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Abstract: The advent of the Internet of Things (IoT) has triggered an increased demand for sensing de-
vices with multiple integrated wireless transceivers. These platforms often support the advantageous
use of multiple radio technologies to exploit their differing characteristics. Intelligent radio selection
techniques allow these systems to become highly adaptive, ensuring more robust and reliable com-
munications under dynamic channel conditions. In this paper, we focus on the wireless links between
devices equipped by deployed operating personnel and intermediary access-point infrastructure. We
use multi-radio platforms and wireless devices with multiple and diverse transceiver technologies to
produce robust and reliable links through the adaptive control of available transceivers. In this work,
the term ‘robust’ refers to communications that can be maintained despite changes in the environ-
mental and radio conditions, i.e., during periods of interference caused by non-cooperative actors or
multi-path or fading conditions in the physical environment. In this paper, a multi-objective reinforce-
ment learning (MORL) framework is applied to address a multi-radio selection and power control
problem. We propose independent reward functions to manage the trade-off between the conflicting
objectives of minimised power consumption and maximised bit rate. We also adopt an adaptive
exploration strategy for learning a robust behaviour policy and compare its online performance to
conventional methods. An extension to the multi-objective state–action–reward–state–action (SARSA)
algorithm is proposed to implement this adaptive exploration strategy. When applying adaptive
exploration to the extended multi-objective SARSA algorithm, we achieve a 20% increase in the F1
score in comparison to one with decayed exploration policies.

Keywords: resource management; reinforcement learning; adaptive systems; multi-radio

1. Introduction

Multi-radio or multi-RAT (multi-radio access technology) systems allow exploitation
of the diverse characteristics present in different wireless radio standards, which provides
multiple advantages in power consumption and robust link maintenance [1–3]. Applica-
tions of the multi-radio paradigm are prevalent in two distinct categories: wireless sensor
network (WSN)-focused scenarios and heterogeneous access for mobile networks [4,5].

In this work, we consider multi-radio mobile nodes (MNs) deployed in an unknown
environment and attached to, or carried by, field operatives that must transmit sensory
data to remote command and control centres. As the operating environments are likely to
have limited usable communications infrastructure, nodes deployed as local base stations,
referred to as stationary nodes (SNs), provide a high-powered back-haul or trunk commu-
nications link to a wider area network and subsequently to a command and control centre.

We primarily consider the application of this work in an emergency relief and recovery
scenario. Field operations or rescue personnel would be deployed in a remote location
(e.g., firefighting teams) to combat imminent fire threats and perform rescue and recovery
operations in remote residential areas. A centralised command and control centre manages
the coordinated efforts of the operation, monitoring situational awareness information
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from deployed teams and units, receiving health and equipment monitoring, location
tracking, and potentially visual sensory data. With SNs deployed as multi-radio-capable
base stations attached to deployment vehicles, the field operatives can move through their
local area carrying a multi-radio-enabled personal monitoring and communication device
(i.e., an MN that transmits sensory information to an SN). The MN device may be handheld,
similar in size to a mobile phone, and have visual, audio, location tracking, or personal
health monitoring sensors.

Robust communications [6] and optimised power consumption [7] are critical objec-
tives considered for multi-radio implementations. As such, these themes form the basis
of the approach presented in this work. Moreover, we emphasise reinforcement-learning
(RL) techniques for intelligent radio selection and transmit power control. Related works
show that intelligent techniques are essential for managing the impacts of dynamic channel
conditions, which may not always be directly measurable with transceiver hardware.

Q-learning is used in [8] to introduce range adaptability to WSN devices with dual
long- and short-range radios. The authors investigated the adaptation to channel conditions
for maintaining communication links. They applied a fixed rate of random exploration to
discover available lower-power states that achieved a higher immediate reward.

Chincoli and Liotta [7] also employed Q-learning but for transmission power control
of a single radio. The reward function proposed was a combination of discrete power
levels and a linearly quantised packet reception rate. Similarly to [8], the exploration rate
is decayed over time to a minimum value and then fixed for all further iterations. Fixed
parameters for exploration rates are also used by Yan et al. [6] and Wang et al. [9]. These
works focus primarily on the convergence to optimal solutions rather than online learning
performance. However, limited attention is paid to the rate at which learning occurs
and whether such approaches are suitable for use in mobile-node-centric radio selection.
Although the previous works employed RL methods for learning multi-radio selection or
transmit power control, each uses fixed or schedule-based algorithms for managing the
exploration and exploitation trade-off [10]. As such, further investigation is required to
understand whether the online performance of RL-based methods can be improved through
alternative exploration techniques. The online learning performance is tightly bound to the
agent’s ability to maximise the reward under environmental dynamics, and in doing so
learn optimal policies that satisfy the conflicting objectives of the target application.

In this paper, the effects of exploration on policy behaviour for multi-objective multi-
radio communications in a dynamic environment are examined. An adaptive strategy is
adopted to improve the online performance of multi-radio, multi-objective agents. This
strategy is implemented by extending the linear scalarised SARSA algorithm [10], account-
ing for multi-objective preferences in the adaptive exploration rates. We then apply the
multi-objective reinforcement learning (MORL) framework to the multi-radio problem and
design reward functions to manage the trade-off between the conflicting requirements of
minimising the power consumption and maximising the bit rate. The remainder of this pa-
per is structured as follows: In Section 2, we introduce the simulated environmental model
and the MORL framework. In Section 3, we outline the design of the MORL agent and
the proposed extended multi-objective SARSA algorithm. Section 4 studies the proposed
exploration method’s performance against conventional methods, followed by concluding
remarks in Section 6.

2. Methodology

The proposed system consists of two logical entities. The first is the wireless com-
munication environment, and the second is the multi-objective reinforcement learning
(MORL) agent operating in that environment. In this section, we briefly cover the necessary
system model and implementation details, followed by the simulation environment and
analytical framework.
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2.1. Multi-Radio Environment Model

The multi-RAT wireless nodes of focus are equipped with both 2.4 GHz IEEE802.11b
(WiFi) 11 Mbps and 915 MHz IEEE802.15.4 250 Kbps transceivers. A combined link layer
manages the communication over each interface. The environment consists of both SNs
and MNs. It is assumed that the SNs are base stations deployed in a localised area serving
multiple MNs. All nodes support two-way traffic and the SNs are considered gateways to
back-haul traffic to and from remote control centres. While an MN must select transmission
on only one of its available radios, an SN can support concurrent connections to MNs
across different RATs.

The physical environment is modelled as a 500 m × 500 m space divided into cells of
1 m2. Any node within the space may only occupy a single cell at any time, and without
loss of generality, it is assumed that no two nodes may concurrently occupy the same cell.
Channel conditions are modelled using the log-distance propagation model, expressed as

Pr,SN = Pt,MN − PL(d0)− 10γ log10(d/d0) + X, (1)

where Pr,SN is the received power at the SN in dBm and Pt,MN is the transmit power
in dBm of the MN. For simplicity, all antennas are assumed to have unity gain (Gt and
Gr = 0 dB). PL(d0) is the free space path loss at a reference distance d0 of 10 m. Fluctuations
in the channel conditions are simulated by artificially dividing the space into zones using
a Voronoi process with a random distribution of centroids as shown in Figure 1. The
path-loss exponent within a zone is assumed to be uniform and is calculated based on
the distance between its centroid and the SN. The path-loss exponent γ and log-normal
shadowing process X in (1) model the dynamic channel conditions. The trajectory of the
MN follows a Gauss–Markov random walk with the MN moving at 3–5 km/h. According
to Camp et al. [11], the corresponding speed and direction are updated using

st = αst−1 + (1− α)s̄ +
√
(1− α2)sxt−1 , (2)

dt = αdt−1 + (1− α)d̄ +
√
(1− α2)dxt−1 , (3)

where st−1 and dt−1 are the speed and direction at the previous time step and α is a tuning
parameter. Here, s̄ and d̄ respectively represent the mean speed and direction of the MN,
and sxt−1 and dxt−1 are Gaussian random variables. The system simulation, environment,
and RL algorithm are all updated at intervals of 200 ms (T = 0.2 s).
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2.2. Multi-Objective Reinforcement Learning

The multi-objective RL framework differs from its single-objective counterpart in the struc-
ture of the reward that an agent receives. In a problem with N objectives, the reward function
R ∈ Rn returns a vector of N rewards with each element corresponding to one objective.

Using the framework in [10], the agent is presented with a representation of the
environment’s state at each time step St ∈ (S) and selects a discrete action At ∈ (A) based
on the observations and corresponding state representation available. In the following
time step, the agent receives a reward vector Rt+1 ∈ (R) ∈ R from the environment. The
rewards are functions of the actions taken and the resulting next-state observations, St+1.

2.3. Simulation Environment and Analytical Framework

Using the aforementioned multi-radio environment model and the MORL framework,
we have developed a simulation platform to conduct experiments that utilise these the-
oretical models. The simulation platform has been developed as a collection of Python
scripts and makes use of standard numerical and scientific computation and visualisation
libraries (namely Numpy [12], Matplotlib [13], and Pandas [14]). We also use the OpenAI
gym package [15] and have developed a reinforcement learning environment to model
multi-radio wireless devices that utilise simulated mobility in a pre-generated emulation
of a physical environment. The gym package also provides an interface for developing
RL-based agents to interact with these environments.

To begin each experiment, a certain agent and multi-radio simulation environment
configuration are specified. For the agent, this will be the control algorithm that performs se-
lection and power control over an MN operating in a multi-radio scenario. The transceiver
parameters used in the simulation are shown in Table 1, while for the environment, this
will be the dynamic environment model from Section 2.1, the SN location fixed at a ran-
domised location for a single environment, the pre-generated MN trajectory governed
by (2) and (3), and any agent-specific configurations that the environment must manage.
These configurations are the MN data application configuration and reward functions for
RL-based agents or action space configuration in terms of how the transceiver selection
is managed. Once initialised, the control-agent algorithm is started and fed the initial
environmental state. The simulation continues in a turn-based manner where the agent
takes an action and returns a state observation from the environment and a reward signal
before taking another action. This cycle continues for a fixed number of steps resulting
from the generated Gauss–Markov trajectory.

The simulation scripts can be run on a desktop computer and require only an installa-
tion of Python 3 and the aforementioned libraries. They are computationally inexpensive,
which reflects the applicability of the target implementation platforms for the algorithms
where they are likely to be applied to low-powered embedded communication platforms.

Table 1. Transceiver parameters used in the simulation.

Parameter IEEE802.11b [16] IEEE802.15.4 [17]

Operating voltage (V) 3.3 3.3
Frequency (MHz) 2400 915
Bandwidth (MHz) 20 2

Bitrate (Kbps) 11,000 250
Modulation BPSK QPSK

Receiver sensitivity (dBm) −97 −110
MTU (bytes) 2346 127

3. The Proposed Solution
3.1. State and Action Spaces

The multi-radio RL agent’s state and action spaces take into account the available
radios and transmit power levels of the system, reflecting a similar design to that suggested
in [8]. The agent’s action space is defined as a set of actions A = {ai|i ∈ I} where
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I = {0, 1, . . . , 10}. Actions {ai}0≤i≤4 select one of the 5 discrete power levels in the 2.4 GHz
IEEE802.11b radio, where a0 is the lowest and a4 the highest transmit power. The same
holds for the 915 MHz IEEE802.15.4 radio in {ai}5≤i≤9. The final action, a10, accounts for
instructing the agent to stop transmitting. The set of states S is aligned with the action
space; hence, it is similarly defined as S = {si|i ∈ I} where I = {0, 1, . . . , 10}. Thus,
in terms of state transitions, the action at time t will move the agent to the corresponding
state at time t + 1.

3.2. Reward-Function Design

Two reward functions are proposed to obtain a desirable energy and goodput trade-off.
Each reward function is designed such that the agent is rewarded for maintaining link-level
connectivity or ceasing to transmit where no link is available.

The rewards for each objective are defined as conditional functions. This provides
the agent with the ability to learn generalised policy behaviour without being directly
instructed on how to behave under certain conditions. Generality in the policies is achieved
by imparting domain knowledge and designing the reward functions such that they are
dependent on the environmental conditions (i.e., signal strength and link status). The
advantage is that the agent will learn a policy that is dependent on the dynamics of the
environment rather than a fixed set of behaviours, thus allowing the agent to adapt to
new conditions within an environment or even new environments. We also use shaping
techniques that are shown to accelerate learning without impacting the quality of policy
that is learned [18].

As is defined by the MORL framework, the agent receives a vector of rewards at each
step, where each element corresponds to the reward returned by the functions defined
for each objective. Consequently, the agent now has the capability to learn from multiple
sources of reward. As such, the agents receive higher, more positive rewards for selecting
actions that better address the requirements of that objective. However, they are penalised
by negative rewards when their actions deviate from desirable behaviours. The values for
each reward function are always scalar and fall within the range [−1, 1]. There are two
caveats to this specification:

1. Positive rewards are only given for actions that result in a successful link between
MN and SN.

2. In the event that no link can be established on any transceiver, the agent should choose
not to transmit.

In the case that neither of these conditions is met, the agent is penalised with a negative
reward value.

3.2.1. Objective 1. Maximised Bit Rate

Under this objective, a higher reward is gained for transmitting on a radio with a
higher bit rate. The reward function is defined as follows

rb(Bt, B) =


1, case 1
−1, case 2, 3

Bt−min(B)
max(B)−min(B) , otherwise

, (4)

Case 1: if no link is available on any radio and at = a10.
Case 2: if a higher-bit-rate radio is available.
Case 3: if the link is down on the selected radio.

The rewards for all cases other than those described are assigned based on the unit
normalised bit, rate where Bt is the bit rate of the current radio and B is the set of available
radios’ bit rates. This structure encourages the agent to choose a higher-bit-rate radio when
possible. It also ensures that a positive but attenuated reward is given to the agent when
the selected radio does not have the highest bit rate.
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3.2.2. Objective 2. Minimised Power Consumption

This objective follows a pattern where the reward is higher for utilising lower power
states of the selected radio. The reward function for minimising power consumption is
structured such that it will drive the agent to select the lowest available power level while
maintaining a link. This is achieved through a similar shaping approach as in Section 3.2.1
and rp in (5) is subject to a number of cases based on the state of all radios and the selected
power level. Here, Ptx is the current power level and Ptx is the set of available transmission
power levels.

rp(Ptx, Ptx) =


1, case 4
−1, case 5

− Ptx−min(Ptx)
max(Ptx)−min(Ptx)

, case 6

1− Ptx−min(Ptx)
max(Ptx)−min(Ptx)

, otherwise

(5)

Case 4: if no link is available and the agent selected not to transmit.
Case 5: if no link is available at the selected power level.
Case 6: if a lower power level is available.

3.3. WAMO-SARSA Algorithm with Adaptive Exploration

In this section, we present our proposed multi-objective SARSA algorithm with an
integrated adaptive exploration strategy (i.e., adaptive VDBE [19]). We extend the multi-
objective on-policy SARSA algorithm, GM-SARSA, proposed by Sprague and Ballard
in [20], to implement the adaptive VDBE algorithm. The extensions incorporate the current
objective preferences into the original algorithm presented by Tokic in [19] for single-
objective RL algorithms. This approach ensures that the objective preferences contribute
accordingly to adaptive exploration and subsequent action selection. We have named
this implementation of the algorithm weighted adaptive multi-objective SARSA (WAMO-
SARSA), where the SARSA algorithm is named such that its update rule uses the tuple
(st, at, rt, st+1, at+1). The WAMO-SARSA algorithm is shown in Algorithm 1 for the general
case of N objectives.

Algorithm 1: Weighted Adaptive Multi-Objective SARSA (WAMO-SARSA).

1 Initialise N = no. of objectives;
2 Initialise w = 〈w1, w2, . . . , wN〉, where ∑N

i=0 wi = 1;
3 Initialise α, γ;
4 Initialise ε(s) = 1, for all s ∈ S ;
5 Qi(s, a) = 0 for i = 1, . . . , N, for all s ∈ S , a ∈ A;
6 TDEi = 0 for i = 1, . . . , N;
7 st = s0;
8 Choose at from π(st) using WQ;
9 Loop for each step:

10 Take action at, observe r, st+1;
11 Compute WQ(st+1, at) using (6);
12 Choose at+1 from π(st+1) using WQ and (7);
13 for i = 1,2,. . . ,N do
14 TDEi = [ri + γQi(st+1, at+1)−Qi(st, at)];
15 Qi(st, at)← Qi(st, at) + α · TDEi;
16 end
17 WTDE= 1

N ∑N
i=1 wi · TDEi;

18 Compute εt+1(st) using (8) and WTDE as TD-error;
19 st ← st+1; at ← at+1;
20 Until system switched off;
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First, the input parameters α and γ are the learning rate and discount factor, respec-
tively. The learning rate controls how quickly the value of an action can increase/decrease
with rewards received at each iteration of the algorithm, while the discount factor governs
the influence of these immediate rewards at each step. That is to say, a lower discount
factor results in more adaptive behaviour because an agent will tend to learn higher action
values for actions that produce an immediate reward rather than for those that result in
longer-term gains. The other input parameters, N and w, are directly, related as N deter-
mines the size of w. It should be stated that w are the weights of each objective, where each
reward function is designed to address a different objective.

We will describe the proposed extensions in terms of differences to GM-SARSA in [20],
outlining the contributions made to incorporate the adaptive VDBE method. Compared
with GM-SARSA, it can be seen in Algorithm 1 that there are changes and additions at
lines 4, 6, 12, 14, 15, 17, and 18. First, at line 4, we initialise the VDBE algorithm and define
ε(s) = 1 for all states in the state space according to [19]. Following this, at line 6, we also
define TDEi to hold the TD-error for each of the N objectives.

WQ(s, a) =
N

∑
i=0

wiQi(s, a), (6)

At line 12 , we specify ε-greedy exploration where state-dependent probabilities are
used to select actions. This modified ε-greedy algorithm is shown in (7), where ε(s) replaces
the single value for ε with a state-dependent value updated according to (8).

π(s) =

{
random action from A(s) if ζ < ε(s)
argmaxa∈A(s)WQ(s, a) otherwise

, (7)

Lines 14 and 15 of Algorithm 1 divide the standard update rule for multi-objective
SARSA into two components. For each of the N objectives, we calculate the TD-error,
store it in TDEi, and perform an update on the respective action-value function for the ith
objective (i.e., Qi(st, at)). Then, using the stored TD-errors across all objectives, we define
the weighted TD-error (WTDE) at line 17. This WTDE quantity is the sum of TD-errors
at the current step weighted by each of the corresponding objective weights in w. Lastly,
we compute the next value for εt+1(st) in the current state st, substituting WTDE for the
TD-error in (8). Recall that the original adaptive VDBE algorithm for computing εt+1(st) is

εt+1(s) = δ · 1− e
−|TD-error|

σe

1 + e
−|TD-error|

σe

+ (1− δ) · εt(s), δ =
1

|A(S)| , (8)

where σe controls how much ε changes based on the TD-error at each time step and
δ is always set to the inverse of the number of actions in the action space [21]. Here,
the parameter σe is referred to as the inverse sensitivity, lower values of which cause high
rates of exploration (i.e., ε(s) closer to 1) when the magnitude of the TD-error is high, noting
that ε(s) is initially set to 1 for all states (total exploration). Then, as the agent interacts
with the environment, the relation in (8) causes ε(s) to reduce as the TD-error moves
closer to zero for each state s (as the agent learns to act optimally). When environmental
dynamics occur and the TD-error increases as a result of the reward functions following
these dynamics, ε(s) will increase and encourage the agent to begin exploring for more
optimal actions.

In summary, our proposed method replaces the TD-error in (8) with WTDE, a weighted
summation of the TD-errors for the action-value function corresponding to each objective at
the current step, thus making the adaptive VDBE strategy now dependent on objective prefer-
ences and ensuring that action selection is also equally dependent on these same preferences.

Using these extensions, we are now able to effectively implement an adaptive explo-
ration strategy for a multi-objective RL agent.
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4. Results

In this section, we study the behaviour of the RL agent with respect to the objectives
previously defined (N = 2) and two exploration strategies. The weights of the reward
functions rb and rp are w1 and w2, respectively, with both set to 0.50 for a balanced trade-off
between objectives. This weighting drives the agent to choose a power level as low as
possible while using the highest-bit-rate radio possible. Learning algorithm parameters
are kept constant for all experiments where α = 0.7 and γ = 0.1. The inverse-sensitivity
parameter σ for VDBE is set to 0.08. The path-loss exponent in the Voronoi regions in
Figure 1 is varied between 3.5 and 5.0, where each trajectory will encounter different
dynamics within the same environment.

The values for α and γ were selected as they yielded the highest F1-score across a
range of objective weights during testing. As we do not consider the direct effects of
modifying these parameters in this paper, we have also selected these values to suit the
application scenario for adaptive MR communications. In simple terms and with reference
to the discussion of the impact of these parameters in Section 3.3, we are interested in an
agent that favours immediate rewards highly and also one that is able to quickly converge
to stable action values.

4.1. Adaptive Exploration Policy Evaluation

The online learning performance of the WAMO-SARSA agent was investigated with
two exploration strategies. The first strategy reduced the exploration parameter over time
to a minimum value as used in [7,8] and is referred to as the decayed exploration rate. The
second was the multi-objective VDBE proposed in Section 3.3, which is referred to as the
adaptive exploration rate.

A sample learned policy of the WAMO-SARSA agent for both exploration strategies
is shown in Figure 2a,b. The figures plot the average performance over 100 runs of radio
and power-level selection against steps along the trajectory. The average performance is
indicated via heat maps, where the intensity indicates the relative likelihood of selecting a
particular action at each step along the trajectory. Figure 2c shows the optimal policy that
achieves the maximum reward at every step. Recalling from Section 3.1, actions {ai}0≤i≤4
select the IEEE802.11b radio and associated power levels while actions {ai}5≤i≤9 select the
IEEE802.15.4 radio.
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Figure 2. Cont.
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Figure 2. WAMO-SARSA policy behaviour for the ‘linear return’ trajectory. In (b) the agent learns a
higher-consistency policy than in (a). This is reflected by the precision measure in Table 2, where the
precision for adaptive and decayed exploration is 0.72 and 0.62, respectively. The optimal policy is
shown in (c).

Table 2. Exploration method precision, recall, and F1-score comparisons evaluated across all
three environments.

Decayed Adaptive

Precision 0.62 0.72
Recall 0.56 0.70

F1-score 0.59 0.71

An important difference to note between the performance of each exploration strategy
is in the decisiveness and consistency of the learned policies. This is shown by the darker
and more defined shapes in Figure 2b that contrast the lighter gradients in Figure 2a. The
agent using adaptive exploration rates is less likely to deviate from a single policy when
the same experiment is repeated a number of times.

4.2. Adaptive Exploration Performance Evaluation

To quantify the policy performance with respect to the optimal policy, we use a
confusion matrix to visualise the accuracy and consistency of each exploration method
in Figure 3a,b. The learned policy is compared to the optimal and each row of the matrix
represents the performance with respect to steps where a particular action is optimal. The
diagonal regions show the rate at which each action is optimally selected by the agent. The
regions on either side of the diagonal demonstrate the likelihood that a non-optimal action
is chosen in place of the optimal.

The matrix is constructed by iterating over the optimal policy and recording the
learned action in the row corresponding to the optimal action at that step. For example,
at a step in which the agent selected a8 and the optimal action is a4, the count at row 4
column 8 is incremented. This procedure is repeated for all simulation runs across the three
environments to derive the rate of selection for each learned action (column) per optimal
action (row).
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Figure 3. Confusion-matrix representation of policy behaviour for decayed and adaptive exploration
techniques in all environments. Diagonal boxes show the rate that a particular action is selected when
optimal. Percentages are calculated row-wise and are used to derive the recall rate for each exploration
technique. Actions 5, 6, and 7 are not used by the optimal policy in any of the three environments
and are shown as ‘N/A’. (a) Decayed exploration rate. (b) Adaptive exploration rate.

Table 2 shows two measures commonly adopted in the classification literature for each
exploration method, namely, precision and recall. A third measure, the F1-score, is used
to measure the harmonic mean of precision and recall [22]. Precision indicates the ratio of
correctly selected optimal actions in each class of learned action, while recall is the rate that
each action is selected optimally and represents the row-wise spread around the diagonal in
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confusion matrices. We perform macro-averaging to gain a statistic for the overall precision,
recall, and F1-score for the action space.

5. Discussion

It can be seen in Table 2 that there is a minimum 15% increase in the precision, recall,
and subsequent F1-score when an adaptive exploration rate is used over a decayed rate.
This can be seen in Figure 3b by the increased selection rates at the diagonal regions and less
horizontal distribution on either side of the optimal actions when compared to Figure 3a.
This increase is also visible in the differences between policy heat maps for the ’linear return’
environment in Figure 2a,b when compared to the optimal in Figure 2c. The difference
in these figures, shown by darker-coloured regions, also demonstrates that the adaptive
agent learns a more consistent policy along its trajectory when the experiment is repeated
many times. From the communication performance figures in Table 3, the total amount of
data that were successfully transferred from MN to SN increased while the packet loss rate
decreased when adaptive exploration rates were used over decayed in all environments.
Both are indicators of a more stable radio and power-level selection policy.

Table 3. Exploration method communication-performance comparison.

Environment Data Tx, MB PLR, % Power, Wh

Decayed Adaptive Decayed Adaptive Decayed Adaptive

Linear return (Figure 1) 103.04 110.21 15.77 3.40 0.50 0.58

Far boundary 64.82 75.42 25.31 11.21 0.24 0.32

Near return 112.85 116.42 7.25 1.57 0.58 0.59

However, the power consumption under adaptive exploration tends to be higher than
that of the decayed exploration agent but closer to the optimum policy when the heat
maps in Figure 2a–c are compared. This can be attributed to the nature of the adaptive
exploration algorithm where high rates of exploration occur during periods of uncertainty
and environmental changes. These are shown by the apparent vertical bars in Figure 2b at
the boundary between notable changes in action selection along the trajectory.

While these periods are short on the scale of the total system operation time, it high-
lights the importance of balancing exploration and exploitation under dynamic channel con-
ditions to reduce the time spent behaving sub-optimally. It is this adaptive and environment-
dependent behaviour of the adaptive exploration method that makes it a more suitable
approach for learning in these environments than arbitrary schedule-based or fixed explo-
ration rates. There is also a reduced dependence on offline design and experimentation to
select the appropriate learning algorithm parameters.

In future works, we will consider approaches to minimise these periods of exploration
and further reduce the dependence on offline parameter optimisation (i.e., optimising the
parameter σ for adaptive exploration, α and γ for SARSA in Algorithm 1).

With respect to the operation of the WAMO-SARSA algorithm and how it is intended
to be implemented, it is designed to be operated on the MN side of the system and is
independent of the base stations or SNs. Thus, it is the MNs that perform radio selection
and control independently. Their actions are purely governed by the performance seen
by each MN with respect to its corresponding SN in the network. Hence, the algorithm is
largely unaffected by a scaled wireless network in terms of nodes. However, the processing
power and ability of a base station to communicate with many nodes will be a limiting
factor, as with any conventional network scheme. While scaling the number of objectives
will increase the granularity with which control over radio selection can be imparted,
there is a risk that this will create a watered-down effect of each objective on the system’s
behaviour. Although not considered here, in future works we will also investigate how the
number of objectives would impact learning abilities.
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Lastly, we will briefly examine the algorithm in terms of computational complexity
and memory requirements. It is intended that the algorithm proposed in this paper be
implemented using low-powered and embedded devices that have integrated wireless
communications modules. The WAMO-SARSA algorithm does not involve complex signal
processing or time-consuming iterative calculation at each iteration. Rather, each iteration
involves a series of linear operations that are scalarised across multiple objectives without
the need for computations that directly use matrices or vectors. Further to this, the scalari-
sation of action values across objectives is only completed for a single action-value pair per
iteration, not the entire state and action spaces. Thus, we believe that the algorithm is ap-
propriate for targeting these embedded systems that utilise RISC (Reduced Instruction Set
Processors), such as the ARM Cortex-M series of processors. However, it is also important
to consider how the algorithm performs with respect to the number of objectives regardless
of the relative simplicity of computations required. As a separate table of action values
(Q) is stored for each objective, intuitively we can see that the memory required would
scale linearly with the number of objectives. However, as previously discussed, it may be
preferable to keep the number of objectives limited to ensure that the ability of different
communication objectives to be successfully achieved is maintained.

6. Conclusions

This paper has investigated the use of the MORL framework for adaptive radio selec-
tion and power control in multi-radio wireless systems. We have applied adaptive policy
exploration methods for multi-objective RL agents to the MR-selection problem, where
previous studies [6,8,9] have only examined or applied exploration policies with decaying
rates of exploration. To perform this comparison we additionally proposed an extension
to the GM-SARSA algorithm [20]. Independent reward functions have been designed to
provide an effective trade-off between conflicting objectives, and an extension to multi-
objective SARSA was proposed for an adaptive exploration strategy. The results show that
the proposed extended algorithm learns a policy that outperforms conventional exploration
methods, achieving a 20% increase in the F1-score across three varied environments and
mobility traces. These performance gains demonstrate that adaptive exploration is a more
suitable candidate for online learning and control in multi-radio, multi-objective wireless
communication systems.
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Abbreviations
The following abbreviations are used in this manuscript:

BPSK Binary Phase Shift Keying
GM-SARSA Greatest-Mass Multiple-Goal Reinforcement Learning with Modular SARSA
IoT Internet of Things
MN(s) Mobile Node(s)
MORL Multi-Objective Reinforcement Learning
Multi-RAT Multi-Radio Access Technology
QPSK Quadrature Phase Shift Keying
RL Reinforcement Learning
SARSA State–Action–Reward–State–Action
SN(s) Stationary Node(s)
TD Temporal Difference
VDBE Value-Difference-Based ε-greedy Exploration
WAMO-SARSA Weighted Adaptive Multi-Objective SARSA
WSN(s) Wireless Sensor Network(s)
WTDE Weighted TD-Error
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