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Abstract: Optical coherence tomography angiography (OCTA) provides a detailed visualization
of the vascular system to aid in the detection and diagnosis of ophthalmic disease. However,
accurately extracting microvascular details from OCTA images remains a challenging task due to
the limitations of pure convolutional networks. We propose a novel end-to-end transformer-based
network architecture called TCU-Net for OCTA retinal vessel segmentation tasks. To address the
loss of vascular features of convolutional operations, an efficient cross-fusion transformer module
is introduced to replace the original skip connection of U-Net. The transformer module interacts
with the encoder’s multiscale vascular features to enrich vascular information and achieve linear
computational complexity. Additionally, we design an efficient channel-wise cross attention module
to fuse the multiscale features and fine-grained details from the decoding stages, resolving the
semantic bias between them and enhancing effective vascular information. This model has been
evaluated on the dedicated Retinal OCTA Segmentation (ROSE) dataset. The accuracy values of
TCU-Net tested on the ROSE-1 dataset with SVC, DVC, and SVC+DVC are 0.9230, 0.9912, and 0.9042,
respectively, and the corresponding AUC values are 0.9512, 0.9823, and 0.9170. For the ROSE-2
dataset, the accuracy and AUC are 0.9454 and 0.8623, respectively. The experiments demonstrate
that TCU-Net outperforms state-of-the-art approaches regarding vessel segmentation performance
and robustness.

Keywords: retinal vessel segmentation; TCU-Net; efficient cross-scale transformer; channel cross-attention

1. Introduction

A large number of clinical studies have shown that diseases such as diabetic retinopa-
thy (DR) [1], cataracts [2], dry eye syndrome (DES) [3], and glaucomatous lesions [4] are
associated with structural and morphological alterations of retinal vessels. As part of
ophthalmic diagnostic criteria, optical coherence tomography angiography (OCTA) en-
ables the identification and measurement of blood flow to obtain high-resolution images
of the blood vessels in the retina, choroid, and conjunctival areas [5]. Compared with
traditional fluorescein fundus angiography and indocyanine green angiography, OCTA
has the advantages of non-invasive, rapid, and three-dimensional imaging, making it a
very promising vascular imaging technique in the field of ophthalmology [6]. As shown
in Figure 1a, color fundus images obtained by conventional retinal imaging techniques
have difficulty capturing fine vessels and capillaries. The optical coherence tomography
angiography [7] techniques can generate images of the retinal vascular plexus at different
depths in Figure 1b–d. High-quality OCTA images can present microvascular information
in different OCTA depth layers, which can be easily applied to clinical research. To precisely
identify and diagnose the variations in retinal blood vessels, medical personnel need to
extract the retinal vessels from the fundus image to observe the length, curvature, width,
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and other morphological conditions of the retinal vascular trees. However, the manual
segmentation of retinal vessels requires complicated work and is both tedious and time-
consuming [8]. Various automatic segmentation algorithms that can improve efficiency
and reliability have gradually attracted much attention in clinical practice procedures to
solve this situation.

(f)

(c)

(g)

(a) (b)

(e)

(d)

(f)

(c)

(g) (h)

DVCSVC SVC+DVC

Figure 1. Comparison of color fundus images and fovea-centred (yellow rectangle area) OCTA
images: (a) color fundus, (b–d) superficial vascular complexes (SVC), deep vascular complexes
(DVC), and the inner retina vascular plexus including both SVC and DVC (SVC+DVC). (e–h) are
their corresponding labels. The small vessels usually have low contrast.

In the past few decades, many efforts have been made to segment retinal vessels.
For instance, Gao et al. [9] proposed an automated method for the diagnosis of diabetic
retinopathy that could help physicians diagnose patients more quickly and accurately. The
approach relies on annotating a large number of images, which requires a lot of time and
human resources, and reannotating images for different cases. Jin et al. [10] presented a new
dataset of fundus images based on vascular segmentation, which can provide researchers
with rich experimental data. The size of the dataset is not extremely large and includes
only one disease (diabetic retinopathy), which may affect the generalization ability of the
algorithm. Song et al. [11] presented a machine-learning-based clinical decision model
that uses a set of rules developed by physician experts and combines traditional feature
extraction methods with automatic feature learning by convolutional neural networks
(CNNs) to improve the diagnostic accuracy of pathological ptosis. However, the study lacks
comparative experiments to assess the advantages and disadvantages of the model with
other methods. The state-of-the-art methods for retinal vessel segmentation come from the
fully convolutional networks (FCNs), such as U-Net and its variants [12], which are based
on the encoder–decoder architecture. U-Nets can capture contextual semantic information
by using a cascade of convolutional layers and combining high-resolution feature maps with
skip connections to achieve precise localization. The impact of skip connections is improved
by Attention U-Net [13], which introduces an attention module to weight encoder features
and fuse them with corresponding decoder features. This enhances the retention and
reinforcement of critical vessel features in the decoder. However, the interactions between
information at different scales are ignored by the skip connections, which only enhance the
vessel representation by adding over the channels to the corresponding decoder features.
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It has been indicated by studies [14] that not all skip connections effectively connect the
encoder and decoder. Additionally, it was found that the original U-Net performs worse
than a U-Net without skip connections on some datasets.

Many studies have focused on retinal vessel segmentation in OCTA images due to
the superiority of OCTA images in visualizing the retinal plexuses. OCTA images are
characterized by rich retinal vessels, complex branching structures, and a low signal-to-
noise ratio, making it difficult to distinguish small capillaries, arterioles, and venous regions
in the image, which leads to poor segmentation. In addition, variety in vessel size, shadow
artifacts, and retinal abnormalities further complicates segmentation. To address these
challenges, Ma et al. [7] proposed a split-based coarse-to-fine OCTA image segmentation
network (OCTA-Net) that comprises a coarse segmentation stage and a fine segmentation
stage. The coarse segmentation network is utilized to generate preliminary confidence
maps for pixel-level and centerline-level vessels, while the fine stage serves as a fusion
network to obtain the final refined segmentation result. Although this approach divides
OCTA image segmentation into two stages, mitigating the problem of discontinuity in
vessel segmentation, the training process is laborious and impractical. Pissas et al. [15]
presented an effective recurrent CNN for vessel segmentation in OCT-A, which uses
fully convolutional networks (FCNs) to segment the entire image in each forward pass
and iteratively refines the quality of vessel generation through weight-sharing coupled
with perceptual losses. Despite achieving a good performance, CNN-based approaches
generally exhibit limitations for capturing long-range (global) dependencies due to the
intrinsic convolution operations. It causes the convolutional network to only focus on local
features of the retinal vessel image, making it prone to breaking and missing the widely
existing small blood vessels.

The existing studies have proposed that transformer architecture using the self-
attention mechanism has emerged to make up for the information loss in convolution
operations and effectively establish long-range dependencies. Self-attention is the key com-
putational primitive of the transformer. It can implement pairwise entity interactions with
a context aggregation mechanism, giving the transformer the ability to handle long-range
dependencies. Preliminary studies with different forms of self-attention have shown its
practicality in various medical image segmentation tasks [16,17]. Despite their exceptional
representational power, the training and progress of the transformer architecture have
intimidating challenges. One of the challenges is that complexity is quadratically related to
the image input size in the vanilla transformer module. Secondly, without the ConvNet
inductive biases, transformers cannot perform well on a small-scale dataset. The above
challenges make it difficult to process a lesser number of medical images with higher
resolutions, leaving a large amount of room for further improvements.

In summary, we have identified several limitations of existing OCTA retinal vessel
segmentation methods: (1) The continuity of retinal vessels amplifies the defects of convo-
lution calculations, and the convolutional network’s weak global capturing ability makes it
susceptible to breaking or missing segmented vessels. (2) The skip connections in U-Net
simply propagate vessel information from the encoder to the decoder on features of the
same scale, resulting in limited interaction between features at different scales, which fails
to prevent information loss and blurring. (3) Although the pure transformer network
structures can achieve global context interaction through the self-attention mechanism,
the high computational complexity of self-attention remains a challenge, especially for
processing larger images with transformer-based structures.

To address these issues, this paper introduces a transformer embedded in a convolu-
tional U-shaped network: TCU-Net, combining the advanced convolutional network and
self-attention mechanism for OCTA retinal image segmentation. Specifically, an efficient
cross-fusion transformer (ECT) is proposed to replace the original skip connections. The
ECT module leverages the advantages of convolution and self-attention to avoid large-scale
pre-training by exploiting the image induction bias of convolution, as well as the capability
of the transformer to capture long-range relationships with linear computational complexity.
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Moreover, features with different scales are input by the encoder into an efficient multihead
cross-attention mechanism to achieve interaction between different scales and compensate
for the loss of vessel information. Finally, the efficient channel-wise cross attention (ECCA)
module is introduced to fuse the transformer module’s multiscale features and decoder
features to solve the semantic inconsistency between them and enhance effective vessel
features. The main contributions of this work include the following:

• We proposed a novel end-to-end OCTA retinal vessel segmentation method that
embeds convolution calculations into a transformer for global feature extraction.

• An efficient cross-fusion transformer module was designed to replace the original skip
connections, thus achieving interaction between multiscale features and compensating
for the loss of vessel information. The multihead cross-attention mechanism of the ECT
module reduces the computational complexity compared to the original multihead
self-attention mechanism.

• To reduce the semantic difference between the output of ECT module and decoder
features, we introduce a channel cross-attention module to fuse and enhance effective
vessel information.

• Experimental evaluation on two OCTA retinal vessel segmentation datasets, ROSE-1
and ROSE-2, demonstrates the effectiveness of the proposed TCU-Net.

2. Related Studies

The retinal vessel segmentation studied and considered herein can be divided into a
CNN-based method and a transformer-based method. Among them, the transformer-based
method focuses on its application to medical image datasets. In this section, we introduce
corresponding algorithms for each category.

2.1. Based on Convolution Neural Networks

In recent years, deep learning models have been greatly used for retinal images
since they do not need any handcrafted features and outperform existing unsupervised
methods. Such models, especially U-Net [18], are still the most popular segmentation
frameworks applied to fundus images up to now. Due to the blurred state of small blood
vessels located at the end of blood vessels and the edges of blood vessels in retinal vascular
images, as well as the unclear distinction between the blood vessel area and the background
area, it is difficult to achieve accurate segmentation. To solve this issue, Xiao et al. [19]
introduced the residual structure and combined it with U-Net to achieve a powerful feature
extraction capability to obtain high-accuracy retinal vessel segmentation. However, ResU-
Net [20] utilizes more convolutional layers and parameters, which might be overfitted.
Guo et al. [21] introduced the spatial attention module to make the network focus on the
vascular features and inhibit the unnecessary features, thus improving the expression ability
of the network. As the attention module of SA-Unet only focuses on local information, that
means it is not sensitive enough to long-range dependencies. Zhang et al. [22] proposed
pyramid U-Net, which was employed in both the encoder and decoder to aggregate features
at higher and lower levels for accurate retinal vessel segmentation. In this way, contextual
information sharing and aggregation from coarse to fine can be achieved, thus improving
the segmentation of capillary regions.

With the widespread use of OCTA techniques in ophthalmic diseases, researchers
have gradually switched their targets from color fundus images to OCTA retinal vessel
segmentation. Li et al. [23] proposed a new image magnification network (IMN) with
a structure of an upsampling encoder and then a downsampling decoder. This design
is to capture more image details and reduces the omission of thin-and-small structures.
Xu et al. [24] introduced an OCTA-based cascaded neural network to automatically seg-
ment and distinguish small blood vessels before and after the capillary plexus, followed
by a graph neural network (GNN) to improve the connectivity of the initial segmentation.
Wu et al. [25] proposed a progressive attention-enhanced network (PAENet) for 3D-to-2D
retinal vessel segmentation. It consists of a 3D feature learning path and a 2D segmentation
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path. To obtain more detailed information, a feature fusion module (FFM) is designed to
inject 3D information into the 2D feature path and then model the semantic relationship
between spatial and channel dimensions to achieve feature interaction. The above CNN-
based segmentation networks achieved great performance in the retinal vasculature, but
the local and limited receptive field of the convolutional network is still one of its short-
comings. Moreover, the existing U-Net-based retinal vascular segmentation networks only
fuse features for the same level of encoder and decoder, ignoring the correlations between
features of different layers. Therefore, the method proposed here interacts with the encoder
features of different scales of U-Net to compensate for the loss of vascular information.

2.2. Based on Transformer Architecture

One of the first transformer-based architectures proposed for medical image segmen-
tation is the TransUnet [26] architecture, which regards a hybrid CNN-transformer architec-
ture as an encoder and outputs the final segmentation mask in the decoder. Zhang et al. in-
troduced TransFuse [27] to effectively integrate the transformer and CNN features through
the BiFusion module utilizing self-attention and a multimodal fusion mechanism. It was
evaluated for polyp segmentation, skin segmentation, and hip segmentation and has been
shown to be effective. In other work, TransAttUNet [28] is the first network to apply trans-
former layers between the encoders and decoders in a U-shaped architecture. The robust
self-aware attention module and multiscale skip connection have been embedded between
the encoder and decoder of U-Net, which not only enhances the flexibility of U-Net but also
increases the expression ability of global spatial attention and transformer self-attention.
Plenty of experiments with TransAttUNet on five benchmark medical image segmentation
datasets have shown its effectiveness. The above transformer-based model implements
global context modeling and exhibits a strong ability to capture key features in images.
Nevertheless, the computational complexity of the original self-attention is high and re-
quires a longer training time and a larger amount of computational resources. To address
this, Tan et al. [29] proposed a novel transformer network (OCT2 Former) for OCTA retinal
vessel segmentation, using a dynamic token aggregation transformer to reduce the huge
computational overhead of the original transformer and designing an assisted convolution
branch to speed up the convergence of the transformer. In addition, Guo et al. proposed a
UTNet [30] model in which transformer layers are present in both the encoder and decoder.
It effectively combines the attention mechanism with convolution operations and reduces
the quadratic complexity of the self-attention mechanism to a linear type, respectively. In
order to accelerate the convergence of the segmentation network, we reduce the computa-
tional complexity of the model by using the latter scheme to embed the features into the
self-attentive mechanism after reducing their size through convolutional computation.

3. Proposed Method
3.1. Network Architecture

Figure 2 provides an overview of the TCU-Net network. The U-Net architecture
comprises a downsampling encoder and an upsampling decoder, and the skip connections
refer to adding encoder and decoder features at symmetric positions on the channel, thus
preserving the original input feature map in the deep transformation. Inspired by methods
such as UTNet [30] and UCTransNet [14], we aim to improve the performance of U-Net by
designing an efficient cross-fusion transformer to replace the original skip connections. The
ECT module is situated on the original skip connection structure. The output of the ECT
module is not directly added to the channel with the corresponding layers of the decoder.
Instead, it is fused with the output features and upsampled features layer-wise by the
ECCA module. This process guides the decoder stage and enhances vascular information.
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Figure 2. (a) Illustration of the proposed TCU-Net, (b) efficient cross-fusion transformer module, and
(c) efficient channel cross-attention module.

3.2. ECT: Efficient Cross-Fusion Transformer for Encoder Feature Transformation

To solve the high computational complexity issue when fusing the multiscale features
of encoders, the proposed efficient cross-fusion transformer (ECT) module integrates
convolution into the self-attention mechanism to avoid the large-scale pre-training of the
transformer. This is attributed to the theory proposed by wang et al. [31] that self-attention
is essentially low rank for long sequences and most of the information is concentrated
on the largest singular value. A more efficient attention mechanism based on this theory
was proposed by UTNet [30], which successfully reduced the computational complexity
of self-attention. In addition, UCTransNet [14] identified that some skip connections may
not be effective due to the incompatible feature sets between the encoder and decoder
stages. To address this issue, they introduced the CTrans (channel transformer) model as
an alternative to U-Net skip connections. The CTrans model effectively solves the semantic
gap and achieves the accurate automatic segmentation of medical images. Inspired by
them, the ECT module can effectively fuse features at different scales as well as reduce the
computational complexity of the self-attention mechanism in Figure 3.

In previous studies [32], we calculated the attention function for a set of queries
simultaneously, packed into a matrix Q. The keys and values are also packed into matrices
K and V. We use 4 heads and consider an input feature map X ∈ RC×H×W , where H, W is
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the spatial height and width, and C is the number of channels. The computation process is
described as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

d
)V, (1)

where the Q, K, V ∈ Rd×H×W and d is the embedding dimension of each head. Accordingly,
the Q, K, and V are flattened and transposed into sequences with size Rn×d, and n = HW.
Consequently, the dot-product attention leads the complexity to O(n2d). Typically, self-
attention layers are slower than recurrent layers when the sequence length n is longer
than the representation dimensionality d, affecting the self-attention’s flexible applicabil-
ity. Therefore, the main idea of the effective cross-fusion self-attention we employed is
embedding the projection into the lower dimension.

In the efficient cross-fusion transformer (ECT) module, for each output Xi ∈ R
HW
i2
×Ci ,

i = (1, 2, 3, 4) of the encoder, it needs to be regularized to X′i ∈ R
HW
i2
×Ci , i = (1, 2, 3, 4) before

entering the attention mechanism. As shown in Figure 3, we use three 1× 1 convolutions to

project Xi into Qi, Ki, Vi ∈ R
HW
i2
×Ci , i = (1, 2, 3, 4) and concatenate the four layers of K, V as

the ultimate key and value KΣ = Concat(K1, K2, K3, K4), VΣ = Concat(V1, V2, V3, V4). On
each of these projected versions of queries, keys, and values we then perform three projec-
tions to project them into low-dimensional embedding in each head: Q′ ∈ Rk×di , K′ ∈ Rk×dΣ ,
and V′ ∈ Rk×dΣ , i = (1, 2, 3, 4), where d is the dimension of embedding in each head,
k = hw ≤ HW

i2 , and h and w are the reduced size of each feature map after a bilinear interpolation.
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X4X1
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1×1 Conv

Interpolation
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Figure 3. The encoder output is subjected to an interpolation downsampling operation to obtain the
cross-scale Q’i(i = 1, 2, 3, 4), K’, V’.

The proposed module contains six inputs containing four queries and two aggregated
KΣ, VΣ as the key and value, as shown in Figure 4. We compute the matrix of outputs
through an efficient cross-attention (ECA) mechanism as:

ECAi = softmax

(
Q′Ti K′√

dΣ

)
V′T , (2)
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where dΣ = Concat(d1, d2, d3, d4) is aggregated through the dimensions in the four skip
connection layers. Finally, we computed the dot products of the transpose of the query
with all keys, divide each by

√
dΣ, and apply a softmax function to obtain the weights on

the values. In practice, we use 4 heads and employ k = HW
162 as the limited length. Due

to the reduced size of each feature map, the total computational complexity is similar to
O
(
k2d
)

and much smaller than O
(
n2d
)
.

V′

d
�
=d

1
+d

2
+d

3
+d

4

K′

×

d

K′Q′i
T

Softmax × V′T

Q′2
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Q′3
d3

d4

Q′4

d4

Q′1

d1d1
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d2
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Q′4

d4

Q′1

d1d1

Figure 4. Efficient multihead cross-attention.

To distinguish our model from conventional vision transformer models, we perform a
convolutional layer for each output of the multiheaded self-attention, accompanied by a
batch normalization and a ReLu activation function to achieve information complementar-
ity. Hereinafter, applying a convolution calculation and residual structure, the output is
obtained as follows:

Ei = Xi + ECAi + Conv(Relu(Bn(Xi + ECAi))), (3)

The operation in Equation (3) is repeated four times to build the outputs of the
transformer. Finally, we use an upsampling followed by a 1× 1 convolution to reconstruct
the four outputs E1, E2, E3, and E4 and splice them with the decoder features D1, D2,
D3, and D4, respectively.

ECCA: Efficient Channel Cross-Attention

To solve the semantic inconsistency between the effective transformer and U-Net
decoder, we apply a channel cross-attention module [14] by exploiting the inter-channel re-
lationship of features. To compute the channel cross-attention efficiently, we firstly squeeze
the spatial dimension of the input features Ei ∈ RCi×H×W and Di ∈ RCi×H×W(i = 1, 2, 3, 4),
respectively. For aggregating spatial information, average-pooling and max-pooling have
been commonly adopted so far. In previous studies, we argued that max-pooling can
gather the unique object features to infer finer channel-wise attention and average-pooling
can learn the extent of the target object effectively [33]. Thus, we empirically confirmed
that exploiting both of them in a parallel or sequential manner obtains the best result (see
Section 4.1). We describe the computational process as follows:

Mi(Ei) = σ(Avg Pool(Ei)) (4)
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Mi(Di) = σ(Avg Pool(Di)) (5)

Ni = L1 ·Mi(Ei) + L2 ·Mi(Di) (6)

E′i = σ(Ni) · Ei (7)

where σ denotes the sigmoid function, Mi(Ei) ∈ RCi×1×1 , and Mi(Di) ∈ RCi×1×1. Note
that L1 ∈ RCi×Ci and L2 ∈ RCi×Ci are the weights of two linear layers. Through these
computations, we generate two different pieces of spatial context information and merge
the features using element-wise summation. Finally, the channel attention map is built by a
single linear layer and sigmoid function.

4. Experimental Results
4.1. Datasets and Metrics

To evaluate the effectiveness and superiority of TCU-Net, we have conducted extensive
experiments on the Retinal OCTA SEgmentation (ROSE) dataset [7], which is the first public
ROSE dataset for the vessel segmentation task. ROSE consists of two subsets (ROSE-1 and
ROSE-2) obtained by two different devices. To be specific, there are 117 OCTA images
with a resolution of 304 × 304 pixels in ROSE-1, while ROSE-2 contains 112 OCTA images
with 512 × 512 pixels. ROSE-1 can be divided into three kinds of OCTA images with both
centerline-level annotation and pixel-level annotation, i.e., SVC, DVC, and SVC+DVC. In
ROSE-2, only SVC images with centerline-level annotation are provided. We considered
the consensus of centerline-level annotation and pixel-level annotation as the ground truth
in the SVC of ROSE-1. Given a predicted segmentation result and its corresponding ground
truth, true positives (TPs) mean the correctly segmented vessel pixels and those wrongly
classified as non-vessel pixels are denoted as false negatives (FNs). Similarly, true negatives
(TNs) mean correctly segmented non-vessel pixels and those incorrectly detected as vessel
pixels are denoted as false positives (FPs). The evaluation metrics are calculated as follows:

• Area under the ROC curve (AUC) [34];
• Sensitivity (SEN) = TP/(TP + FN);
• Specificity (specificity) = TN/(TN + FP);
• Accuracy (ACC) [35] = (TP + TN)/(TP + TN + FP + FN);
• Kappa score [36] = (accuracy − pe)/(1 − pe);
• pe [7] = ((TP + FN)(TP + FP) + (TN + FP)(TN + FN))/(TP + TN + FP + FN)2

• False discovery rate (FDR) [37] = FP/(FP + TP);
• G-mean score [38] = sensitivity × specificity;
• Dice coefficient (Dice) [39] = 2 × TP/(FP + FN + 2 × TP).

4.2. Implements Details

We implemented the proposed method with PyTorch on an NVIDIA TITAN GPU and
empirically set the number of epochs to 50 epochs for ROSE-1 and 300 epochs for ROSE-2.
The stochastic search strategy was used to find the optimal hyperparameters, and after
constant iterations of training, the best combination for the model was identified. We finally
used Adam optimization to adaptively adjust them with a learning rate of 0.0006, a batch
size of two, and a weight decay of 0.0001. Each kind in ROSE-1 is composed of 30 training
images and 9 testing images, while 90 images in ROSE-2 are used for training, and the
remaining 22 images are chosen for testing. Only when training, the random rotation of an
angle of −10 and 10 is conducted for data augmentation. The poly learning rate policy with
a poly power of 0.9 is adopted for better performance and stable training. It is worth noting
that we train TCU-Net in an end-to-end manner with binary cross-entropy loss. To simplify
the training process, we utilized the ground truth instead of centerline-level annotation
and pixel-level annotation for ROSE-1.
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4.3. Performance Comparison and Analysis

To comprehensively prove the superiority of the proposed method, we have compared
it with many other state-of-the-art segmentation methods: seven CNN-based deep learning
approaches—U-Net [18], ResU-Net [20], CE-Net [40], CS-Net [41], and OCTA-Net [7]—
and two transformer-based deep learning networks—TransFuse [27] and TransUnet [26].
We report the objective metrics of these methods in Tables 1–4 and subjective results in
Figure 5. The network’s vascular segmentation ability can be observed from the ground
truth comparison with the predicted mask.

SVC

DVCR
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S

E

-

1

R

O

S

E

-

2

OCTA-Net OursGround truthOriginal TransFuse TransUnet

SVC

SVC+DVC

Figure 5. Vessel segmentation results from different methods on different layers of ROSE-1 and
ROSE-2. From (left) to (right): en face angiograms (original images), manual annotations, and
vessel segmentation results obtained by TransFuse, TransUnet, OCTA-Net, and the proposed method
(TCU-Net), respectively.

Subjective comparisons. Figure 5 compares the resulting images of three advanced
vascular segmentation methods, including two networks based on transformers for medical
image segmentation. It can be observed that the two transformer networks have several
vascular breakpoints in their prediction plots. Meanwhile, the OCTA-Net [7] outperforms
the other two networks except for our proposed method, but it achieves weak performance
in capturing thin vessels due to convolutional limitations. In contrast, the proposed method
(TCU-Net) identifies more complete vessels without separate training of coarse and fine
vessels and performs a more sensitive and accurate segmentation of capillaries. The graph
of SVC and DVC vessel results in ROSE-1 demonstrates that TCU-Net is quite coherent in
terms of overall vessels with minimal truncation points, and the results are better than the
other three networks’ segmentation results, especially on the fine capillaries. Similar results
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are demonstrated in the ROSE-2 dataset. In the following, we will analyze the proposed
method’s objective metrics.

Table 1. Quantitative results on ROSE-1 (SVC) datasets compared to previous SOTA. The evaluation
metrics are based on the mean ± standard deviation calculated in repeated experiments. The values
in bold denote the optimal results obtained under the present experimental conditions.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

U-Net [18] 94.10 ± 0.13 91.38 ± 0.18 82.52 ± 0.48 72.02 ± 0.20 77.48 ± 0.32 21.55 ± 1.62
ResU-Net [20] 94.57 ± 0.09 91.73 ± 0.12 84.26 ± 0.59 72.97 ± 0.32 77.05 ± 0.30 19.88 ± 1.58

CE-Net [40] 94.90 ± 0.07 91.63 ± 0.19 84.08 ± 0.49 71.71 ± 0.34 76.81 ± 0.24 19.57 ± 1.61
CS-Net [41] 95.07 ± 0.05 92.29 ± 0.07 83.41 ± 0.53 73.16 ± 0.22 77.78 ± 0.23 14.60 ± 1.14

OCTA-Net [7] 94.83 ± 0.12 92.09 ± 0.34 82.57 ± 1.54 72.24 ± 0.64 76.93 ± 0.59 14.17 ± 3.23
TranFuse [27] 92.50 ± 0.98 90.63 ± 0.50 83.09 ± 0.60 66.24 ± 0.28 72.64 ± 0.36 28.19 ± 3.20

TransUnet [26] 94.50 ± 0.11 92.21 ± 0.10 82.79 ± 0.48 72.18 ± 0.28 76.76 ± 0.26 12.34 ± 1.20
Ours 95.12 ± 0.05 92.30 ± 0.06 84.73 ± 0.85 73.29 ± 0.31 77.91 ± 0.37 12.25 ± 2.11

Table 2. Quantitative results on ROSE-1 (DVC) datasets compared to previous SOTA.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

U-Net [18] 95.33 ± 0.33 96.90 ± 1.23 84.87 ± 2.38 59.80 ± 3.70 60.70 ± 3.30 51.96 ± 4.20
ResU-Net [20] 96.65 ± 0.29 98.86 ± 0.12 89.76 ± 2.59 65.55 ± 4.32 61.12 ± 3.30 39.16 ± 4.58

CE-Net [40] 96.37 ± 0.39 98.08 ± 0.32 90.15 ± 2.72 64.30 ± 4.86 63.21 ± 3.18 51.81 ± 4.86
CS-Net [41] 96.65 ± 0.31 98.20 ± 1.09 89.30 ± 2.93 66.09 ± 4.26 66.18 ± 3.05 46.86 ± 4.17

OCTA-Net [7] 96.82 ± 0.56 98.29 ± 0.75 90.12 ± 2.63 64.07 ± 2.82 64.82 ± 2.64 46.71 ± 3.45
TranFuse [27] 94.95 ± 0.50 98.55 ± 1.27 85.89 ± 2.83 60.16 ± 3.88 60.86 ± 3.16 46.55 ± 3.14

TransUnet [26] 96.69 ± 0.05 99.01 ± 0.27 87.77 ± 2.60 68.96 ± 4.95 67.39 ± 3.26 33.21 ± 3.20
Ours 98.23 ± 0.13 99.12 ± 0.20 90.23 ± 2.17 69.39 ± 2.96 69.87 ± 2.16 28.98 ± 3.11

Table 3. Quantitative results on ROSE-1 (SVC+DVC) datasets compared to previous SOTA.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

U-Net [18] 90.17 ± 0.96 89.30 ± 0.30 77.58 ± 0.98 63.61 ± 0.12 69.77 ± 0.23 24.37 ± 1.71
ResU-Net [20] 91.14 ± 0.61 89.82 ± 0.38 77.84 ± 0.25 64.10 ± 0.25 70.12 ± 0.54 20.66 ± 3.52

CE-Net [40] 90.21 ± 0.04 89.63 ± 0.24 77.45 ± 0.91 63.44 ± 0.24 69.58 ± 0.27 21.08 ± 2.62
CS-Net [41] 91.49 ± 0.02 90.16 ± 0.06 77.47 ± 0.89 64.77 ± 0.44 70.52 ± 0.52 17.89 ± 1.59

OCTA-Net [7] 91.44 ± 0.05 90.12 ± 0.15 76.84 ± 0.99 64.31 ± 0.35 70.02 ± 0.47 17.14 ± 2.43
TranFuse [27] 89.86 ± 0.51 89.54 ± 0.26 76.51 ± 0.84 63.92 ± 0.78 68.96 ± 0.36 27.30 ± 3.51

TransUnet [26] 91.05 ± 0.05 90.15 ± 0.27 77.22 ± 0.60 64.56 ± 0.45 70.83 ± 0.67 16.93 ± 3.20
Ours 91.70 ± 0.06 90.42 ± 0.16 77.98 ± 1.10 64.87 ± 0.38 71.20 ± 0.50 15.67 ± 2.56

Table 4. Quantitative results on ROSE-2 datasets compared to previous SOTA.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

U-Net [18] 85.03 ± 0.57 94.16 ± 0.19 79.39 ± 1.26 64.11 ± 0.50 67.33 ± 0.56 28.65 ± 1.90
ResU-Net [20] 86.08 ± 0.61 94.26 ± 0.88 80.12 ± 0.25 65.56 ± 0.25 68.75 ± 0.54 27.53 ± 1.52

CE-Net [40] 85.13 ± 0.06 94.03 ± 0.05 80.70 ± 0.29 65.71 ± 0.19 69.04 ± 0.19 27.76 ± 0.58
CS-Net [41] 85.98 ± 0.06 94.39 ± 0.20 78.20 ± 1.56 63.96 ± 0.61 67.02 ± 0.74 26.64 ± 2.02

OCTA-Net [7] 86.05 ± 0.04 94.44 ± 0.15 78.91 ± 0.74 64.92 ± 0.14 67.96 ± 0.16 26.04 ± 0.14
TranFuse [27] 84.01 ± 0.49 89.83 ± 0.26 79.94 ± 1.24 60.16 ± 0.68 66.03 ± 0.48 38.96 ± 2.84

TransUnet [26] 85.78 ± 0.05 94.24 ± 0.27 79.91 ± 0.60 63.97 ± 0.95 68.14 ± 0.26 27.77 ± 1.20
Ours 86.23 ± 0.05 94.54 ± 0.24 81.26 ± 0.62 64.97 ± 0.21 68.40 ± 0.28 25.26 ± 1.24

Results of the SVC dataset in ROSE-1. We first evaluate the performance of the
proposed method on the SVC dataset against a variety of SOTA methods in terms of
the above evaluation metrics. As the experimental results in Table 1 show, TCU-Net
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outperforms CNN-based SOTA methods by a large margin and all metrics evaluated show
the best performance. Specifically, compared to other transformer-based methods, TCU-
Net also shows a superior learning ability on the majority of vessels. The performance of
the proposed method is consistent with the segmentation results, demonstrating a strong
connectivity and integrity in both coarse and fine vessels.

Results of the DVC dataset in ROSE-1. For the DVC images, their ground truth con-
tains only the intermediate fine vessels. Our method shows the same optimal performance
in fine vessel segmentation in Table 2. It is commendable that all objective metrics are
higher than the latest methods; in particular, the mean value of the AUC is up to 98.23%,
with an improvement of 1.41%, respectively, and a reduction of about 17.73% in FDR as
compared to OCTA-Net. This result shows that TCU-Net is more sensitive to capillaries
compared to other methods.

Results of the SVC+DVC dataset in ROSE-1. Each image of this dataset contains
both SVC and DVC vascular maps. We repeat the experiments for U-Net and its variants
several times again. The results are shown in Table 3, these prove that TCU-Net achieves
state-of-the-art performance. Specifically, compared to CS-Net, the proposed network
improved 0.21%, 0.3%, and 0.68% in the three metrics of the AUC, ACC, and Kappa,
respectively, and reduced 2.22% in FDR. Tables 3 and 5 show that the proposed method
not only outperforms the two transformer frameworks but also can effectively reduce the
computational complexity of the original transformer model and the number of parameters
of the model.

Table 5. Comparison of parameters and floating point of operations in above methods.

Methods Param (M) FLOPs (G)

U-Net [18] 34.5 184.6
ResU-Net [20] 12.0 22.1

CE-Net [40] 29.0 25.7
CS-Net [41] 33.6 157.2

OCTA-Net [7] 217.7 345.0
TranFuse [27] 300.16 420.6

TransUnet [26] 334.18 483.4
Ours 14.1 80.6

Results of the ROSE-2 dataset. The difference between ROSE-2 and ROSE-1 is that
ROSE-2 has a high pixel size of 512 × 512. Due to the high pixel count of the images,
training on this dataset converges more slowly compared to ROSE-1. Therefore this
dataset needs 300 epochs of training on the TCU-Net network to obtain the best value.
As shown in Table 4, the proposed method achieves the best results on the AUC, ACC,
G-mean, and Kappa, respectively. This result demonstrates that the TCU-Net network
is equally adapted to high-pixel fundus image segmentation with the introduction of a
self-attention mechanism.

4.4. Ablation Studies

In this paper, we conduct an ablation study to assess the effectiveness of the proposed
method. Experiments are conducted to evaluate the effectiveness of the proposed branched
design by choices of different attention combination schemes. The ROSE dataset that has
been used and the results of the experiments are recorded.

Ablation for the proposed modules. To perform a thorough evaluation of the ECT
module and the ECCA module, we added each component to U-Net, and the performance
results are shown the by applying each component to the original scheme in Tables 6–9
for the SVC, DVC, SVC+DVC, and ROSE-2 datasets, respectively. The performance of all
datasets is improved by both the ECT module and the ECCA module. Specifically, the
efficient cross-fusion transformer module successfully fuses multiscale features, leading to
significant performance improvements and preventing information loss from the encoder.
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Furthermore, the ECCA module enhances performance by establishing an effective connec-
tion to the decoder features, thereby reducing ambiguity. Note that both types of attention
are crucial, and the ‘Base+ECT+ECCA’ approach achieves the best values on all metrics,
driving the performance of retinal vessel segmentation.

Ablation for the projection of efficient self-attention and to reduce size. Figures 6 and 7
show the comparison of the Dice scores when the dimensions H and W of the feature
map are reduced to 1/16, 1/8, and 1/4 of the original size. Among them, using interpola-
tion downsampling is slightly better than using maximum pooling, and the best results
are obtained by reducing the size of the ROSE-1 and ROSE-2 datasets to 1/4 and 1/16,
respectively. In addition, we compare in terms of the model size and floating point of
operations. As shown in Table 5, the proposed model has a substantial reduction in the
number of parameters compared to the other transformer model, along with a significant
performance improvement. This indicates that the proposed model shows superiority in
vessel segmentation.

Table 6. Ablation studies on ROSE-1 (SVC) dataset.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

Baseline (U-Net) 94.10 91.38 82.52 72.02 77.48 21.55
Baseline+ECT 95.10 92.38 84.21 73.77 78.35 15.37

Baseline+ECCA 95.01 92.36 83.23 73.25 77.79 13.91
Baseline+ECT+ECCA 95.11 92.39 84.73 73.78 78.45 12.25

Table 7. Ablation studies on ROSE-1 (DVC) dataset.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

Baseline (U-Net) 95.33 96.90 84.87 59.80 60.70 51.96
Baseline+ECT 98.29 99.02 91.84 64.83 65.44 43.61

Baseline+ECCA 98.00 98.63 90.37 69.93 70.41 36.67
Baseline+ECT+ECCA 98.40 99.18 90.03 71.40 71.80 26.51

Table 8. Ablation studies on ROSE-1 (SVC+DVC) dataset.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

Baseline (U-Net) 90.17 89.30 77.58 63.61 69.77 24.37
Baseline+ECT 91.39 90.16 78.15 65.17 70.97 18.93

Baseline+ECCA 91.60 90.19 77.61 64.91 70.64 17.97
Baseline+ECT+ECCA 91.76 90.31 79.21 65.52 71.46 17.34

Table 9. Ablation studies on ROSE-2 dataset.

Methods AUC (%) ACC (%) G-Mean (%) Kappa (%) Dice (%) FDR (%)

Baseline (U-Net) 85.03 94.16 79.39 64.11 67.33 28.65
Baseline+ECT 86.20 94.38 79.09 64.72 67.78 26.65

Baseline+ECCA 86.19 94.21 78.93 64.93 67.99 28.29
Baseline+ECT+ECCA 86.29 94.43 80.10 64.97 68.15 26.51
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Figure 6. Effect of size reduction and projection of efficient self-attention on ROSE-1 dataset.
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Figure 7. Effect of size reduction size and projection of efficient self-attention on ROSE-2 dataset.

5. Conclusions

In this paper, we present a novel strategy to combine a transformer and U-Net for
retinal vessel segmentation. Transformers are knowns as architectures with strong innate
self-attention mechanisms. To enhance the effective vascular information, we propose
an ECCA module to fuse the ECT module features with the decoder features. The pro-
posed approach has a lower memory occupation and computational complexity than other
transformer-based models [26,27], without pre-training. Nevertheless, it is crucial to em-
phasize that the clinical application of TCU-Net should be carefully evaluated by medical
professionals due to potential variations in real images, such as illumination, shooting
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angles, and lesion areas. The proposed TCU-Net architecture achieves a state-of-the-art
performance for ROSE-1 and ROSE-2 on SVC and DVC datasets, but further research is
needed to address potential biases in practice. Future research could further explore and
improve this approach to address potential biases in clinical practice and facilitate the
model’s widespread use in clinical applications.
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