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Abstract: Numerous applications exist for monitoring knee contact force (KCF) throughout activities
of daily living. However, the ability to estimate these forces is restricted to a laboratory setting.
The purposes of this study are to develop KCF metric estimation models and explore the feasibility
of monitoring KCF metrics via surrogate measures derived from force-sensing insole data. Nine
healthy subjects (3F, age 27 ± 5 years, mass 74.8 ± 11.8 kg, height 1.7 ± 0.08 m) walked at multiple
speeds (0.8–1.6 m/s) on an instrumented treadmill. Thirteen insole force features were calculated as
potential predictors of peak KCF and KCF impulse per step, estimated with musculoskeletal modeling.
The error was calculated with median symmetric accuracy. Pearson product-moment correlation
coefficients defined the relationship between variables. Models develop per-limb demonstrated lower
prediction error than those developed per-subject (KCF impulse: 2.2% vs 3.4%; peak KCF: 3.50% vs.
6.5%, respectively). Many insole features are moderately to strongly associated with peak KCF, but
not KCF impulse across the group. We present methods to directly estimate and monitor changes in
KCF using instrumented insoles. Our results carry promising implications for internal tissue loads
monitoring outside of a laboratory with wearable sensors.

Keywords: wearable; knee contact force; musculoskeletal modeling; statistical modeling;
tissue loading

1. Introduction

Applications for internal tissue load measurement include the treatment evaluation
of orthopedic injuries, management or avoidance of overuse injuries, and study of how
chronic loading influences tissue health. Currently, there are no methods to monitor
these loads in pragmatic settings. While instrumented prostheses or other implantable
devices provide the gold standard for accurately measuring internal loads [1–7], their
invasive nature limits their ability to be widely used for clinical problem understanding.
Alternatively, although noninvasive laboratory-based methods such as the estimation of
intersegmental moments and forces with inverse dynamics [8–12], joint contact forces
with musculoskeletal modeling [13–32], or tissue stress and strain with finite element
analysis [13–23] provide substantial analytical depth, the laboratory-based instrumentation
required limits their applicability in a clinic or in patients’ activities of daily living. The
liberation of internal tissue load monitoring outside of a traditional laboratory would
allow rehabilitation specialists to optimize patient treatment with more precision in real-
world settings.

One potential avenue to estimate internal tissue loads in real-world scenarios is with
wearable sensors. In particular, force-sensing insoles that estimate the normal component
of foot–shoe contact force have received attention due to their ease of use, unobtrusiveness,
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and potential to help answer important research questions [24,25]. Through the application
of statistical methods, internal tissue loading in the lower body could be monitored by
measuring only this foot contact force. However, there are some important considerations
to be made when developing models for clinical populations. First, the intended population
will impact the potential generalizability of the model across people or even between limbs.
For example, post-surgical patients that demonstrate significant limb asymmetry may re-
quire model calibration per limb, while a healthy population with sufficient between-limb
symmetry may not require specific calibration. Similarly, post-surgical populations that
demonstrate higher between-person kinematic and kinetic variability during gait may
require calibration per subject. Second, the intent of these models could be to either directly
estimate or monitor tissue loading change over time with surrogate measures. Direct
estimation would potentially provide a more precise solution to internal load monitoring,
but surrogate measures would allow researchers and clinicians to monitor changes over
time (e.g., throughout a treatment plan) while providing potentially increased model gener-
alizability across a population. In this study, we explore the potential for all permutations
of the considerations listed above (model per-subject versus per-limb and direct estimation
versus surrogate measures).

The first purpose of this study is to develop models with varying levels of specificity
(per-limb and per-subject) that directly estimate peak KCF and KCF impulse per step with
data from force-sensing insoles across a range of speeds from a healthy population. We
hypothesize that models developed per-limb will perform similarly as those developed
per-subject for this healthy cohort. The second purpose is to explore the potential to monitor
KCF metrics (peak and impulse) with surrogate measures (foot contact force data features).

2. Materials and Methods

This study was approved by the University of Kentucky Institutional Review Board.
Nine subjects (3F/6M, age 27± 5 years, mass 74.8± 11.8 kg, height 1.74± 0.08 m) provided
their written informed consent and were enrolled in the study. Only subjects meeting the
following inclusion criteria were considered for the study: Tegner score equal to or greater
than 4; 15–40 years of age; Body Mass Index 18–25 kg/m2; participate in competitive
sport or run at least 10 miles per week; and no history of movement impairment or lower
extremity injury. Finally, subjects were excluded if they had a history of previous surgeries.
We chose nine participants for this study for the purpose of establishing feasibility in the
proposed approaches.

The motion capture protocol was consistent with previously published methods [26].
Fifty-two retroreflective markers were placed on each subject (25 as tracking clusters and
27 on anatomical landmarks). Marker locations were collected at 200 Hz with a 12-camera
motion capture system (Motion Analysis, Santa Rosa, CA, USA) simultaneously with
force plate data at 1200 Hz from a dual-belt instrumented treadmill (Bertec Corporation,
Columbus, OH) as subjects walked at five different speeds (0.8, 1.0, 1.2, 1.4, and 1.6 m/s)
for 60 s each. Marker position and force plate data were filtered with 4th order low-pass
Butterworth filters at 8 and 35 Hz, respectively. Foot contact force data was collected from
each condition using single sensor loadsol® insoles (Novel Electronics, St. Paul, MN, USA)
at 100 Hz. All subjects wore New Balance WR662 running shoes (New Balance, Brighton,
MA, USA).

In order to sync the motion capture and foot contact force data, each trial began with a
right-foot stomp while the treadmill was stopped followed by a controlled increase in speed
until the condition speed was achieved. Force plate and insole force peaks corresponding
to the stomp were semi-automatically identified and matched. The data was then scanned
across a +/− 50 ms window of these peaks to optimize the synchronization by maximizing
the cross-correlation of the foot contact force (force-sensing insole) and ground reaction
force (force plate) data. Stance intervals were defined with 20 N thresholds from the
insole data.
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Knee contact forces were estimated using the Gait2392 model in OpenSim
(version 4.0) [27]. The Gait2392 musculoskeletal model consists of 23 degrees of freedom
(DOF) and 92 muscles, with the knee restricted as a 1 DOF hinge joint (flexion/extension).
Model weight, height, and segment lengths were scaled per subject from static trial marker
positions. Muscle forces were estimated via static optimization [28], then used within the
joint reaction analysis tool to estimate KCF expressed in the tibial reference frame [29].The
peak KCF and KCF impulse were computed as the maximum and time integral of the
resultant KCF vector magnitude per stance phase, respectively.

A total of 13 foot contact force features were extracted per step from the insoles [Table 1].
Traditional features such as stance time, peak force, and loading rate were supplemented
with non-traditional metrics that may generate deeper insight into subtle differences in gait
mechanics which are not readily captured by individual metrics. Equations, illustrations,
and descriptions for each of these features are provided in Appendix A.

Table 1. Features extracted from insole data per step.

Time Domain—Traditional Time Domain—Other (Pseudo) Frequency Domain

Stance Time [s] Skewness DFT Max [Hz]
Peak Magnitude [BW] Mid-Drop Peak Magnitude Mean PF

Impulse [BW×s] WAC Impulse [BW×s]
Loading Rate [BW/s] Prop. Impulse [BW×s]

IP Magnitude [BW] WAC/Prop. Impulse
Symmetry

Note: IP = impact peak; WAC = weight acceptance; Prop. = Propulsive; DFT = Discrete Fourier Transform;
PF = Pseudo-Frequency; and BW = bodyweight.

Knee contact force prediction models were created per-limb and per-subject using
stance phases across all walking speeds performed. A total of 6634 steps were collected
across subjects, with an average of 185 steps per limb. No steps were excluded from analysis.
All features were first z-score normalized to ensure a zero-mean and unit variance, then
used as inputs to a linear regression model that was trained with a 10-fold cross validation
scheme stratified by walking speed. The median symmetric accuracy (MSA) was chosen as
the evaluation metric, as it has been shown to produce unbiased and robust models while
maintaining a translatable output (percent error) (Equation (1)) [30]. Individual predictors
for the final models were chosen through a best subset selection method. The overall
method of KCF prediction is illustrated in Figure 1.

MSA = 100
(

e(M(|ln (Q) |)) − 1
)

(1)

where Q =
prediction

observation and M is the median operator.
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Pearson product–moment correlation coefficients define the relationship between
foot contact force features and KCF metrics. The following ranges define the strength of
correlations: strong—r≥ 0.7; moderate—0.5≤ r < 0.7; weak—0.3≤ r < 0.5; and negligible—
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r < 0.3. These correlation coefficients were calculated per subject per limb, then averaged
across the group.

3. Results

The KCF prediction error is lower in models developed per-limb (2.19% for KCF
Impulse and 3.50% for peak KCF) than those developed per-subject (3.40% for KCF Impulse
and 6.47% for peak KCF) [Table 2]. The error is consistently lower for the KCF Impulse
than peak KCF. Finally, the models utilize a relatively low number of features, indicating
good computational feasibility for these methods [Table 2].

Table 2. Performance of KCF prediction models.

KCF Impulse Peak KCF

MSA [%] Num. Predictors MSA [%] # Predictors

Per Limb 2.19 (1.65–2.54) 8.0 (7.0–8.8) 3.50 (2.78–5.09) 7.0 (5.3–8.0)
Per Subject 3.40 (2.87–4.24) 9.0 (7.0–9.0) 6.47 (5.07–11.06) 8.0 (7.0–9.0)

Note: MSA = median symmetric accuracy. All values are reported as median (interquartile range).

The correlation analysis identifies a number of insole features which are moderately
to strongly associated with peak KCF (7 strong, 4 moderate, and 2 negligible) [Table 3].
All insole features are negligibly correlated with KCF impulse at a group level. How-
ever, a number of correlations re moderate to strong on a per-limb basis, as illustrated in
Appendix B.

Table 3. Correlation coefficients between insole features and KCF metrics.

Peak KCF KCF Impulse

Time Domain
[Traditional]

Stance Time [s] −0.84 ± 0.05 *** 0.09 ± 0.48
Peak [BW] 0.87 ± 0.09 *** 0.14 ± 0.40

Impulse [BW×s] −0.76 ± 0.07 *** 0.11 ± 0.48
Loading Rate [BW/s] 0.80 ± 0.24 *** 0.11 ± 0.44
IP Magnitude [BW] 0.62 ± 0.16 ** 0.09 ± 0.34

Time Domain
[Other]

Skewness 0.81 ± 0.12 *** 0.20 ± 0.41
Mid-Drop Peak −0.82 ± 0.12 *** −0.10 ± 0.46

WAC Imp [BW×s] −0.05 ± 0.34 0.08 ± 0.19
Prop Imp [BW×s] −0.66 ± 0.14 ** 0.09 ± 0.42

WAC/Prop Impulse 0.56 ± 0.17 ** −0.02 ± 0.33
Symmetry −0.24 ± 0.44 −0.03 ± 0.25

(Pseudo) Frequency
Domain

DFT Max [Hz] 0.63 ± 0.09 ** −0.14 ± 0.42
Mean PF 0.73 ± 0.12 *** −0.14 ± 0.45

Note: Values are presented as mean ± standard deviation of all speed conditions per subject per limb. *** = strong
correlation (|r| ≥ 0.7). ** = moderate correlation (0.5 ≤ |r| < 0.7).

4. Discussion

This study has two primary purposes: (1) develop models of varying specificity to
directly estimate peak KCF and KCF impulse per step; and (2) establish the feasibility
of using foot contact force data features as surrogate measures for KCF metrics. We find
that models developed per-limb produce a lower error than those developed per-subject.
Additionally, we identify a number of insole features which re moderately to strongly
associated with peak KCF (7 strong, 4 moderate, and 2 negligible). However, while
all insole features are negligibly correlated with KCF impulse at a group level, there re
individual strong and moderate correlations on a per-limb basis. These results demonstrate
the feasibility of monitoring KCFs outside of a traditional laboratory with wearable sensors.

The prediction error from the direct estimation models developed in this study demon-
strates that a single wearable sensor can produce accurate KCF estimates. These models
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typically utilize between five and nine predictors [Table 2], which demonstrates a compu-
tational efficiency balanced with robust biomechanical representation from the features
engineered. The collection of insole force features [Appendix A] is designed to capture
subtle gait mechanics which are not readily captured by individual metrics. For example,
traditional ground reaction force metrics measured through different phases of stance
(weight acceptance and propulsive) have been previously found to correlate with walking
kinematics such as knee flexion excursion [31]. Additionally, mean pseudo-frequency has
been shown to discriminate between rearfoot and non-rearfoot patterns [32]. Combining
features that capture these movement characteristics results in an accurate KCF estimation
through robust biomechanical representation.

The moderate to strong correlations identified suggest that individual insole force
features can be used as surrogate measures to monitor peak KCF. For example, given the
consistently strong relationship between insole peak force and peak KCF, this metric could
be used to monitor peak KCF changes through time, although it is not a direct estimate.
Alternatively, the relationships between KCF impulse and all insole features re negligible
at a group level. The group-wide negligible relationships stem from the variability in
the relationship directions between subjects [see Appendix B]. For example, the average
correlation between the KCF impulse and insole loading rate is 0.11, but with a range
of −0.75 to 0.71. We speculate that the variability in correlation direction stems from
differences in how subjects’ gait changes with speed. As illustrated in Figure 2, Subject A
develops a significant peak in their KCF curve during the first half of stance as the speed
increases, while Subject B does not. These individual gait differences require relationships
between force-sensing insole features and KCF impulse to be calibrated per-limb or per-
subject. Future research and clinical use of these methods could perform a set of walking
trials to establish relationships between insole force features and KCF impulse for each
patient. Conversely, the results from this study suggest that these trials would not be
necessary to monitor peak KCF with select insole force-based surrogate features.
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of the association between insole and KCF metrics. LR = loading rate.

While the models from this study use data from a healthy population, the methods
could be extended to patients following surgery or with movement pathology. For example,
clinicians could mitigate the risk of premature osteoarthritis development in anterior
cruciate ligament reconstruction patients through the restoration and monitoring of knee
loads during activities of daily living. Additionally, gait retraining and subsequent load
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monitoring for total knee arthroplasty patients could optimize the long-term health of
their own tissues and the artificial joint. One future consideration is that while the models
developed per-limb from this healthy group only perform moderately better than per-
subject models, the error of models developed per-subject would likely increase as the
methods extend to post-surgical patients with greater between-limb KCF differences.

There are a number of limitations to this study. First, because the external validity of
these types of models are limited to the training data from which they are developed, the
scope of KCF prediction from this study is limited to flat-surface, straight-line walking.
Future studies could implement various inclines, steps, and turns on multiple surfaces to
increase model generalizability. Additionally, these models are developed from a single
data collection. Collecting data on multiple days would provide further generalizability
through the introduction of controlled variability in the training data. Third, we chose
to utilize a simple linear regression model for this feasibility study. There are several
more sophisticated modelling strategies that could be implemented to improve prediction
accuracy which have shown strong performance in other fields as demonstrated in [33–37].
Finally, although EMG-informed models have been shown to be the most effective option
to estimate KCFs with musculoskeletal modeling [38–40], the KCF results in this study
are consistent with those previously reported [28,39] and are generated with a validated
musculoskeletal model and muscle force estimation method.

5. Conclusions

We present methods which can be used to monitor KCF metrics during activities of
daily living using force-sensing insoles. While these sensors have been previously used
to monitor rehabilitation progress in various ways, no studies to date have used them to
estimate musculoskeletal-model generated KCF during walking. The performance of both
the per-limb and per-subject based models developed indicates that accurately estimating
KCF metrics can be done with a single wearable sensor. Further, we identify a number of
insole features which are strongly or moderately associated with peak KCF, but not KCF
impulse. These results carry promising implications for the estimation of KCFs outside of a
traditional laboratory with wearable sensors.
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Appendix A. Feature Descriptions and Illustrations

Table A1. Illustrations of features extracted from loadsol data.

1-Stance Time. 2-Peak Magnitude
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from 40–60% of 
stance) 

Equation 𝐹𝑜𝑟𝑐𝑒  
Equation 𝐹𝑜𝑟𝑐𝑒  

Units 
Bodyweight 

Units 
None (0–1) 

Description
Maximum force during stance

Equation
Timeend − Time1

Equation
(Force1→end)

Units
second

Units
Bodyweight

3-Impulse
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Slope of the foot-contact-force curve from 3–12% of stance 
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Description 
Force at impact 
peak location (if no 
peak, then 15% of 
stance) 

 

Description 
Max-normalized 
force at mid-drop 
location (local min 
from 40–60% of 
stance) 
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Equation 𝐹𝑜𝑟𝑐𝑒  

Units 
Bodyweight 

Units 
None (0–1) 

Description
Total area under force curve during stance

Equation
Timeend−Time1

2N

N
∑

n=1
Force(Timen) + Force(Timen+1))

where N = # points during stance
Units
Bodyweight ∗ second

4-Loading Rate
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Equation
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Units
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Units 
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Description
Force at impact peak location (if
no peak, then 15% of stance)
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Description 
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peak, then 15% of 
stance) 

 

Description 
Max-normalized 
force at mid-drop 
location (local min 
from 40–60% of 
stance) 

Equation 𝐹𝑜𝑟𝑐𝑒  
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Units 
Bodyweight 

Units 
None (0–1) 

Description
Max-normalized force at
mid-drop location (local min from
40–60% of stance)

Equation
ForceIPLocation

Equation
ForceMDLocation

Units
Bodyweight

Units
None (0–1)
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Description
Sample skewness of the force data

Equation
1
N ∑N

n=1(xn−x)3(√
1
N ∑N

n=1(xN−x)2
)3

where N = # points during stance

Units
None
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8-Weight Acceptance (WAC) Impulse

Description
Impulse in weight acceptance phase of gait

Equation

JWAC = TimeMDLoc−Time1
2N

N
∑

n=1
Force(Timen) + Force(Timen+1))

where N = # points during WAC phase

Units
Bodyweight ∗ second

9-Propulsive (Prop) Impulse

Description
Impulse in propulsive phase of gait

Equation

JProp = Timeend−TimeMDLoc
2N

N
∑

n=1
Force(Timen) + Force(Timen+1))

where N = # points during Prop phase

Units
Bodyweight ∗ second

10-WAC/Prop Impulse Ratio

Description
Ratio of impulse from WAC and Prop phases of gait

Equation
WAC : Prop Impulse Ratio = JWAC/JProp

Units
None

11-Symmetry
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that individual correlations between many insole features and peak KCF are consistent in 
their strength and direction, while those with KCF impulse alter direction between indi-
vidual limbs even though there are a number of moderate to strong correlations. 

  

Description
Symmetry of insole force signal

Equation

1
N−1

N
∑

n=1

(
An−µA

σA

)(
Bn−µB

σB

)
where
A = original signal
B = flipped signal
µ = mean
σ = standard deviation

Units
None

12-Frequency @ Max DFT Magnitude 13-Mean Pseudo-Frequency
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magnitude
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Description
Average pseudo-frequency using
Mexican hat wavelet

Equation
Freq(DFT)

Equation
See [32]

Units
Hz

Units
~Hz
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Appendix B. Individual Correlation Coefficients

The following illustrations are plots of individual (per-limb) correlation coefficients be-
tween insole features and KCF metrics. Each black scatter point denotes the Pearson r value
computed per-limb between the corresponding insole feature on the y-axis and the KCF
metric denoted in the section header. The important takeaway from these plots is that
individual correlations between many insole features and peak KCF are consistent in their
strength and direction, while those with KCF impulse alter direction between individual
limbs even though there are a number of moderate to strong correlations.

Appendix B.1. KCF and Traditional Metrics
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(b) KCF impulse per subject per limb.
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