical marginal distribution for each feature’s values
throughout the whole training dataset, and next randomly selects a subset of features and
draws a random value from the empirical marginal distribution of each feature in that
subset to replace the value of that feature in the sample.

Algorithm 1: Stochastic augmentation function Asa

Input: training dataset Xtrain ⊆ RM, data sample x ∈ Xtrain, the number of
corruption dimensions k.

Output: the augmented view x̃
1 let UD(i) be the uniform distribution defined on X(i) = {x(i) : x ∈ Xtrain}, where

x(i) is the value of i-th dimension of the sample x;
2 let V be uniformly sampled subset from {1, 2, · · · , M} of size k;
3 let x̃ = x;
4 for i ∈ {1, 2, · · · , M} do
5 if i ∈ V then
6 x̃(i) = v, where v ∼ UD(i);
7 end
8 end

4.4. Representation Learning

In the CLPNM-AD method, a one-dimensional convolution encoder maps the samples
into the feature space. The prototype and pseudo-label of the sample are then calculated
by self-labeling based on the features. Finally, hard negatives are synthesized based on
the prototypes and pseudo-labels to guide the network parameters learning. Prototype
learning and network parameters updating are performed alternately.

4.4.1. One-Dimensional Convolution Encoder

The main goal of the encoder is to map the samples to the feature space. As an encoder
in this paper, a one-dimensional convolutional network is designed, as shown in Figure 3.
To begin, a linear layer is used to map the samples to a high-dimensional vector, which is
then reshaped to obtain the features of multiple channels, after which one-dimensional
convolutional layers are used to perform convolutional operations, and finally the features
of multiple channels are flattened to obtain the final feature vector of the samples.
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Figure 3. One-dimensional convolutional network structure.

4.4.2. Self-Labeling by Clustering Consistency

As shown in Figure 2, deep neural networks h ◦ f (·) map the augmented view x(a)
i

to the feature vector z(a)
i ∈ RD by z(a)

i = h ◦ f (x(a)
i ), where a ∈ {1, 2} is the index of a

view. After that, the feature vector z(a)
i is mapped to K clusters, the centroids of which

are implemented by K trainable prototype vectors {c1, c2, . . . , cK}. We define matrix C,
whose columns are composed of the vectors c1, c2, . . . , cK, and which is implemented by a
single linear neural network. The matrix C converts the feature vector z(a)

i to class scores.
The softmax operator is then used to map the class scores to the class probabilities:

p(y = ·|x(a)
i ) = so f tmax(C ◦ h ◦ f (x(a)

i )). (5)

We represent the pseudo-label of the sample x(a)
i by posterior distribution q(y = ·|x(a)

i ).

The cross-entropy loss of p(y = ·|x(a)
i ) and q(y = ·|x(a)

i ) defines as

E(p(x(a)), q(x(a))) = − 1
N

N

∑
i=1

K

∑
y=1

q(y|x(a)
i ) log p(y|x(a)

i ). (6)

In the anomaly detection setting, the semantic label of the sample is unknown. Opti-
mizing E(p(x(a)), q(x(a))) will lead q to a degenerate solution, namely assign all samples to
a randomly single pseudo-label. To prevent degenerate solutions, we introduce a constraint
that the assignment of pseudo-labels must divide the data samples from a mini-batch into
clusters with equal size [40]. Formally, the optimization objective is thus

min
p,q

E(p(x(a)), q(x(a))) s.t. ∀y : q(y|x(a)
i ) ∈ [0, 1] and

N

∑
i=1

q(y|x(a)
i ) =

N
K

. (7)

The objective of Equation (7) can be viewed as an optimal transport problem. To solve
this problem, we define P and Q as two K× N matrices of joint probability. The elements
in P and Q denote as

Pyi = p(y|x(a)
i )

1
N

; Qyi = q(y|x(a)
i )

1
N

. (8)

To meet the equal partition constraint, we make the matrix Q a transportation poly-
tope [40]:

U = {Q ∈ RK×N
+ |Q1N =

1
K

1K, QT1K =
1
N

1N}, (9)

where 1N and 1K are vectors of all ones of corresponding dimensions.
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Then, the optimization objective in Equation (7) can thus be expressed as

min
Q∈U
〈Q,− log P〉, (10)

where 〈·〉 denotes the Frobenius dot-product of two matrices. The Sinkhorn–Knopp [41]
algorithm is then used to solve the above transport problem, which amounts to introducing
a regularization term

min
Q∈U
〈Q,− log P〉+ 1

N
KL(Q||rcT), (11)

where KL denotes the Kullback–Leibler divergence, r = 1
K 1K, and c = 1

N 1N . The advantage
of bringing in the regularization term KL(Q||rcT) is that the minimizer of Equation (11)
can be transformed to

Q = diag(Γ)Pλdiag(Λ), (12)

where Γ and Λ are two scaling coefficient vectors and λ is used to balance the convergence
speed and proximity level to the original transport problem. In this paper, we specify a
fixed value for λ.

The pseudo-label matrix Q is then used to guide the learning of the neural network
parameters. To encourage the two augmented views x(1)i and x(2)i to be assigned to the

same cluster, we assign x(1)i the pseudo-label q(y = ·|x(2)i ) (not q(y = ·|x(1)i )) and vice
versa. The consistency loss denotes as

Lconsistency = − 1
N

N

∑
i=1

K

∑
y=1

[ q(y|x(1)i ) log p(y|x(2)i ) + q(y|x(2)i ) log p(y|x(1)i ) ], (13)

where N denotes the mini-batch size and K denotes the number of prototypes.

4.4.3. Negative Mixing Contrastive Objective

The pseudo-label matrix Q, on one hand, is used to learn clustering consistency, and
on the other hand, is used to mitigate the sampling bias and obtain hard negatives to guide
the contrastive loss. The soft label is represented by Q in the preceding section, while we
require the hard label in this part to reflect the semantic clusters of the data. To acquire the
hard labels, we simply apply the argmax function to the soft labels.

We obtain hard negatives by mixing the anchor feature vector with sample vectors
from different prototypes in the mini-batch. The weight of sample mixing is determined by
the distance between prototypes. We denote the distance between two prototypes as

d(ci, cj) = 1−
cT

i cj

||ci||2||cj||2
, (14)

where ci and cj are two prototypes from prototypes C in Figure 2.
For the anchor feature vector zi and sample feature vector zj, the mixed sample can be

calculated by

hj =
h̃j

||h̃j||2
; h̃j = zi · (1− d(ci, cj)) + zj · d(ci, cj). (15)

The prototype-based contrastive loss is defined as

Lpcl = −
1
N

N

∑
i=1

log

 exp(dist(z(1)i , z(2)i )/ν)

∑2N
j=1 1ci 6=cj exp(dist(z(1)i , hj)/ν)

+
exp(dist(z(2)i , z(1)i )/ν)

∑2N
j=1 1ci 6=cj exp(dist(z(2)i , hj)/ν)

. (16)

The final training objective couples Lconsistency and Lpcl as

L = Lpcl + η Lconsistency, (17)
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where η is used to balance Lpcl and Lconsistency.
The core of the proposed method is to learn a model C ◦ g ◦ f and a pseudo-label

matrix Q. This is accomplished by alternately performing the following two steps:
Step 1: representation learning. Given the pseudo-label assignments matrix Q, the pa-

rameters of model C ◦ g ◦ f are optimized by minimizing Equation (17).
Step 2: self-labeling. Given the model C ◦ g ◦ f obtained from step 1, we first calculate

the class probability P by using Equation (5), and then calculate Q using Equation (12):

∀y : Γy = [PλΛ]−1
y ; ∀i : Λi = [ΓT Pλ]−1

i . (18)

4.5. Score Functions for Detecting Anomaly

To determine whether a sample is normal or anomalous, we use representations and
prototypes to assess the degree of anomaly of the sample. Refs. [27,42] show that the
projection head focuses too much on the proxy task, and the output features lose useful
information for the downstream task. Therefore, we construct the anomaly score function
based on the representations of encoder fθ .

Let xi be an input and yi ∈ {1, · · · , K} be its label, which is obtained by executing
argmax operation on the pseudo-label matrix Q in Section 4.4.2. Following [43,44], we
assume that the feature vectors with the same prototype follow a prototype-conditional
multivariate Gaussian distribution. Specifically, we define a conditional Gaussian distri-
bution for each of the K prototypes, and all K conditional Gaussian distributions share a
common covariance Σ: P( f (xi)|yi = c) = N ( f (xi)|µc, Σ), where µc is the mean of feature
vectors calculated by f (·) with the prototype c ∈ {1, · · · , K}. To estimate the parameters
µc and Σ in the conditional Gaussian distribution, we use N data samples from the entire
training set for the calculation (not the samples in a batch):

µ̃c =
1

Nc

N

∑
i=1

1[yi=c] f (xi); Σ̃ =
1
N

K

∑
c=1

N

∑
i=1

1[yi=c]( f (xi)− µ̃c)( f (xi)− µ̃c)
T , (19)

where N denotes the number of samples contained in the training set, Nc denotes the
number of samples with prototype c and 1[yi=c] outputs 1 when yi = c holds, otherwise 0.

Based on the empirical class mean and the covariance of prototype conditional Gaus-
sian distribution obtained above, we define the anomaly score s(x) for sample x by the
following equation:

s(x) = min
c

( f (x)− µ̃c)
TΣ̃−1( f (x)− µ̃c). (20)

The anomaly score indicates the degree of abnormality of each sample. The higher
the anomaly score, the more abnormal the sample is. To achieve an anomaly decision for
the samples, the protocol in the literature [11,17] is used, in which the decision threshold
is based on the percentage of anomalies in the test set, e.g., if the percentage of anomalies
in the test set is ρ, the ρ of samples with the highest anomaly scores are considered to
be anomalous.

5. Experiments

In this section, we describe the selected datasets and the baseline methods, and perform
a series of experiments to validate the proposed method. Firstly, the proposed method
is compared with the state-of-the-art methods and validated by statistical hypothesis
testing. Then, the robustness of the method is verified on data with different contamination
ratios. Furthermore, the effectiveness of each module of the method is verified by ablation
experiments. Finally, sensitivity analyses are also implemented to explore the response
of the model to different hyperparameters. The code is available at https://github.com/
guoguohang/CLPNM_AD, (accessed on 15 March 2023).

https://github.com/guoguohang/CLPNM_AD
https://github.com/guoguohang/CLPNM_AD


Sensors 2023, 23, 4723 11 of 19

5.1. Datasets

We adopt three public datasets: Thyroid, Satellite, Satimage and one actual teleme-
try data source from the Quantum Science Experiment Satellite, also known as Micius.
The statistical information of the datasets is shown in Table 1.

Table 1. Statistical information of the datasets.

Dataset Dimensions Instances Anomaly Ratio (ρ)

Thyroid 6 3772 0.025
Micius 19 11250 0.200

Satellite 36 6435 0.316
Satimage 36 5803 0.012

• Thyroid. The dataset is a thyroid disease classification dataset from the outlier de-
tection datasets (OODS) repository (http://odds.cs.stonybrook.edu/thyroid-disease-
dataset/, (accessed on 29 March 2023)), which contains six continuous attributes.
The original dataset contains three classes. As hyperfunction is a minority, researchers
in the field of anomaly detection treat hyperfunction as anomaly class.

• Micius. The dataset is from the telemetry data of China’s Quantum Science Experi-
ment Satellite, also known as Micius (https://doi.org/10.57760/sciencedb.o00009.000
42, (accessed on 29 March 2023)), which contains 19 attributes, and the time span is
from January 2017 to February 2019. Micius has four operation patterns. As pattern 4
is rare, we treat pattern 4 as anomaly class and the rest as normal class.

• Satellite. The Satellite dataset is integrated by Landsat Satellite from the OODS
repository (http://odds.cs.stonybrook.edu/satellite-dataset/, (accessed on 29 March
2023)). Data from three minority categories, 2, 4 and 5, are combined to form the
anomaly class, while the remaining classes are combined to form the normal class.

• Satimage. The Satimage-2 dataset is from the OODS repository (http://odds.cs.
stonybrook.edu/satimage-2-dataset/, (accessed on 29 March 2023)) and is also inte-
grated from Landsat Satellite. Combining the training and test data in the Landsat
Satellite dataset, there are 71 outliers in class 2 and all other classes are merged into a
normal class.

5.2. Baseline Methods

The following six methods are selected to compare with CLPNM-AD:

• OC-SVM [23]. One-Class Support Vector Machine (OC-SVM) is a classical kernel-
based anomaly detection method that uses normal data to learn a decision boundary
in order to distinguish normal from anomalous data.

• LOF [25]. Local Outlier Factor (LOF) uses the degree of isolation of a sample relative
to its surrounding neighbors as the anomaly score to achieve the distinction between
normal and abnormal data samples.

• DAGMM [11]. Deep Autoencoding Gaussian Mixture Model (DAGMM) consists
of a compression network and an estimation network. The autoencoder acts as
a compression network to map the samples into the feature space. The obtained
feature vectors and the reconstruction error of the compression network are fed to the
estimation network to obtain the energy score/anomaly score.

• Deep SVDD [26]. Deep Support Vector Data Description (Deep SVDD) is the deep
variant of SVDD, which aims to leverage the feature extraction capabilities of deep
learning to learn a hypersphere only using normal data.

• GOAD [17]. GOAD is a classification-based method for detecting anomalies for
general data, which obtains anomaly scores by training a classifier on a set of random
auxiliary tasks.

• NeuTraL AD [18]. Neural Transformation Learning for Deep Anomaly Detection (Neu-
TraL AD) uses a set of learnable transform to replace the fixed random affine transform

http://odds.cs.stonybrook.edu/thyroid-disease-dataset/
http://odds.cs.stonybrook.edu/thyroid-disease-dataset/
https://doi.org/10.57760/sciencedb.o00009.00042
https://doi.org/10.57760/sciencedb.o00009.00042
http://odds.cs.stonybrook.edu/satellite-dataset/
http://odds.cs.stonybrook.edu/satimage-2-dataset/
http://odds.cs.stonybrook.edu/satimage-2-dataset/
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in the previous literature and provides an end-to-end anomaly detection method with
loss function in a form similar to the contrastive loss function.

5.3. Evaluation Metrics

Following the settings in [11,17], the models are trained using a randomly selected
subset of 50% of the normal data and are evaluated on the remaining normal data as well as
all the anomaly data. We use the mean and standard deviation (σ) of F1 score after 20 ran-
dom splits to compare the anomaly detection performance. The threshold for identifying
anomalous samples is determined by the anomaly ratio ρ in Table 1, which indicates that
samples with an anomaly score higher than 100 ∗ ρ quantiles will be identified as anomaly.
We consider the anomaly class to be positive class and define the F1 score accordingly. F1

score is defined as follows: F1 = 2∗Precision∗Recall
Precision+Recall , where Precision= |G∩R|

|R| , Recall= |G∩R|
|G| , G

denotes the set of real anomalous samples and R denotes the set of anomalous samples
identified by our method.

5.4. Model Configuration

This section describes the network structure as well as the details of model train-
ing. In our experiments, all the CLPNM-AD instances are implemented based on the
Pytorch framework. For each dataset, the network structure of the encoder, projection
head and prototype in CLPNM-AD are shown in Table 2. For the other hyperparame-
ters, the corruption dimension k in the stochastic augmentation process Asa is set to 4, 16,
34 and 32 for the datasets Thyroid, Micius, Satellite and Satimage, respectively, the tem-
perature ν in Equation (16) is set to 0.07 and the balance coefficient η in Equation (17)
is set to 0.4 for each dataset. All model instances are trained by using mini-batch SGD
with a momentum of 0.9. The initial learning rate LR0 is set as 0.001 and updated by
LRt = LRt−1∗0.5∗(1 + cosine(π + t/ND)) where ND is the number of the total epochs.

Table 2. Network structure of CLPNM-AD for each dataset.

Operation Units Activation FunctionThyroid Micius Satellite Satimage

Encoder

Linear (6, 128) (19, 128) (36, 128) (36, 128) LeakyReLU(0.2)
Reshape (*, 16, 8) (*, 16, 8) (*, 16, 8) (*, 16, 8)
Conv1d (16, 32, 1) (16, 32, 1) (16, 32, 1) (16, 32, 1)

BatchNorm1d (32) (32) (32) (32) LeakyReLU(0.2)
Conv1d (32, 6, 1) (32, 32, 1) (32, 36, 1) (32, 256, 1)

BatchNorm1d (6) (32) (36) (256) LeakyReLU(0.2)
Conv1d (6, 6, 1) (32, 32, 1) (36, 36, 1) (256, 256, 1)

BatchNorm1d (6) (32) (36) (256)
Flatten LeakyReLU(0.2)
Linear (48, 6) (256, 32) (288, 36) (2048, 256) LeakyReLU(0.2)

Projection Head Linear (6, 6) (32, 32) (36, 36) (256, 256)

Prototypes (C) Linear (6, 4) (32, 8) (36, 4) (256, 12)

The symbol * in this table denotes a positive integer determined by the number of samples in the batch.

5.5. Effectiveness Evaluation

On four datasets, we examine the effectiveness of CLPNM-AD compared with that of
six baseline methods. We use bold font to indicate the best F1 score and underlined font to
indicate the second-best F1 score.

Table 3 shows the average F1 scores and standard deviations of CLPNM-AD as well
as the baseline methods. The F1 score of CLPNM-AD surpasses all baseline methods
on all datasets. Specifically, CLPNM-AD performs significantly better than the baseline
methods on Thyroid and Micius, which achieves 11.5% and 11.0% improvement compared
to the sub-optimal approaches DAGMM and LOF. For Satellite and Satimage datasets,
CLPNM-AD still surpasses the next best method DAGMM and GOAD by 3.5% and 0.8%,
respectively.
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Table 3. Mean F1 and σ of CLPNM-AD and all baseline methods(%). The highest F1 scores are shown
in bold, and the next highest F1 scores are underlined.

Method
Dataset

Thyroid Micius Satellite Satimage
F1± σ F1± σ F1± σ F1± σ

OC-SVM [23] 57.6 ± 4.5 67.0 ± 0.7 75.0 ± 0.4 77.7 ± 3.1
LOF [25] 60.4 ± 3.3 75.4 ± 1.4 75.0 ± 0.7 84.6 ± 2.6

DAGMM [11] 74.1 ± 8.9 56.4 ± 7.2 75.1 ± 3.6 86.6 ± 3.1
DSVDD [26] 67.9 ± 6.0 55.5 ± 0.7 74.7 ± 0.4 89.2 ± 2.3
GOAD [17] 74.0 ± 3.7 70.6 ± 6.0 72.7 ± 1.8 91.9 ± 2.2

NeuTraL AD [18] 70.4 ± 2.6 69.1 ± 5.9 74.4 ± 0.3 85.3 ± 4.9
CLPNM-AD (Ours) 82.6 ± 3.0 83.7 ± 1.1 77.7 ± 0.5 92.7 ± 1.3

OC-SVM maps samples to one side of the hyperplane using a kernel function and
does not take into account the semantic information shared by different samples. Simply
mapping these samples to one side of the hyperplane tends to result in the overlapping of
samples and thus makes it difficult to distinguish between normal and abnormal samples.
Therefore, the results in Table 3 show that OC-SVM performs poorly among all methods.

LOF uses the distance between a sample and its surrounding points for anomaly
detection, which takes into account the local similarity of the samples and to some extent
the semantic similarity information of the samples. As a result, LOF outperforms OC-
SVM, particularly on the Micius dataset, where OC-SVM performs suboptimally. However,
because LOF is based on the original samples and lacks feature extraction capability, it
cannot effectively model the data’s characteristics.

DAGMM uses the reconstruction error and intermediate layer vectors as feature
vectors, followed by a Gaussian mixture model for anomaly detection, achieving good
performance on most datasets because the mixture component of the Gaussian mixture
model models the semantic category information of the samples. However, DAGMM per-
forms poorly on the Micius dataset because the distinction between normal and abnormal
samples was not very clear, and it cannot map different semantic category samples apart,
resulting in poor performance.

DSVDD achieves anomaly detection by mapping samples into a hypersphere, but it
lacks the ability to capture the semantic information of the samples and maps all samples
into the same hypersphere, which results in samples with different semantic information
overlapping in the feature space and does not facilitate the distinguishing of normal and
abnormal samples. As can be seen from Table 3, DSVDD achieves poor performance on the
Micius dataset, as does DAGMM.

GOAD augments the samples with a random affine transformation and then maps the
augmented samples to the feature space for anomaly detection by predicting the transform
used. The affine transform is used as the semantic class in this approach, and the augmented
samples obtained using the same affine transform are clustered into one class in the feature
space. Such an approach lacks sample semantic information modeling and achieves good
results when the anomalous samples are of a single semantic category and the anomaly
rate is low, e.g., as shown in Table 3, the model performs well on the Satimage dataset
but performs poorly on the Satellite dataset where the anomalous samples contain more
semantic categories and the anomaly rate is high.

In comparison to GOAD, NeuTraL AD employs a trainable multilayer neural network
as the data augmentation function and a loss function similar to contrast loss to separate
samples with different transformations for anomaly detection. The method suffers from
the same limitation of a lack of sample semantic information modeling, and thus its
performance is inadequate, as shown in Table 3.

Overall, CLPNM-AD outperforms all baselines on four datasets. The one-dimensional
convolutional network in CLPNM-AD helps to capture the features of the samples, which
can be adapted to anomaly detection tasks on different datasets. In addition, the consistency
loss in CLPNM-AD helps the network to capture the semantic information of the samples,
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while the hard negative mixing strategy provides stronger guidance to help the contrast
loss to separate and disperse the semantically different samples onto the hypersphere as
much as possible, which allows the model to accurately profile the normal samples and
thus make the normal and abnormal samples more distinguishable.

To quantitatively assess the effectiveness of CLPNM-AD, we statistically evaluate
the results of 20 runs of CLPNM-AD with six baseline methods on four datasets using
the Wilcoxon rank sum test. We test which of the null hypothesis H0 or the alternative
hypothesis H1 holds for each pair of methods: H0: A ≈ B, H1: A > B, where A represents
the F1 score of CLPNM-AD on a specific dataset and B represents the F1 score of the baseline
method on the same dataset, A ≈ B means that the results of the two methods compared
are not significantly different and A > B means that the results of A are better than those of
B. For each test, we compute the p-value, and the hypothesis is tested at a significance level
of αs = 0.01.

As shown in Table 4, except for GOAD on Satimage, all Wilcoxon test results meet
p < αs, allowing us to reject the null hypothesis H0 and accept the alternative hypothesis
H1. This means that CLPNM-AD outperforms the baseline methods in all cases except for
the Satimage dataset, where CLPNM-AD has nearly the same excellent results as GOAD.

In general, on all datasets, the CLPNM-AD method outperforms all baseline methods,
and the advantage is statistically significant.

Table 4. p-values of Wilcoxon rank sum test for F1.

Dataset Method
OC-SVM LOF DAGMM DSVDD GOAD NeuTraL AD

Thyroid 3.26× 10−8 3.25× 10−8 1.69× 10−6 3.79× 10−8 3.71× 10−7 3.52× 10−8

Micius 3.39× 10−8 3.38× 10−8 3.39× 10−8 3.39× 10−8 4.57× 10−8 3.39× 10−8

Satellite 3.36× 10−8 3.37× 10−8 6.89× 10−3 3.36× 10−8 3.37× 10−8 3.34× 10−8

Satimage 2.60× 10−8 2.60× 10−8 3.52× 10−8 1.85× 10−8 1.33× 10−1 8.20× 10−8

5.6. Robustness Evaluation

In satellite telemetry anomaly detection applications, the training data are frequently
mixed with noisy data, or the anomalous samples are incorrectly labeled as normal during
the training dataset construction, so we need to investigate the model’s sensitivity to
contamination. In this experiment, we investigate how CLPNM-AD and all baselines
respond to contaminated training data. We adopt the experiment setup in the literature [11]
according to which, in each run, all of the anomaly data are combined with 50% of the
randomly selected normal data to form the test set, and the remaining 50% of the normal
data are mixed with c% of the anomaly data for model training. We examine the model’s
average F1 value when the contamination ratio is c% = [1%, 2%, 3%, 4%, 5%].

Figure 4 illustrates the F1 score of CLPNM-AD and all baselines after 20 runs. As ex-
pected, contaminated training data have a detrimental impact on detection accuracy in the
majority of the situations. The mean F1 score of CLPNM-AD declines somewhat across all
datasets when the contamination ratio c% grows from 1% to 5%. When the contamination
ratio is increased from 0 to 5%, the performance of CLPNM-AD decreased by 3.51%, 3.08%,
2.57% and 1.64% on the Thyroid, Micius, Satellite and Satimage datasets, respectively. Such
a performance decline is somewhat tolerable. We also note that CLPNM-AD outperforms
the baseline methods at different contamination ratios on all datasets.

CLPNM-AD has a certain tolerance for contaminated data, which may be because
the consistency loss allocates the samples in a batch equally into each semantic category,
preventing contaminated samples from being assigned to the same cluster. As a result,
the contaminated samples have less impact on the probability distribution calculation of
each semantic category, making the model somewhat robust to the anomalous samples
mixed in the training set.
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In general, CLPNM-AD is robust against contaminated data, maintaining good perfor-
mance as the contamination ratio c% increases from 1% to 5% and always outperforming
the performance of all baselines. In addition, to concentrate the model on the anomaly
detection task and obtain greater anomaly detection accuracy, the model must be trained
with a high-quality dataset, i.e., a clean dataset or a dataset with a low contamination ratio.

(a) F1 scores on Thyroid. (b) F1 scores on Micius.

(c) F1 scores on Satellite. (d) F1 scores on Satimage.

Figure 4. Anomaly detection results of CLPNM-AD and baseline methods on training datasets with
contamination ratio c% = [0%, 1%, 2%, 3%, 4%, 5%].

5.7. Ablation Experiment

In this experiment, we investigate the impact of various modules in the model. We
repeat our experiment with/without a specific key module. These key modules are primar-
ily vanilla InfoNCE loss Lin f once, clustering consistency objective loss Lconsistency and the
negative samples mixing strategy, where Lin f once and negative samples mixing strategy
form Lpcl .

As shown in Table 5, our full model achieves the best performance on all datasets.
When only Lconsistency is used, the method performs poorly because it makes no sense to
emphasize consistency without the similarity information between samples as a semantic
category guide. When only Lin f once is used, the method performs better than when only
Lconsistency is used because Lin f once can explore the consistency of positive samples in the
feature space while also pushing negative samples away, resulting in a more conducive
semantic structure to detect anomalies. Combining Lconsistency and Lin f once for model
training outperforms Lconsistency and Lin f once alone on most datasets. This is probably
because Lconsistency can further exploit the semantic similarity information extracted by
Lin f once to make the clusters more separable and thus facilitate anomaly detection. Our
full model achieves the best performance due to the ability of hard negative samples to
contribute a larger magnitude gradient to update the network parameters, while also
weakening the contribution of false negative samples to the gradient, preventing semantic
similarity from being broken and thus facilitating the separation of normal and abnormal
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samples. In conclusion, these ablation experiments validate that each module in our model
is useful and necessary.

Table 5. Ablation study on Thyroid, Micius, Satellite and Satimage datasets.

Lconsistency
Lpcl Datasets

Lin f once Negatives Mixing Thyroid Micius Satellite Satimage

X 63.3 ± 5.0 83.2 ± 1.1 74.8 ± 0.3 91.4 ± 1.0
X 75.4 ± 3.5 83.1 ± 1.3 75.5 ± 8.3 92.6 ± 1.9

X X 80.3 ± 1.9 83.2 ± 1.2 75.7 ± 0.6 91.5 ± 2.5

X X X 82.6 ± 3.0 83.7 ± 1.1 77.7 ± 0.5 92.7 ± 1.3

5.8. Sensitivity Studies

In this section, we discuss the effect of the number of prototypes K and batch size N
on the performance of CLPNM-AD on the Thyroid, Micius, Satellite and Satimage datasets.

Figure 5 depicts the performance of CLPNM-AD with varying numbers of prototypes
K = [4, 8, 12, 16, 20, 24]. It can be observed that CLPNM-AD is resistant to prototype
numbers on Micius, Satellite and Satimage. In the case of Thyroid, the number of prototypes
has an evident effect on CLPNM-AD, with F1 decreasing as K increases from 4 to 24. We
conjecture that the model degeneration on Thyroid is due to the fact that the dataset itself
has specific semantic clusters, the number of which is close to four, and increasing the
number of prototypes too much will break this semantic structure.

Figure 5. Sensitivity analysis for the number of prototypes.

Figure 6 illustrates the detection performance of CLPNM-AD with batch size
N = [32, 64, 128, 256, 512, 1024]. On Micius, Satellite and Satimage, we can see that CLPNM-
AD is not sensitive to batch size, and the performance does not vary significantly when
the batch size N is varied. On Thyroid, however, CLPNM-AD was more clearly affected
by the batch size, with the method achieving the best performance at batch size N = 512.
This may be because too small batches contain too few samples and lack negative samples
to guide network learning, while too large batches cause the network to converge more
slowly and fail to fully converge for a given epoch number.
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Figure 6. Sensitivity analysis for batch size.

6. Conclusions

In this paper, we propose a correlation anomaly detection method for telemetry data,
namely CLPNM-AD. The CLPNM-AD framework first employs an augmentation process
with random feature corruption to obtain augmented samples. Following that, a prototype
consistency strategy is used to capture the semantic category information of the samples.
After that, prototype-based negative mixing contrastive loss is used to pull positive samples
from the same prototype closer together and to push samples from different prototypes
farther apart to obtain a profile that makes normal and anomaly distinguishable. Finally,
anomaly decisions are made using a prototype-based anomaly score function. Extensive
experiments are carried out to demonstrate superior performance to baselines on a variety
of datasets, with up to 11.5% improvements on the standard F1 score. The experiments also
show CLPNM-AD’s robustness against noise, insensitivity to batch size and the number of
prototypes and validate the need for each module in CLPNM-AD.

The method proposed in this paper combines contrastive learning and prototype
learning to train an encoder to build a profile of normal telemetry data and then use
that profile to distinguish between normal and anomalous samples, allowing for better
anomaly detection. Our contribution is to use the distance between prototypes as a weight
to synthesize hard negative samples and guide encoder learning, resulting in a more
discriminative normal profile and a new framework for detecting correlation anomalies in
telemetry parameters. In our real-world satellite operation tasks, the method complements
existing limit checking and expert system approaches.

The results of the ablation experiments in Section 5.7 show that using the hard-negative
samples synthesis strategy improves the algorithm’s performance on different datasets
to varying degrees, and that using the learned semantic category information to guide
the encoder’s learning is beneficial for learning normal profiles. It can also be seen that
the degree of algorithm improvement varies across datasets, which may be related to the
underlying semantic categories in the data, and thus exploring how to better design proto-
type learning algorithms may be an interesting direction for future research. Furthermore,
the goal of anomaly detection is to create a profile that distinguishes between normal and
anomalous samples, and in the future, adding stronger constraints to the normal profile
(using synthetic anomalous samples or a small number of real anomalous samples) to
learn a more discriminative normal profile should be considered. Simultaneously, practical
applications in satellite operations necessitate the construction of anomaly detection models
as simply and rapidly as possible, so future work should investigate how to automate the
search for hyperparameters and the network structure of the encoder.
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