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Abstract: Indoor positioning enables mobile machines to perform tasks (semi-)automatically, such
as following an operator. However, the usefulness and safety of these applications depends on the
reliability of the estimated operator localization. Thus, quantifying the accuracy of positioning at
runtime is critical for the application in real-world industrial contexts. In this paper, we present a
method that produces an estimate of the current positioning error for each user stride. To accomplish
this, we construct a virtual stride vector from Ultra-Wideband (UWB) position measurements. The
virtual vectors are then compared to stride vectors from a foot-mounted Inertial Measurement Unit
(IMU). Using these independent measurements, we estimate the current reliability of the UWB
measurements. Positioning errors are mitigated through loosely coupled filtering of both vector
types. We evaluate our method in three environments, showing that it improves positioning accuracy,
especially in challenging conditions with obstructed line of sight and sparse UWB infrastructure.
Additionally, we demonstrate the mitigation of simulated spoofing attacks on UWB positioning.
Our findings indicate that positioning quality can be judged at runtime by comparing user strides
reconstructed from UWB and IMU measurements. Our method is independent of situation- or
environment-specific parameter tuning, and as such represents a promising approach for detecting
both known and unknown positioning error states.

Keywords: indoor positioning; ultra-wideband; NLOS mitigation; ZUPT; sensor fusion; industrial
automation

1. Introduction

The increasing digitalization and networking of industrial plants enables increases
in productivity and worker safety, and is an ongoing research topic. As such, networked
industrial devices and people exchange increasingly rich machine-readable context informa-
tion, which enables collaborative human–machine interaction in manufacturing. Reliable
measurement of the positions of people is one such type of contextual information, and has
a variety of safety-related and productivity-enhancing applications.

However, if a machine is to collaborate with a person (e.g., to follow them), it must be
able to recognize the person and their location. While this capability is possible through
machine vision, i.e., object classification and identification using camera images, the be-
havior of such machine learning applications is hard to predict, especially in situations not
included in the training dataset. Thus, an alternative method is needed to locate people
and communicate their position to a machine. Here, we argue that reliable self-localization
of people through wearable or hand-held interconnected devices is a key element. If a
person can be reliably located, the determined position can be easily processed and fed
into the industrial network. A machine can then obtain the operator’s location information
independently of its own sensors and begin autonomous locomotion.

The localization of humans is subject to limitations that machines do not have; people
must carry lightweight devices, such as smartphones, that allow communication with the
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operating network, and these have to be equipped with sensors that facilitate localization
of the person. Suitable localization methods are based on the evaluation of radio signals
and inertial sensors, which can usually be detected by a smartphone and/or wearable
electronics. In this work, two technologies are considered and combined: Ultra-Wideband
(UWB) radio and Pedestrian Dead Reckoning (PDR).

Localization by means of UWB is accomplished by processing distance measurements
between a mobile transmitter and several fixed base stations (anchors). If an object is in
the line of sight between the mobile transmitter and an anchor, the distance measurement
is erroneous or impossible and any derived position is subject to a bias. This state is
commonly called non-line of sight (NLOS). This is contrasted by the line of sight (LOS)
state in normal operation. Whether an error case exists is not always clear or predictable at
runtime. For example, in industrial contexts large loads are often moved that can enter the
line of sight between anchor stations and a transmitter located near the ground. Similarly,
the user’s body has an attenuating effect on the useful signal. The actual noise and bias
introduced by body-shadowing can vary greatly depending on the situation [1].

In addition to technical error conditions, attacks on UWB measurements that artificially
lengthen or shorten the measured distances have been demonstrated [2–5]. Such attacks are
not completely preventable by most UWB transmission schemes, and lead to failures even
with robust methods [6]. Furthermore, sub-6 GHz 5G signals have a disruptive effect on
UWB measurements [7]. This is particularly challenging in industrial networks where UWB
is used for localization in parallel with local 5G networks. Thus, methods for detecting,
quantifying, and compensating for erroneous measurements at runtime are critical to the
reliability of positioning with UWB.

In contrast to positioning using UWB, wearable inertial measurement units (IMU)
allow for direct measurement of the acceleration and rotation rate of the localized person’s
body in order to measure their position change. This method is called Pedestrian Dead
Reckoning (PDR) [8]. Here, the user position is tracked from a known starting point with a
known starting orientation. Typically, this motion tracking is based on the detection of user
strides and on the measurement or estimation of stride direction and stride length. These
stride vectors are added in sequence for motion tracking. The determined stride vector is
subject to error which adds up over time; thus, the accuracy of localization by PDR alone
decreases with each stride. Additionally, the positioning quality depends on the quality of
the initial orientation and positioning.

The accuracy and reliability of indoor localization benefits from the combination of
absolute and relative positioning, such as UWB and PDR, because UWB interference usually
does not affect PDR and vice versa. Moreover, PDR can continue user localization in limited
time periods independently of infrastructure-based methods such as UWB.

In this work, we describe a contribution to robust indoor localization of humans
in UWB-enabled environments by combining IMU-derived stride vectors and position
measurements obtained by UWB. The result of the presented combination is the detection,
quantification, and compensation of UWB positioning error conditions at runtime. This
method is independent of assumptions about environmental factors, with the exception
of an assumed minimum variance of the measurements. The evaluation is based on real
measurements in different environments and on real and simulated error states. The results
show that our method is superior to UWB alone and to fusion with static error variances.

The rest of this article is organized as follows. The introduction is followed by an
overview of related works in Section 2. Our method is described in detail in Section 3, with
a particular focus on the construction of a virtual stride vector from UWB measurements in
Section 3.1, the dynamic error models in Section 3.2 and the fusion framework for corrected
position estimation in Section 3.3. The method is verified by experiments described in
Section 4, and the results of these experiments are provided in Section 5. Lastly, a discussion
of the whole work is presented in Section 6.
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2. Related Works

For optimal filtering of a position measurement, its uncertainty must be modeled
precisely. Because this uncertainty can change at runtime, it must be estimated at run-
time. This problem of estimating an error or noise covariance matrix in filtering processes
has been the subject of numerous publications. For example, at the time of the publica-
tion of the Kalman filter in [9], a method for estimating the process and measurement
variance by analysis of past filter results and measurements for a stationary process was
demonstrated [10]. A recent review in [11] generally distinguishes between methods with
and without feedback. Both variants have in common that they are based on processing
past state estimates. Methods with feedback estimate the covariance matrix based on past
covariance estimates. In contrast, methods without feedback use a history of the filter
innovation, i.e., the differences between the state prediction and measurements. Due to
this processing of past estimates and measurements, delayed adjustment of the estimated
covariance matrix is always to be expected when the measurement error changes rapidly.
This is especially problematic when errors due to NLOS occur during position tracking, as
the transition phase from LOS to NLOS is comparatively short. Moreover, malfunctions
or disturbances of a UWB system may occur abruptly. In order for such a system to be
operated safely, it is important for the estimate of the reliability of this system to respond
quickly to fault conditions. A distinction between the detection and mitigation approaches
to handling positioning error caused by NLOS is made in [12]. While methods used for
NLOS detection rule out erroneous measurements, methods for NLOS mitigation quantify
and compensate for the error using alternative data sources and/or stochastic methods.

In this work, we investigate an approach to error estimation that operates indepen-
dently of previous filter results. Rapid increases in the measurement error are reproduced in
the same filter interval using an appropriate estimate of the error covariance matrix. Thus,
erroneous position measurements are detected and their influence is reduced through a
loosely coupled system of combined UWB position measurements and PDR stride vectors.

In the following, an overview of related works describing indoor positioning with
UWB is provided. A particular focus is on works in which NLOS detection and mitigation
have been considered and on those in which PDR has been used to handle error cases
at runtime.

2.1. NLOS Detection without Fusion

An analysis of the maximum expected variance of a UWB position measurement in
LOS and NLOS and as a function of anchor placement was performed in [13]. However,
the method is not suitable for error estimation at runtime, as the actual position must be
known. The sample variance of a number of past measurements was observed in [14].
The authors described a method for selecting an optimal sample variance threshold to
declare an NLOS state. Here, it is assumed that there are known constant variances in
LOS and NLOS. According to the threshold test, one of the two variances is assumed to be
the variance of the current measurement. In [15], a UWB system was presented for safe
collaboration between people and machines in a manufacturing plant. NLOS was detected
by observing the channel impulse response of received signals. Localization took place
only if there were enough anchor stations in LOS. In [16], the authors used a simplified
model to determine the distance bias of a UWB measurement. This method is limited to
UWB measurements through walls of known thickness and permittivity. The influence of
the UWB incidence angle on the wall is determined together with the position by solving
a minimization problem. Accordingly, this method requires a map with appropriately
parameterized walls, and is not suitable for compensating for NLOS caused by moving
objects in the environment. In [17], UWB measurements were classified into LOS and
NLOS by comparing the signal properties with a set of reference properties under LOS
and NLOS. Similarity to the references was quantified on a scale from zero to one and
subjected to a test with empirically determined thresholds. Measurements classified as
NLOS were assigned a scaled variance for position determination. The scaling factor was



Sensors 2023, 23, 4744 4 of 34

determined from the previously determined similarity measures. The (scaled) reference
variances were determined empirically, and were invariant at runtime. Therefore, this
method is limited to detection and compensation of previously determined error scenarios
with known error characteristics. A simple method for detecting NLOS was presented
in [18]. The measured distance between two anchors was compared to the known actual
distance via the predetermined probability distribution of the measurement error. If the
deviation of the measurement from the expected value exceeds an empirically determined
threshold, NLOS between the anchors is assumed. This finding was applied to mobile
transmitters located in the area between the two anchors, which are themselves under
NLOS. While this method can detect cases of NLOS, it is insufficient in situations where
the mobile transmitters, blocking objects, and two UWB anchors are not located on a
common plane.

2.2. Fusion under NLOS

Positioning with UWB can be augmented with IMU measurements to improve posi-
tioning quality and help NLOS detection. The following works describe approaches to this
combination in which erroneous UWB measurements are discarded.

In [19–21], the authors used IMU data to propagate the user position estimate. In this
approach, a UWB measurement is discarded if its difference to the propagated estimate
exceeds a predetermined threshold. In [22], UWB measurements were discarded if the
difference between the received energy of the first path and the total received energy of
the channel impulse response exceeded a threshold. A more complex approach was taken
in [23], with the transition between LOS and NLOS modeled as a Markov process. The state
transition was calculated by comparing the likelihood of the measurement from the prede-
termined error distribution under LOS, then using the probabilities for the state transition.
Determination of UWB positioning was performed using a particle filter. Depending on
the LOS or NLOS state, particles no longer in a plausible region were deleted. In addition,
UWB positioning was fused with IMU measurements using a Kalman filter. However, the
authors did not describe a procedure to adjust the sensitivity of the filter with respect to
erroneous UWB measurements at runtime.

In contrast to discarding disturbed measurements, the following works selected a
fitting error distribution from a number of predetermined ones. Two methods for tight
and loose coupling of UWB and PDR were presented in [24]. NLOS compensation was
realized either by exclusion of measurements or assumption of a lumped additional error.
The channel impulse response of a received UWB signal was analyzed used in [25,26] for
NLOS detection. Compensation was accomplished by selecting predetermined variances
in LOS or NLOS for the measurement variance of an EKF in [25] and a particle filter in [26].
Additionally, an undefined state was considered in [26] in cases where the distinction be-
tween LOS and NLOS is unclear. Another approach was taken in [27]. Here, the transitions
of the NLOS/LOS states and the change in target position were modeled as a Markov
process with known locomotion velocity. The probabilities of change in the LOS/NLOS
state between time steps were empirically determined depending on the environment
under consideration. The UWB error distributions under LOS and NLOS were predeter-
mined as well. The determination of the actual LOS or NLOS state and target position
can be achieved with a particle filter in which the corresponding probability distributions
are applied to derive the most likely current state. The authors of [28] did not describe a
method to detect or quantify the bias due to NLOS; rather, they presented a method using
sigma-point transformation and preceding Schmidt–Kalman filtering [29] along with state
constraints [30] to achieve optimized state estimation in the presence of bias.

Yet another approach for handling erroneous UWB measurements is to scale the
assumed measurement variance. The measured UWB position and predictions based on
previous position filtering and user step measurements were compared in [31]. A heuristic
was used to convert the difference of both points into a weighting factor for the distance
measurements. This heuristic uses two pre-determined parameters that depend on the
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scenario considered. In [32], PDR and UWB were fused using their weighted average.
The weighting was based on the number of available UWB measurements. At runtime,
the exact values of the selected weights were constant and based on empirical values.
In [33,34], UWB measurement and PDR were processed using a Kalman filter. The UWB
measurement variance was adjusted if the Mahalanobis distance between the measurement
prediction and the actual measurement exceeded a threshold. The scaling factor was
determined by a heuristic depending on the Mahalanobis distance and the threshold
in [33], and was determined by an iterative algorithm in [34]. In these approaches, a
constant variance is assumed if the distance of the measured values remains below the limit.
In [35], a position hypothesis was extrapolated from the two most recent measurements
and the current acceleration. This hypothesis was offset against the current position
measurement to make a position correction when any separate method detected NLOS. The
authors introduced a constant correction factor depending on the empirically determined
NLOS error behavior in the environment. Another approach was taken in [36], where a
position was first determined through a minimization problem using the current set of
UWB distance measurements.

The residuals of these measurements were then used as the parameters of an expo-
nential scaling function populated by two other predefined parameters: an estimate of the
generally expected distance residual, and the estimated variance of the distance. Using this
function, the variance of the distance measurements was dynamically scaled. The scaled
variance was then used in a Kalman filter to fuse IMU data and UWB measurements for
position-finding. Variance scaling for a Kalman filter was applied in [37] in cases where the
UWB channel impulse response indicates NLOS. Scaling was carried out using a heuristic
based on the predetermined minimum and maximum values of the expected variance and
the number of anchor stations in LOS and NLOS, respectively.

Instead of explicit statistical modelling and tuning of heuristics, machine learning
can be applied to detect UWB measurements under NLOS and to predict and mitigate the
resulting error [38]. How well these models can be generalized to varying environments
and situations remains an ongoing research topic. Another approach was taken in [39],
where a particle filter was used to fuse PDR and sparse UWB distance measurements using
a map of the walkable environment. While this approach is suitable for environments with
constrained walkable paths, such as offices, it is less applicable to open environments with
changing layouts, such as workshop floors.

In summary, the works above depend on previous knowledge in the form of map
data or environmental variables, which are used to tune heuristics and thresholds or
to analyze the behavior of the measurement history. As such, it is unknown how well
these methods fare in unknown scenarios or whether they are sluggish to respond to fast
increases in error. While the safest approach is to outright ignore erroneous measurements,
in this paper we argue that using a dynamically determined measurement variance is
more beneficial for indoor positioning use cases, e.g., to quantify the trust in a position
measurement, which allows for dynamic safety zones to be established around workers in
industrial environments. In the following, we describe a method for estimating increases
in the UWB positioning error at runtime and for each stride of a person. The scaling
method is independent of predetermined assumptions about environmental factors, with
the exception of a lower bound to guard against overconfidence in a given measurement.
This dynamically determined variance is used within a loosely coupled fusion framework
to combine UWB data and PDR for the continuous tracking of people.

3. Methods

Our method is detailed in the following sections. First, the construction of the virtual
stride vector from UWB measurements is described in Section 3.1. Afterwards, the con-
struction of the stride vector using IMU data and its error model is shown in Section 3.2.1.
The error models of the virtual vector length, orientation, and translation are detailed in
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Sections 3.2.2, 3.2.3 and 3.2.4, respectively. Finally, the loosely coupled fusion approach to
mitigating the UWB positioning error is detailed in Section 3.3.

An overview of our error estimation and positioning framework is provided in Figure 1.

IMU

UWB

ZUPT

ZUPT
Error Model

Virtual Stride
Vector

ZUPT History

V. Stride Vector
History

Orientation KF Position EKF Position 
& Uncertainty

Orientation

Length

Translation

V. Stride Vector
Error Model

Figure 1. Error estimation and positioning fusion framework. The bold blocks are detailed separately
in the following sections. Red elements are derived from IMU data, blue elements are derived from
UWB data, and black elements are derived from combined IMU and UWB data. Here, Var(X) is
the variance of a random variable X, Cov(X) is its covariance, a is the acceleration, ω is the turn
rate, $Z and ∆ϕZ are the length and orientation change of the stride vector from ZUPT, respectively,
ϕZ is the ZUPT vector orientation, ϕZ is the set of ZUPT vector orientations, P is the UWB position
measurement, $U and ϕU are the length and orientation of the virtual stride vector from UWB,
respectively, VU

o is the vector endpoint of the virtual stride vector from UWB, and ϕ̂ is the filtered
stride orientation.

3.1. Virtual Stride Vector

The UWB measurements are converted into a virtual estimate of the user’s stride
using the method of [40]. Here, the virtual stride vector ~v U is constructed from two polar
components: the estimated stride orientation ϕ̃, and the estimated stride length $̃. This
vector maps the relative motion of a person’s foot from stance phase to stance phase:

~v U =

(
$̃ · cos(ϕ̃)
$̃ · sin(ϕ̃)

)
(1)

The polar coordinates are obtained by statistical analysis of a set P of n consecutive
UWB position measurements, which are modeled as realizations of the random vector
P = (X, Y). Thus, a sample Pi at time i is composed of realizations on the x- and y-axes
of the coordinate system within which the positioning by UWB occurs. The samples are
collected in the sets X = {X0, X1, . . . , Xn−1} and Y = {Y0, Y1, . . . , Yn−1}:(

Xi
Yi

)
= Pi ∈ P ⊂ R2 with 0 ≤ i < n (2)

The set P is sampled during one whole stride of the user, which is detected by a
separate stride detection scheme. The stride orientation ϕ̃ and stride length $̃ are derived
from an analysis of the sample covariance matrix Σ of P.

The first principal component of Σ maps the orientation and magnitude of the dom-
inant dispersion in P, and is represented by the largest eigenvalue λmax = max(λ1, λ2)
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and the corresponding eigenvector v(λmax) of Σ. The dispersion along this component
is mainly generated by the locomotion of the user. The eigenvalues λ = (λ1, λ2) and the
corresponding eigenvectors v = (v1, v2) are found by solving the eigenvalue problem

0 = (Σ− λI2)v. (3)

The eigenvector v(λmax) can now be used as an estimate of the direction of motion.
A check of the cosine similarity against the history of UWB measurements is used to
determine the mirroring of the motion vector:

~r =
(

rx
ry

)
= v(λmax) · sgn((Pn−1 − P0) · v(λmax)) (4)

with sgn() as the signum function. The direction vector is translated into the desired
orientation angle ϕ̃ of the virtual stride vector:

ϕ̃ = atan2(ry, rx) (5)

The length of the virtual stride vector $̃ is estimated using a model of the UWB
measurement distribution during one user stride, as per [40]:

$̃ =

√
12n

n + 1
(λmax − λmin) (6)

Here, n is the UWB sample count in the measurement set P for one stride.
We continue to use the estimate of stride length from UWB data $̃ as $U and the

estimate of stride orientation ϕ̃ as ϕU . These estimates are compared to their respective
values $Z and ϕZ derived from IMU measurement.

In order to use the virtual stride vector ~v U for position estimation in the absolute
coordinate system of the localized person, its position in this reference frame must first be
determined. The basis for this is the mean value of the UWB sample P̄ = 1

n ∑n−1
i=0 Pi. This

value determines the midpoint of the virtual stride. Thus, the absolute coordinates of the
endpoint VU

e and the starting point VU
o of the virtual stride vector are provided by

VU
o = P̄− $U

2
~r
‖~r‖ (7a)

VU
e = P̄ +

$U

2
~r
‖~r‖ (7b)

where~r denotes the direction vector from (4); thus, it holds that

~r
‖~r‖ =

(
cos(ϕU)
sin(ϕU).

)
(8)

3.2. Error Models

In general, we aim to estimate the error of measured or derived variables in the
form of their variance at runtime. In certain cases, only a single estimate of the current
deviation from the expected value of these quantities is available, i.e., an estimate of the
mean absolute deviation (MAD) of a measured quantity X from its expected or mean value
µx: E[|X− µx]|. The estimate of MAD can be translated into an estimate of variance. For
a normally distributed variable X ∼ N (µx, σx), the following relation between the MAD
and the variance holds:

MAD(X) = E[|X− µx|] = σx

√
2
π

(9)
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By rearranging the above relation, it is possible to infer the variance from the MAD:

σx
2 =

π

2
·MAD(X)2 (10)

In the following, we use this relation to derive the variance from an estimate of the
MAD. We develop the error models of a stride vector measured with a foot-mounted IMU
through the zero-velocity-update (ZUPT) method described in Section 3.2.1. The error
models of the virtual step vector described in Section 3.1 are detailed in Sections 3.2.2–3.2.4
for its length, orientation, and translation, respectively.

3.2.1. ZUPT Stride Vector

In order to generate the stride vectors for PDR, we used the zero-velocity-update
(ZUPT) method with a foot-mounted IMU, as described in [41,42]. Detailed error models
for ZUPT-based PDR are the subject of ongoing research, and are mostly limited to specific
ZUPT methods [43–45]. Our PDR Error model is comparatively simple. The empirically
determined expectation values of the absolute measurement error or those taken from the
literature are translated into the dynamic variance estimate of the measurements using (10).

The error ε$Z of the measured stride length $Z is scaled linearly with the measurement.
The empirically determined factor d$Z scales this error:

E[|ε$Z |] ≈ $Z · d$Z (11)

This provides the variance estimate of the length measurement:

Var($Z) = Var(ε$Z ) ≈
π

2
($Z · d$Z )2 (12)

The error of the orientation change ε∆ϕZ is determined by the gyroscope drift dϕZ taken
from the data sheet of the sensor and the time difference relative to the previous stride:

E[|ε∆ϕZ |] ≈ ∆t · dϕZ (13)

The variance estimate of the angle measurement ∆ϕ is obtained as follows:

Var(∆ϕ) = Var(ε∆ϕZ ) ≈
π

2
(∆t · dϕZ )2 (14)

3.2.2. Virtual Stride Vector—Length

The error of the length $U
i of the virtual step vector ~v U

i at time i is determined by
comparing it with the corresponding stride length $Z

i from ZUPT. The MAD of the actual
error ε$U

i
is estimated by the measurement e$U

i
:

MAD(ε$U
i
) ≈ e$U

i
= $U

i − $Z
i (15)

The squared estimate of this MAD is then converted to an estimate of the variance
Var(ε$U

i
) = Var($U

i ), as described in (10). However, because the reference measurement $Z
i

is itself subject to error (as described in (12)), MAD(ε$U
i
) is estimated via an error-prone e$U

i
and is not determined exactly:

e$U
i
∼ N

(
MAD(ε$U

i
), Var(ε$Z

i
)
)

(16)

In the following, we derive a method to compensate for the noise of e$U
i

.
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The distribution of the squared and normalized measurement

(
e

$U
i√

Var(ε
$Z

i
)

)2

provided by

e$U
i√

Var(ε$Z
i
)
∼ N

MAD(ε$U
i
)√

Var(ε$Z
i
)

, 1

 (17)

is investigated. It adheres to a non-central chi-squared distribution with degree of freedom
k = 1, which is because only one realization of this distribution is available at time i. The
second parameter of this distribution is the non-centrality parameter λ, which represents
the squared expected value of the underlying random variable normalized to variance 1:

λ = E

 e$U
i√

Var(ε$Z
i
)

2

=
MAD(ε$U

i
)2

Var(ε$Z
i
)

(18)

Thus, after it is rescaled by Var(ε$Z
i
), this parameter corresponds exactly to the quantity

MAD(ε$U
i
)2 that we seek in order to determine Var($U

i ) through (10).
It has been shown in [46] that the following rule produces a maximum likelihood

estimator (MLE) λ∗ of the λ parameter:

λ∗ = max

(
e$U

i

2

Var(ε$Z
i
)
− 1, 0

)
(19)

Thus, the following estimate of MAD(ε$U
i
)2 is now available:

MAD(ε$U
i
)2 ≈ λ∗ ·Var(ε$Z

i
)

≈ max

(
e$U

i

2

Var(ε$Z
i
)
− 1, 0

)
·Var(ε$Z

i
)

≈ max
(

e$U
i

2 −Var(ε$Z
i
), 0
) (20)

Lastly, the corrected squared estimate of the MAD is converted to an estimate of the
variance Var(ε$U

i
) = Var($U

i ), as described in (10):

Var($U
i ) = Var(ε$U

i
) ≈ max

[π

2

(
e2

$U
i
−Var(ε$Z

i
)
)

, Var(ε$U )
]

≈ max
[π

2

(
($U

i − $Z
i )

2 −Var(ε$Z
i
)
)

, Var(ε$U )
] (21)

Here, the average expected error Var(ε$U ) serves as the minimum value of the estimate.

3.2.3. Virtual Stride Vector—Orientation

The error of the orientation estimation from UWB data is expressed as the variance
of the orientation ϕU of the virtual UWB vector ~v U . The measurement of the orientation
change ∆ϕZ from ZUPT serves as the reference value here.

The orientation measurement is scattered around the actual orientation ϕ0
i at time i:

ϕU
i = ϕ0

i + εϕU
i

(22)

The error of the orientation measurement εϕU
i

is normally distributed and changes
with each stride at time i:

εϕU
i
∼ N (0, σϕU

i

2) (23)
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It is assumed that an orientation error can persist over several strides and that this per-
sistence becomes less likely over time. This consideration results in the approach presented
here for estimating the error of the orientation ϕU

i by estimating the error component εϕU
i

of a stride at time i. This is based on the history of orientations taken from ZUPT ϕZ
i at

that time, which are compared with the history of orientations ϕU
i from UWB. Thus, it

holds that
ϕU/Z

i =
{

ϕU/Z
i−k | 0 ≤ k < n

}
(24)

with history length n and 1 < n < i.
The ZUPT error component εϕZ

i
is scattered around an unknown offset bϕZ

i
:

εϕZ
i
∼ N (bϕZ

i−1
, σϕZ

i

2) (25)

This offset is composed of the random initial orientation of the relative orientation
tracking by ZUPT bϕZ

0
and the sum of the measurement errors of the following direction

change ε∆ϕZ (13):

bϕZ
i−1

= bϕZ
0
+

i−1

∑
m=1

ε∆ϕZ
m

(26)

Now, the first step is to estimate this offset, including the realization of the current
measurement error ε∆ϕZ

i
, i.e., bϕZ

i
= bϕZ

i−1
+ ε∆ϕZ

i
. Then, the last orientation from ZUPT ϕZ

i

rotated by −bϕZ
i

is treated as an estimate of the actual orientation ϕ0
i :

ϕ0
i ≈ ϕZ

i − bϕZ
i

(27)

The difference between the estimate of ϕ0
i and the measurement ϕU

i is treated as the
realized orientation error eϕU

i
(see (22)); finally Var(ϕU

i ) = Var(εϕU
i
) is derived from it

using (10)

Var(ϕU
i ) =

π

2
· e2

ϕU
i

with eϕU
i
= ϕU

i − ϕ0
i (28)

A fundamental assumption in this approach is that the orientation errors of the virtual
vectors cancel on average, while the orientation error from ZUPT is zero in the first stride
(except for the random starting orientation bϕZ

0
) and increases with each subsequent stride:

ϕZ
0 ∼ N (ϕ0

0 + bϕZ
0

, 0) (29a)

ϕZ
i ∼ N

(
ϕ0

i + bϕZ
0

,
i

∑
m=1

σ∆ϕZ
m

2

)
with i > 0 (29b)

Because the measurements from ZUPT are relative, this error propagation works
both ways; if the unknown offset bϕZ

i
of the current stride from ZUPT ϕZ

i is to be cali-

brated using the true orientation ϕ0
i , the past strides ϕZ

i−k are considered to be increasingly
inaccurate references.

Thus, the error of the last orientation bϕZ
i

remains constant, while the measurements

of the change of direction (The true direction difference ∆ϕ0
m plus the measurement error

ε∆ϕZ
m

) are gradually subtracted:

ϕZ
i−k = ϕ0

i + bϕZ
i
−

i

∑
m=i−k+1

∆ϕ0
m + ε∆ϕZ

m

= ϕ0
i−k + bϕZ

i
−

i

∑
m=i−k+1

ε∆ϕZ
m

with ϕ0
i−k = ϕ0

i −
i

∑
m=i−k+1

∆ϕ0
m

(30)
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With Var(ϕZ
i ) = 0 and Var(ϕZ

i−k) = ∑i
m=i−k+1 Var(ε∆ϕZ

m
) = ∑i

m=i−k+1 σ∆ϕZ
m

2;
thus, it holds that

ϕZ
i ∼ N (ϕ0

i + bϕZ
i

, 0) (31a)

ϕZ
i−k ∼ N

(
ϕ0

i−k + bϕZ
i

,
i

∑
m=i−k+1

σ∆ϕZ
m

2

)
(31b)

Based on these considerations, a method can now be presented to determine the error
offset bϕZ

i
. The approach is based on a weighted comparison of the last orientations from

ZUPT ϕZ
i and UWB ϕU

i .
The weights are determined from the inverse variance of each directional comparison.

Here, the index k denotes a stride k time steps in the past (see (24)):

wi−k =
1

Var(ϕZ
i−k − ϕU

i−k)
=

1

Var(ϕZ
i−k) + Var(ϕU)

with k > 0 (32)

Here, Var(ϕU) is constant and represents the mean expected dispersion of the UWB
orientation. In contrast, Var(ϕZ

i−k) increases corresponding to (31b) with each past stride k.
In the following , we describe how the last n weighted orientations from ZUPT ϕZ

i
are rotated to the corresponding orientations of UWB ϕU

i to determine bϕZ
i

. The approach
is based on the weighted average difference between the two histories. The orientation
differences ∆ϕZU

i−k = ϕZ
i−k − ϕU

i−k are treated as vectors of orientation ∆ϕZU
i−k and magnitude

wi−k and summed. The result is a vector with an orientation corresponding to the weighted
average orientation difference [47]:

∆ϕZU
i = atan2

(
n

∑
k=1

wi−k · sin ∆ϕZU
i−k,

n

∑
k=1

wi−k · cos ∆ϕZU
i−k

)
≈ bϕZ

i
(33)

Because the orientation errors of the UWB measurements cancel on average for a
sufficiently large history and the constantly shifted orientations from ZUPT are weighted
according to their proportional errors, the average weighted difference of the two quantities
corresponds to the sought unknown offset bϕZ

i
. However, the determination of bϕZ

i
, and

consequently the error of ϕU
i , is an estimate, as a limited number of past of strides is

considered. For this reason, a base value of the dispersion Var(ϕU) is introduced, which
shall not be undercut. From the Equations (27), (28), and (33) and the base value of the
variance, it follows that

Var(ϕU
i ) ≈ max

[
π

2
·
(

ϕU
i − ϕZ

i + ∆ϕZU
i

)2
, Var(ϕU)

]
(34)

3.2.4. Virtual Stride Vector—Translation

The endpoint of the virtual stride vector VU
e from (7b) specifies the UWB translation,

i.e., the position of the UWB measurement for the current user stride. The uncertainty
of this position is expressed by the covariance matrix ΣVU

e
. The variance estimates of the

stride length and direction of the virtual stride vector from Sections 3.2.2 and 3.2.3 map the
uncertainty in polar coordinates. In order for these error estimates to be used to estimate
the position error in a Cartesian coordinate system, the previous variance estimates must
be suitably transformed.

For small errors, the unscented transform (UT) described in [48] is utilized. However,
this transform fails for large variances of the orientation ϕ. In this case, we develop an
alternative method in this section for estimating the position error, then introduce a criterion
for deciding between the two methods.
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The UT uses sigma points defined at specific locations in the original distribution. In
the case considered here, these points represent the dispersion in polar coordinates. They
are transformed into Cartesian coordinates and then converted back into a distribution.

The starting point for this is the function f (p) used for transforming the erroneous
polar coordinates p = (p$, pϕ)T into the Cartesian coordinates k = (kx, ky)T :

k =

(
kx
ky

)
= f (p) =

(
p$ · cos(pϕ)
p$ · sin(pϕ)

)
(35)

The respective coordinates are treated as stochastic variables with mean values of
p̄ = ( p̄$, p̄ϕ) and k̄ = (k̄x, k̄y) and the associated covariance matrices

p ∼ N (p̄, Σp) (36a)

k ∼ N (k̄, Σk) (36b)

with

Σp =

[
Var(p$) Cov(p$, pϕ)

Cov(pϕ, p$) Var(pϕ)

]
(37a)

Σk =

[
Var(kx) Cov(kx, ky)

Cov(ky, kx) Var(ky)

]
(37b)

In the UT, the angular component of the sigma points in polar coordinates Pϕ,m can
adopt values above π/2 when the variance of orientation in the original distribution is large.
Thus, the covariance matrix transformed by the trigonometric terms in (35) is increasingly
insufficient to model the dispersion caused by the uncertainty of the angular component pϕ.
In the extreme case, the sideways scattering is no longer modeled at all. For this reason, the
angular component of the n sigma points Pm = (Pϕ,m, P$,m) (with 0 < m < n) is reduced to
the interval p̄ϕ − π

2 ≤ Pϕ,m ≤ p̄ϕ + π
2 :

Pϕ,m =


p̄ϕ − π

2 for Pϕ,m ≤ p̄ϕ − π
2

p̄ϕ + π
2 for Pϕ,m ≥ p̄ϕ + π

2

Pϕ,m else

(38)

Only when all sigma points are within this interval is the orientation error considered
small enough for UT to be applied:

Σp = diag(Var(p$), Var(pϕ)) = diag(Var($U), Var(ϕU))
UT7−→ ΣVU

e
UT 4 (39)

Here, Var($U) is known from (21) and Var(ϕU) is known from (34). The expected
value in Cartesian coordinates k̄ = VU

e is known from (7b), and the expected value in polar
coordinates p̄ = ϕU is known from (5).

For large errors, the Wasserstein-2 distance W2, which in the application considered
here is known as the Fréchet distance or Earth-Movers Metric [49–52], is used to model the
position error instead. For two normally distributed multidimensional quantities A and B
with means µA, µB and covariance matrices ΣA, ΣB, it holds that [51,52]

W2 = min
A,B

E‖A− B‖2

=

√
‖µA − µB‖2

2 + tr(ΣA) + tr(ΣB)− 2
[

tr(ΣAΣB) + 2
√

det(ΣAΣB)

]1/2 (40)
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In the case considered here, the expression minA,B E‖A− B‖2
2 is interpreted as the

smallest possible mean Euclidean distance between the realized pairs of values of two
random variables. This fact can be applied to the comparison of the erroneous stride vectors
from UWB and ZUPT to obtain an estimate for the position error of the UWB measurement.
Here, the same origin is assumed for both vectors and the W2 distance between the error
distributions of the vector endpoints is determined. This metric serves as an estimate of the
lower bound for the expected distance between the two position estimates from UWB and
ZUPT. This mean distance or MAD is then transformed into a variance estimate, which is
ultimately assumed to be isotropic and is used to evaluate the UWB dispersion in Cartesian
space. This process is described in detail below.

The error variance of the virtual stride vector from UWB is modeled as a zero matrix,
and as such is treated as a point for which the W2 distance is to be determined. The reference
vector from ZUPT has known variances for the vector length Var($Z) from (12) and the
estimated orientation Var(ϕZ) = Var(ϕ̂), which is taken from the state variance estimate of
the orientation filter in (50). The error variance of the reference vector in polar coordinates
ΣZ

p is transferred to the Cartesian coordinate system by the UT to obtain ΣZ
k :

ΣU = diag(0, 0)

ΣZ
p = diag(Var($Z), Var(ϕZ))

UT7−→ ΣZ
k

(41)

The components of the expected value of the reference vector p̄Z = ( p̄$, p̄ϕ) are
measured directly using ZUPT and taken from (49) as p̄ϕ = ϕ̂, respectively, and converted
by UT to obtain kZ. The expected value of the UWB position in Cartesian coordinates k̄U is
known as VU

e from (7b). Then, the W2 distance between the two transformed distributions
is calculated:

W2 = min
kU ,kZ

E‖kZ − kU‖2

=

√
‖k̄Z −VU

e ‖2
2 + tr(ΣZ

k ) + tr(ΣU)− 2
[

tr(ΣZ
k ΣU) + 2

√
det(ΣZ

k ΣU)

]1/2

=

√
‖k̄Z −VU

e ‖2
2 + tr(ΣZ

k ) with ΣU = diag(0, 0)

(42)

This distance is interpreted as the MAD between a reference (stride vector from ZUPT)
and a measurement (virtual stride vector from UWB), and is transformed into an isotropic
variance estimate of the position at the endpoint of the virtual UWB stride vector VU

e
using (10):

ΣVU
e

W2
=

[
π
2 (W2)

2 0
0 π

2 (W2)
2

]
(43)

Due to the isotropy of the covariance matrix, the directional information of small
dispersions is lost; thus, this estimate is only used when there are large deviations between
the ZUPT reference and the UWB vector. Larger deviations indicate a significant error
that may persist across multiple strides. In this case, the formulation just described allows
for stronger error correction and more accurate continuation of the user path through
PDR/ZUPT.

Finally, for the uncertainty of the UWB position at the top of the virtual stride vector
ΣVU

e
, it holds that

ΣVU
e
=

ΣVU
e

W2
if UT constrained

ΣVU
e

UT else
(44)

with ΣVU
e

W2
from (43) and the possibly restricted covariance ΣVU

e
UT via UT from (39).
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3.3. Fusion of ZUPT and Virtual Stride Vector

The presented system consists of two filters: a Kalman filter to determine user orien-
tation, and an Extended Kalman Filter (EKF) to determine user position. Both filters use
components of the virtual stride vector and the ZUPT stride vector for state estimation.

3.3.1. Orientation Filter

The orientation filter is implemented as a Kalman filter. The state to be estimated is
the orientation ϕ̂i at the current time i. With each stride, the orientation estimate is updated.
The user orientation is estimated as a linear process

ϕi = ϕi−1 + ∆ϕi + ε∆ϕ,i (45)

disturbed by an error component ε∆ϕ,i that is normally distributed around zero and has
variable variance Q∆ϕ,i

ε∆ϕ,i ∼ N (0, Q∆ϕ,i) (46)

Here, Q∆ϕ,i is dimensioned according to (14) and the orientation change ∆ϕ measured
by ZUPT serves as the control input of the state prediction

ϕi
− = ϕi−1 + ∆ϕi (47)

with the propagated state variance

Pi
− = Pi−1 + Q∆ϕ,i. (48)

The orientation measurement from UWB zϕ,i = ϕU
i from (5) is applied to the state

estimate, and the iteration of the orientation estimate is completed as follows:

ϕ̂i = ϕi
− + Ki(zϕ,i − ϕi

−) (49)

Pi = (1− Ki)P−i . (50)

Both of the above are obtained using the Kalman gain

Ki =
P−i

P−i + Ri
(51)

using Var(ϕU
i ) from (34) as Ri.

3.3.2. Position Filter

The position filter is implemented as an EKF. This filter estimates the position as a
two-dimensional state x = (px, py)T . The state prediction of the position is accomplished
using the step vector u = ($Z, ϕ̂)T with the measured step length $Z from ZUPT and the
orientation estimate of the orientation filter ϕ̂ from (49). The endpoint of the virtual stride
vector from (7b) serves as the reference measurement Ve

U = (zx, zy)T for the position filter.
The position change is modeled as a nonlinear process

xi = f (xi−1, ui, wi)

= xi−1 + ($Z
i + w$Z ,i)

(
cos(ϕ̂i + wϕ̂,i)
sin(ϕ̂i + wϕ̂,i)

) (52)
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using the normally distributed error component wi with variance Qi

wi ∼ N (0, Qi)(
w$Z ,i
wϕ̂,i

)
∼ N

((
0
0

)
,

(
Q$Z ,i 0

0 Qϕ̂,i

))
(53)

The variance of the length estimate Q$Z ,i corresponds to the error model of the step
length determination by ZUPT in (12). The variance of the orientation estimate Qϕ̂,i is taken
directly from the estimate of the state variance of the orientation filter in (50).

This yields the formulation for the state prediction of the position filter

x̂−i = f (x̂i−1, ui, 0)

= x̂i−1 + $Z
i
(
cos(ϕ̂i) sin(ϕ̂i)

) (54)

with the corresponding state variance

Pi
− = Pi−1 + WiQiWT

i (55)

using the Jacobian matrix Wi of the partial derivatives of f (. . . ) with respect to w.

Wi =
δ f
δw

(x̂i−1, ui, 0). (56)

The end point coordinate of the virtual stride vector VU
e,i = zi is applied directly for

position prediction:
x̂i = x̂−i + Ki(zi − x̂−i ) (57)

Finally, the state variance is updated as follows:

Pi = (I2×2 − Ki)P−i (58)

Both of the above are obtained using the Kalman gain

Ki =
P−i

P−i + Ri
(59)

with Ri = ΣVU
e ,i from (44).

4. Experiment

The fusion of UWB and PDR was evaluated in three different test environments, one
featuring a high density of UWB anchor stations and the other two featuring a lower density.
During the test runs, the users held a Comnovo UWB transceiver in their hand. The UWB
unit delivered the determined position with a frequency of 7.15 Hz at high anchor density
and 8.73 Hz at low anchor density.

Additionally, the users were equipped with a Hillcrest FSM-9 IMU with a sampling
rate of 125Hz placed on the top of the users foot. The corresponding ZUPT algorithm
detected the swing and stance phases of the users’ gait to produce estimates of their stride
length and orientation change at the beginning of the stance phase. The ZUPT thresholds
were adapted to each user individually. The algorithm is described in detail in [42]. Users
were instructed to hold the UWB receiver approximately above the foot with the IMU. The
two devices were connected via USB to a Raspberry Pi 3 on which the measurement data
were collected.

The different test environments are described in Section 4.1, and the construction of a
ground truth along the test tracks is detailed in Section 4.2.
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4.1. Environments

The experiments conducted to evaluate the presented methods were performed in
three different environments. Each environment included different conditions for local-
ization with UWB, characterized by different degrees of shadowing and number as well
different arrangements of the UWB anchors. In order to judge the static conditions for
UWB localization, we have included a plot of the horizontal dilution of precision (HDOP)
for each environment. Please note that the HDOP is defined by the geometric arrangement
of UWB anchor stations, not by objects provoking NLOS.

The first environment, hereafter referred to as Dense, was characterized by a high
density of UWB anchors. Figure 2 shows the typical setup of this test environment.

Figure 2. Setup of the Dense environment with high anchor density.

The tests were carried out in the Demag Research Factory, which is located in a
production hall of Demag Cranes and Components GmbH, located in Wetter an der Ruhr,
Germany. For the most part, the mobile UWB transceivers had a clear line of sight to
the fixed anchors. During the test runs, however, individual anchors were sporadically
obscured by overhead cranes and metallic structures.

Figure 3a shows the test tracks in the environment and the distribution of the UWB
anchors (UWB BS). The HDOP plot in Figure 3b consistently shows values of about one.
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Figure 3. Dense environment with high anchor density: (a) test tracks and anchor placement (UWB
BS) and (b) HDOP. Please note that GT_L is placed on top of a section of GT_P.
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Two test routes were walked in the test environment Dense. A straight line designated
as GT_L led through the center and along the length of the hall. The track was walked
along the straight line to the end of the hall and back to the starting point. The second route
initially followed the straight line of the first route, changing to a circuit in the left half of
the hall and then returning to the straight line in the direction of the starting point. The
circuit took place in an area surrounded by metal scaffolding. This route is referred to as
GT_P. Each track was walked five times each by three different persons.

The second and third environments are referred to as Sparse LOS and Sparse NLOS,
respectively. Both environments were set up in Speicher K in the Magdeburg Port of Science,
and used the same setup with a limited number of UWB anchors. The environments
resembled an industrial hall with an overhead crane, and differed in the routing and
placement of metallic objects along the test sections. Figure 4 shows the setup of the test
hall in Storage K. In this environment, one of the two test tracks had two start and end
points. The test runs started at one point on this track and ended at the other. Both points
were used alternately as the respectively start and end points, meaning that half of the
tests were walked in opposite directions. Each track was walked four times each by three
different persons. The set of participants differed from that in the experiment conducted in
the Dense environment. As such, a total of six persons were involved in the test runs.

Figure 4. Setup of the Sparse LOS environment with low anchor density.

In the second environment, Sparse LOS, there were no objects along the tracks, while
in the third environment, Sparse NLOS, there were large metallic objects along the track
that obscured the line of sight to one or more anchors. Figure 5a shows the routing and
placement of the UWB anchors in the Sparse LOS environment. The distribution of HDOP
in Figure 5b reveals a maximum with values between 1.4 and 1.5 in the middle of the
environment. Here, a test track GT_SQ was followed which connected a straight track with
a rectangular circuit, which after a full lap led into a second straight track and terminated
at its end. In addition, the initial straight track was walked back and forth as another test
track GT_L.

In the third and final test environment, Sparse NLOS, which can be seen in Figure 6a,
both a round-trip GT_SQ and a straight track GT_L were completed in the same fashion as
in Sparse LOS.
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Figure 5. Sparse LOS environment with low anchor density: (a) test tracks and anchor placement
(UWB BS) and (b) HDOP. Please note that GT_L is placed on top of a section of GT_SQ.
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Figure 6. Sparse NLOS environment with low anchor density and shadowing: (a) test tracks and
anchor placement (UWB BS); (b) Sparse NLOS environment with low anchor density and shadowing.
Large objects that can lead to NLOS are drawn in black. Please note that GT_L is placed on top of a
section of GT_SQ.

However, the track routing was adjusted such that the tracks started outside the area
enclosed by the UWB anchors. The HDOP plot in Figure 6b shows that a larger position
error is to be expected in these circumstances. Figure 7a shows the environment at the start
of the test tracks, which is characterized by shadowing from parked vehicles in addition to
the larger HDOP. In addition, a large metallic object was placed along the track obscuring
the line of sight from the UWB transceiver in the person’s hand to one or more anchors.
The object can be seen in Figure 7b.

(a) (b)

Figure 7. The objects used to obscure the line of sight in the Sparse NLOS environment: (a) start
and end of test tracks with line of sight strongly obscured by vehicles and concrete pillars; (b) large
metallic object in the center of the test environment.
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4.2. Ground Truth

The performed experiments were evaluated using a hybrid ground truth method. The
localized persons moved along marked paths, and we derived the position of the person
along the length of the path to detect deviations that occurred both parallel and orthogonal
to the direction of movement.

The ground truth was marked on the floor of the test environment. The test person
attached an IMU to the top of their foot and followed the marked test path as closely as
possible with the equipped foot. The resulting representation of the user’s walking motion
was then mapped onto the straight sections of the test track. For this purpose, strides
with significant directional changes were identified between intervals without significant
directional changes (the straight subsections).

Figure 8 shows two exemplary plots of user motion obtained using ZUPT on two
different tracks, while Figure 8a shows a straight walking track with the transition between
the track subsections clearly separated by two consecutive stride vectors. In Figure 8b,
there are strides that lie between the subsections. In the latter case, the subject completed
one subsection using the foot without the IMU and continued the movement on the next
subsection with the other foot measured here.

0 5 10 15 20

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

141516171819202122232425262728

(a)
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0
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22

23
242526272829303132

(b)

Figure 8. The numbered stride vectors from ZUPT on a straight track and a circuit over several
straight subsections: (a) straight line to and from, with clear transition between straight sections at
stride 13; (b) round trip with strides 16 and 24 without clear separation between even subsections.
All graph axes are in meters.

Thus, because user strides of a single foot may be between subsections, the first stride
on a new track section was proportionally divided between the two subsections. Figure 9
shows a stride of length l that makes the switch between two ground truth line segments.
In order to correctly track the distance traveled on both line segments, it is necessary to
consider the remaining track on the original segment g1 as well as the track g2 traveled
with the switching stride on the new segment.
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Ground Truth: Position

Stride Vector

Ground Truth: Line

Figure 9. A stride vector between two ground truth subsections.

Both partial distances can be calculated by simple trigonometric considerations. A
basic assumption here is that the subject is moving parallel to the ground truth before
the change. Thus, the change in direction determined by ZUPT can be assumed to be the
transition angle α. The angle between the line segments β is known, while the remaining
angle γ can be determined by the generally known angle sum in triangles α + β + γ = π.
The length of the stride l is known from the ZUPT measurement. The two partial distances
on the ground truth segments can be determined using the sine theorem:

g2

sin α
=

l
sin β

=
g1

sin γ
(60)

Thus, for the two subsections, it follows that

g1 = l · sin γ

sin β
(61a)

g2 = l · sin α

sin β
(61b)

The segments of the user strides in sequence, including the calculated fractions for
alternating strides, now map the subject’s locomotion along a straight subsection of known
length. The desired actual position along a partial section is derived as follows.

The position Pk at the time of stride k is modeled as the normalized distance progress
along the known length G of the straight subsection of the ground truth:

Pk =
G ·∑k

i=1 li
g1 + ∑n

i=1 li
with l1 = g2 (62)

Here, n is the total number of strides on the partial path; in addition, the first user stride
l1 is described by the proportional locomotion g2 from (61b) instead of the measurement
from ZUPT. The total distance traveled is extended by the partial distance at segment
change g1 from (61b). The two partial distances are respectively calculated from different
transitions between the subsegments of the ground truth: the transition from the last
subsegment to the current one, and the transition from the current segment to the next one.
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In a two-dimensional coordinate system with a straight line segment between the start
point Gs and end point Ge, it then holds that

Pk = Gs +
|−−→GeGs| ·∑k

i=1 li
g1 + ∑n

i=1 li

−−→
GeGs

|−−→GeGs|

= Gs +
∑k

i=1 li
g1 + ∑n

i=1 li

−−→
GeGs with l1 = g2

(63)

Normalizing the distance progress from ZUPT measurements compensates for errors
due to bias in the step length determination. The additive influence of the variance of the
length measurement on the variance of the position measurement is compensated for by
this at the beginning and end of the subsections. For an average test person, the variance of
the position measurement reaches a maximum of 0.002 m2 halfway through a 20 m test
section. Error influences remain due to user movements that do not precisely follow the
given track; while these are partially compensated for by normalization, they cannot be
quantified further.

5. Results

The utility of fusing stride vectors from ZUPT and position measurements by UWB is
evaluated in the following chapter using the positioning error of the tracks and environ-
ments described in Section 4.1. In total, eight different modes of fusion are compared, which
are detailed in Table 1. The modes differ with respect to the method used to determine the
orientation and position measurement variance of the virtual stride vector. In addition to a
set of static variances and standard deviations (modes stat_{05, 1, 15, 2, 25}), we evaluated
the methods described in Section 3.2 for dynamic estimation of the UWB position error.
The dynamic methods differ from each other based on the count of the previous stride
vectors used in Section 3.2.3 (modes vec_{5, 10, 15}).

Table 1. The evaluated modes of the measurement update variance in the orientation and
position filters.

Mode Description

stat_10 Static standard deviation of 0.05 rad & 0.1 m
stat_20 Static standard deviation of 0.1 rad & 0.2 m
stat_30 Static standard deviation of 0.15 rad & 0.3 m
stat_40 Static standard deviation of 0.2 rad & 0.4 m
stat_50 Static standard deviation of 0.25 rad & 0.5 m
vec_5 Dynamic variance by comparison of the last 5 strides
vec_10 Dynamic variance by comparison of the last 10 strides
vec_15 Dynamic variance by comparison of the last 15 strides

The initial parameters of the fusion are as follows. The initial position and orientation
are provided by the first virtual stride vector. The respective initial state uncertainties are
parametrized with an orientation standard deviation of π

2 rad and isotropic position stan-
dard deviation of 5 m. The following stride orientation measurement standard deviation is
parametrized as π

2 rad for dynamic modes and as the respective static standard deviation
for the static modes. Tn the dynamic modes, the second stride is the initial stride of the
stride history, as the preceding virtual stride dictates the initial orientation of the reference
ZUPT stride through the initial orientation filter state. Therefore, the first user stride yields
no information about the error of the virtual stride. The third and all subsequent strides are
processed according to the measurement variances of the respective modes.

The lower bound of orientation standard deviation for the dynamic modes is set to
0.1 rad. The lower bound for the virtual vector length standard deviation is set to 0.12 m.
The scaling factor for ZUPT vector length error is set to 0.03 and the angle drift is taken
from the FSM-9 datasheet as 0.01 rad/s.
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5.1. Positioning Accuracy

The results are presented as bar graphs of the mean position error over all test runs
on a test track together with the standard deviation. In addition, the tables show the exact
values of the statistics. The reference value to the fusion is the accuracy of the positioning
by UWB. Here, we distinguish between the error of the last UWB position during a stride
(mode uwb) and the endpoint of the virtual stride vector from UWB positions during a
stride (mode uwb_vec). The former is shown in the plots, while the latter is used as a
measure of position in the fusion evaluated here.

In the diagrams and tables, we ensure that the modes are always compared for the
same set of test runs on a single track type. It is possible that for severely perturbed UWB
measurements the fused position of certain modes may not converge with the UWB data.
These test runs are excluded from the comparisons of all modes in an environment. The
fusion is considered convergent if the fused position and the endpoint of the virtual UWB
stride vector are no more than 0.5 m apart over three consecutive strides.

5.1.1. Dense LOS Environment

Figure 10 and Table 2 show the positioning accuracy in the Dense environment. It
can be seen that the fusion approach with dynamic variance estimation results in a better
or equivalent positioning compared to an appropriate choice of static fusion. In all cases,
the dynamic modes improve the accuracy by one standard deviation of the error when
using UWB alone. A closer examination of Table 2 reveals an improvement in accuracy
when using the virtual stride vector endpoint (i.e., mode uwb_vec) as a measure of position
opposed to the last UWB position measurement (i.e., mode uwb).

UWB Err. Avg. UWB Err. SD Fusion Err. Avg. Fusion Err. SD
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Figure 10. Mean position error and standard deviation in the environment with high anchor
density: (a) straight track GT_L back and forth (b) and roundtrip GT_P. All values are in meters.

Figure 11 shows a run on track GT_P with mode vec_15. The mitigation of UWB noise
can be seen at the beginning on the upper section of the track. The bias is compensated for
during the round trip on the bottom of the track.
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Table 2. Mean position error (Avg), standard deviation (SD) and the percentage change of mean error
compared to the UWB measurement (Avg vs. UWB) in the Dense environment. All values in meters.

Mode Avg (SD) Avg vs. UWB

(a) Straight track GT_L back and forth

uwb 0.2969 (0.0302) 0.0000
uwb_vec 0.2837 (0.0313) −0.0444
stat_10 0.2931 (0.0645) −0.0128
stat_20 0.2961 (0.0872) −0.0028
stat_30 0.2950 (0.1010) −0.0062
stat_40 0.2944 (0.1099) −0.0084
stat_50 0.2946 (0.1160) −0.0077
vec_5 0.2702 (0.0638) −0.0898

vec_10 0.2656 (0.0633) −0.1053
vec_15 0.2654 (0.0650) −0.1060

(b) Roundtrip GT_P

uwb 0.3489 (0.0405) 0.0000
uwb_vec 0.3320 (0.0463) −0.0482
stat_10 0.2904 (0.0725) −0.1676
stat_20 0.2861 (0.0816) −0.1801
stat_30 0.2897 (0.0832) −0.1697
stat_40 0.2953 (0.0824) −0.1535
stat_50 0.3008 (0.0817) −0.1377
vec_5 0.2876 (0.0885) −0.1757

vec_10 0.2910 (0.0893) −0.1659
vec_15 0.2897 (0.0880) −0.1695

Figure 11. Example run on track GT_P with mode vec_15.

5.1.2. Sparse LOS Environment

Figure 12 and Table 3 show the positioning accuracy in the Sparse LOS environment.
Similar to the results for the Dense environment, the results show improved or equivalent
positioning accuracy of the dynamic methods compared to an appropriate choice of static
error variance. While the improvement in accuracy through fusion on the GT_L track is
negligible, the positioning error of mode uwb_vec is four to five centimeters less than
the raw UWB position (mode uwb). Moreover, as seen in Figure 12b and Table 3, the
positioning accuracy is improved when using the virtual stride vector endpoint (mode
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uwb_vec) as a measure of position, and is further improved by fusion with the ZUPT
measurement on the longer track GT_SQ.

Figure 13 shows a run on track GT_P with mode vec_15. The distortion of the UWB
track during the round trip is largely mitigated by the presented fusion method. A remain-
ing error can be seen on the top part of the track due to an offset in the initial UWB data.
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Figure 12. Mean position error and standard deviation in the Sparse LOS test environment with
low anchor density: (a) straight track GT_L back and forth and (b) roundtrip GT_SQ. All values are
in meters.

Table 3. Mean position error (Avg), standard deviation (SD) and the percentage change of mean error
compared to the UWB measurement (Avg vs. UWB) in the Sparse LOS environment. All values
in meters.

Mode Avg (SD) Avg vs UWB

(a) Straight track GT_L back and forth

uwb 0.6078 (0.2370) 0.0000
uwb_vec 0.5592 (0.2187) −0.0800
stat_10 0.6283 (0.2378) 0.0337
stat_20 0.6487 (0.2242) 0.0674
stat_30 0.6553 (0.2204) 0.0782
stat_40 0.6606 (0.2198) 0.0868
stat_50 0.6659 (0.2200) 0.0956
vec_5 0.5966 (0.1983) −0.0184

vec_10 0.5940 (0.1989) −0.0227
vec_15 0.5948 (0.2014) −0.0213

(b) Roundtrip GT_SQ

uwb 0.6364 (0.1861) 0.0000
uwb_vec 0.5916 (0.1787) −0.0704
stat_10 0.5510 (0.1915) −0.1343
stat_20 0.5585 (0.1954) −0.1225
stat_30 0.5664 (0.1956) −0.1100
stat_40 0.5712 (0.1948) −0.1025
stat_50 0.5747 (0.1940) −0.0970
vec_5 0.5684 (0.2214) −0.1069

vec_10 0.5561 (0.2126) −0.1263
vec_15 0.5451 (0.2091) −0.1435
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Figure 13. Example run on track GT_SQ in the Sparse LOS environment with mode vec_15.

5.1.3. Sparse NLOS Environment

Figure 14 and Table 4 show the positioning accuracy in the Sparse NLOS environment.
Due to large disturbances at the beginning of the test runs, a number of tests did not
converge; two tracks were discounted on track GT_L and five tracks failed to converge on
track GT_SQ.

The dynamic variance estimation shows a clear advantage over any of the tested static
choices for position or orientation measurement variance. There is no discernible trend
in the static variance choices that would indicate a choice of higher variance leading to
an improved result in this challenging environment. The dynamic modes are superior
by about 50 cm of decreased average error on the straight track GT_L and 20 cm on the
longer track GT_SQ. There is no clear trend indicating which count of stride history is
generally superior.

As with the other experiments, Table 4 indicates that the virtual stride vector end-
point (mode uwb_vec) is a superior measure of position compared to the most recent UWB
measurement (mode uwb).

UWB Err. Avg. UWB Err. SD Fusion Err. Avg. Fusion Err. SD
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Figure 14. Mean position error and standard deviation in the Sparse NLOS test environment with low
anchor density: (a) straight track GT_L back and forth (two tracks did not converge); (b) roundtrip
GT_SQ (five tracks did not converge). All values are in meters.

Figure 15 shows a run on track GT_L with mode vec_15. The UWB malfunction on
the upper part of the track is mitigated. At the end of the return trip to the bottom, the
fused position estimate deviates in the direction of the erroneous UWB measurements due
to long-term distortion of UWB.
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Table 4. Mean position error (Avg), standard deviation (SD) and the percentage change of mean error
compared to the UWB measurement (Avg vs. UWB) in the Sparse NLOS environment. All values in
meters.

Mode Avg (SD) Avg vs. UWB

(a) Straight track GT_L back and forth

uwb 1.7266 (0.5467) 0.0000
uwb_vec 1.7030 (0.5455) −0.0137
stat_10 1.7208 (0.4982) −0.0034
stat_20 1.6118 (0.5765) −0.0665
stat_30 1.4387 (0.3568) −0.1667
stat_40 1.4485 (0.3460) −0.1611
stat_50 1.4630 (0.3435) −0.1527
vec_5 1.0145 (0.3528) −0.4125

vec_10 0.9659 (0.3408) −0.4406
vec_15 0.9127 (0.3477) −0.4714

(b) Roundtrip GT_SQ

uwb 1.7146 (0.5467) 0.0000
uwb_vec 1.6733 (0.5418) −0.0241
stat_10 1.5586 (0.5611) −0.0910
stat_20 1.5223 (0.6321) −0.1121
stat_30 1.5101 (0.6916) −0.1192
stat_40 1.5109 (0.7275) −0.1188
stat_50 1.5129 (0.7499) −0.1176
vec_5 1.2473 (0.4008) −0.2725

vec_10 1.3066 (0.5701) −0.2380
vec_15 1.3066 (0.6139) −0.2380

Figure 15. Example run on track GT_L in the Sparse NLOS environment with mode vec_15.

5.2. Attack Compensation

A second experiment was carried out to evaluate the performance in a simulated
attack scenario. Coordinated spoofing of UWB positions was assumed, resulting in a
deviation of the UWB track from the actual track. In a real-world scenario, this might lead
to erroneous movement of a machine following a localized operator, and potentially to
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subsequent accidents. Therefore, it is of interest to test whether and how the presented
method can compensate for these attacks.

The basis for these experiments was the measured data from the previous experiments
under LOS. The measured UWB positions were then modified to model the simulated
attack. For this, a growing bias vector~bi was introduced at time Tm − Tb/2 that continued
to grow until time Tm + Tb/2. Here, the time Tm is the midpoint of a test run and Tb is the
duration of the bias attack. The UWB position Pi at time step i is modified by the bias~bi,
resulting in the biased position Pb,i:

Pb,i = Pi +~bi (64)

with the growing bias vector
~bi =~bi−1 +~b0 ∗ ∆t (65)

where~b0 specifies the direction and growth rate of the bias and ∆t the time difference be-
tween UWB position updates. The simulation was carried out for eight different directions
of bias on each track, resulting in the following set of vectors:

~b0 ∈
{(

1
0

)
,
(

1
1

)
,
(

0
1

)
,
(
−1
1

)
,
(
−1
0

)
,
(
−1
−1

)
,
(

0
−1

)
,
(

1
−1

)}
(66)

The growth rate is dictated by the vector magnitude |~b0| and varies between 1 m/s
and 1.41 m/s; therefore, it corresponds to the range of a normal adult walking speed [53].
The attack duration Tb was chosen to be 10 s.

The resulting positioning accuracy of the disturbed UWB measurements and the fused
positions are analyzed in the following sections. The test runs on a track with a certain bias
direction are treated as a set of results. For each set, the average positioning error of the
modified UWB and fusion is computed. These mean accuracies for a certain bias direction
are shown in the graphs as data points for each mode of fusion. A box plot is generated
from these data points to judge the dispersion of mean positioning accuracy depending
on the bias direction and mode of fusion. The boxes show the 2.5, 25, 50 (median), 75, and
97.5 percentiles, calculated according to Method 8 from [54]. If a test run did not converge
for a certain configuration of the bias direction and fusion mode, it was excluded in all
other configurations.

5.2.1. Dense LOS Environment

Figure 16 shows the results of the tests on track GT_L. One track did not converge,
and was excluded in all examined configurations to ensure comparability of the results.
The dynamic variance estimation shows a median positioning error under 0.5 m for stride
histories of length 10 and 15. Indeed, for these modes only one bias direction resulted in
an error, of about 0.9 m and 0.7 m, respectively, while all other bias vectors resulted in
an error of well under 0.5. Comparing these results with the error range of the raw UWB
positions (between about 1.6 m and 2.3 m), a significant improvement in the mean accuracy
is apparent when using the presented method. No choice of static UWB measurement
variance was able to achieve a consistent improvement in fusion accuracy. For two bias
directions, fusion with static variances even resulted in worse mean accuracy compared to
the biased UWB data.

Figure 17 shows the results of the tests on track GT_P. The performance of the fusion
modes is comparable to the tests on the shorter track GT_L. However, a larger dispersion of
the mean positioning error for different bias directions can be seen for the dynamic variance
estimation. Nonetheless, the median positioning error is situated around 0.5 m for stride
histories of length 10 and 15. However, the maximum error increases to about 1.6 m and
1.2 m, respectively.



Sensors 2023, 23, 4744 28 of 34

sta
t_1

0

sta
t_2

0

sta
t_3

0

sta
t_4

0

sta
t_5

0
ve

c_5
ve

c_1
0

ve
c_1

5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Dense Line
(14.0/15)

UWB Err. Median
Fusion Err.
UWB Err.

Figure 16. Mean position error of raw UWB and fused position on the GT_L track in the Dense
environment. The data points show the mean accuracy for a certain bias direction. All values are in
meters. One test run did not converge and was excluded from the analysis.
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Figure 17. Mean position error of raw UWB and fused position on the GT_P track in the Dense
environment. The data points show the mean accuracy for a certain bias direction. All values are
in meters.

5.2.2. Sparse LOS Environment

The results for the straight track GT_L are shown in Figure 18. One test run failed to
converge on this relatively short track and was excluded from all other tests.

Similar to the tests in the Dense environment, the dynamic variance estimation tech-
niques show superior performance compared to any of the static variances, especially for
stride histories of length 10 or 15. With a comparatively tight grouping around an error
of 1 m, these two dynamic modes are much less affected by different directions of bias
compared to the static modes, which exhibit errors in the range from 2 m up to 4.4 m.
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Dynamic variance estimation with a stride history length of 5 performs better than the
static modes, although it shows a large dispersion depending on the direction of bias.

sta
t_1

0

sta
t_2

0

sta
t_3

0

sta
t_4

0

sta
t_5

0
ve

c_5
ve

c_1
0

ve
c_1

5
0

1

2

3

4

Sparse Line LOS
(11.0/12)

UWB Err. Median
Fusion Err.
UWB Err.

Figure 18. Mean position error of raw UWB and fused position on the GT_L track in the Sparse LOS
environment. The data points show the mean accuracy for a certain bias direction. All values are in
meters. One test run did not converge and was excluded from the analysis.

Figure 19 shows the results on the GT_SQ track. All dynamic variance estimation
methods show superior performance, with the remaining mean errors under or around
1 m compared to the mean error of biased UWB (between 2 m and 2.7 m). Static modes
show a slight decrease in error that is largely independent of the choice of variance.
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Figure 19. Mean position error of raw UWB and fused position on the GT_SQ track in the Sparse
LOS environment. The data points show the mean accuracy for a certain bias direction. All values
are in meters.
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5.3. Conclusions

The endpoint of the virtual stride vector from UWB measurements is a consistently
superior measure of position compared to the last UWB measurement during one stride.
Fusion of stride data from ZUPT with this position measure and dynamic variance estima-
tion of that position measurement resulted in improved positioning accuracy on four out of
six test tracks and equivalent performance compared to static variances on the remaining
two. Overall, the fusion approach resulted in increased accuracy compared to raw UWB
data on five out of six test tracks and equivalent performance on the remaining track.
The greatest benefit of fusion using dynamic variance estimation is seen in the tests with
adverse conditions for UWB. However, the severity of degradation prohibited data fusion
in 7 of 24 test runs in the Sparse NLOS environment. It can be seen that the presented
method is able to mitigate errors in UWB during several strides; however, the experiments
in the sparse NLOS environment show that the presented method is less effective when
UWB is degraded severely for longer periods of time.

In the attack scenario, fusion with dynamic variance estimation modes consistently
shows better accuracy than fusion with any of the fixed variances. Indeed, the choice of
static variance has little and diminishing effect on the mean position accuracy. For the
dynamic modes, larger stride histories show a better ability to mitigate positioning error.
On the shorter straight tracks, one test run failed to converge. This was likely because of an
erroneous initial UWB measurement that was subsequently used to propagate the fused
position with ZUPT, thereby propagating the initial error. On longer tracks this error is
compensated by following UWB measurements. However, due to the limited track length,
the number of compensating UWB measurements was too small prior to error injection by
our simulated attack.

Figure 20 shows the same run on track GT_P with two opposing directions of simu-
lated bias. While the introduced error is mitigated for the whole track in Figure 20a, the
mitigation in Figure 20b fails after about five strides. This confirms the behavior seen in
the Sparse NLOS environment. Severe UWB errors are fully mitigated for several strides;
however, if an unfavorable constellation of UWB error and user movement continues for a
longer time, the presented method for error mitigation cannot continue to provide reliable
user positioning.

(a) (b)

Figure 20. The GT_P track with two directions of simulated bias: (a) bias vector (−1, 0)T and (b) bias
vector (1, 0)T .
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6. Discussion

In this paper, we have presented a scheme to localize people equipped with UWB
transceivers and a shoe-mounted IMU in indoor environments. The proposed approach is
intended to improve worker safety and efficiency by detecting, quantifying, and mitigating
erroneous UWB measurements.

Our contribution in this work is twofold. First, we show that the endpoint of a virtual
stride vector constructed from UWB position measurements during a user stride is a
superior measure of user position compared to the last UWB position measurement of that
stride. Second, we present a method to compare these virtual stride vectors with stride
vectors from ZUPT measurements to derive an error estimate of this position measure.
This error estimate is then used to scale the measurement covariance in a fusion scheme to
combine the UWB and ZUPT measurements for user localization. This scaling operation
is independent of assumptions about the environment or tunable parameters, with the
exception of the minimum variances used to prevent overconfidence in the derived virtual
vector and dynamic variance estimates. The variance estimates are derived for each stride,
and as such are able to respond to sudden increases in error.

We evaluated this fusion scheme in three different industrial environments, finding
that it is superior to UWB alone as well as to fusion with fixed variances in three out of
four tests during normal operation, and is equivalent in the remaining test. The greatest
benefit of our method is seen in an environment with erroneous UWB measurements due to
NLOS and unfavorable HDOP. We evaluated our method further by simulating a spoofing
attack on the UWB measurements. Here, an even greater benefit is seen in regard to error
mitigation. All these experiments were carried out with the same choice of minimum
variance, showing that parameter tuning for different situations is not required.

However, while our method can mitigate the positioning error, the range of remaining
error seems to depend on the test track type and the direction of injected bias. Further
research is needed to draw conclusions about whether the presented method can mitigate
all types of position manipulation, and what factors affect the accuracy of the presented
method. We suspect that one source of uncertainty is the quality of the initial UWB samples.
In our experiments, it is apparent that a large set of past ZUPT vectors is beneficial for error
mitigation. The error of the initial UWB measurements is difficult to quantify because of a
limited set of past vectors. As such, early biases in UWB that are not properly quantified
are not fully mitigated, and can propagate in the filtered position and orientation estimates
for a considerable time. In this context, it is necessary to investigate whether localization
can continue after large continuing deviations between UWB and ZUPT are detected or
whether there needs to be a reset procedure. As the presented error estimation depends
on the comparison of past strides, if the past virtual stride vectors show a large systematic
bias then the error estimate of the current stride is affected.

In our study, this method was demonstrated using an IMU on the user’s shoe. How-
ever, it is conceivable to use a wearable IMU that derives stride length and orientation
from other body parts, e.g., a wristband or belt. Heuristics to derive the stride length and
orientation can be trained using the virtual stride vectors from UWB as a reference during
normal operation.
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