
Citation: Cherdo, Y.; Miramond, B.;

Pegatoquet, A.; Vallauri, A.

Unsupervised Anomaly Detection for

Cars CAN Sensors Time Series Using

Small Recurrent and Convolutional

Neural Networks. Sensors 2023, 23,

5013. https://doi.org/10.3390/

s23115013

Academic Editors: Jinoh Kim and

Alexander Sim

Received: 23 March 2023

Revised: 28 April 2023

Accepted: 15 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Unsupervised Anomaly Detection for Cars CAN Sensors Time
Series Using Small Recurrent and Convolutional
Neural Networks
Yann Cherdo 1,2, Benoit Miramond 2, Alain Pegatoquet 2,* and Alain Vallauri 1

1 Renault Software Labs, 2600 Route des Crêtes, Sophia Antipolis, 06560 Valbonne, France;
yann.cherdo@univ-cotedazur.fr (Y.C.)

2 LEAT (CNRS), Bât. Forum, Campus SophiaTech 930 Route des Colles, 06903 Sophia Antipolis, France
* Correspondence: alain.pegatoquet@univ-cotedazur.fr

Abstract: Predictive maintenance in the car industry is an active field of research for machine learning
and anomaly detection. The capability of cars to produce time series data from sensors is growing as
the car industry is heading towards more connected and electric vehicles. Unsupervised anomaly
detectors are therefore very adapted to process those complex multidimensional time series and
highlight abnormal behaviors. We propose to use recurrent and convolutional neural networks
based on unsupervised anomaly detectors with simple architectures on real, multidimensional time
series generated by the car sensors and extracted from the Controller Area Network bus (CAN). Our
method is then evaluated through known specific anomalies. As the computational costs of Machine
Learning algorithms are a rising issue regarding embedded scenarios such as car anomaly detection,
we also focus on creating anomaly detectors that are as small as possible. Using a state-of-the-art
methodology incorporating a time series predictor and a prediction-error-based anomaly detector, we
show that we can obtain roughly the same anomaly detection performance with smaller predictors,
reducing parameters and calculations by up to 23% and 60%, respectively. Finally, we introduce a
method to correlate variables with specific anomalies by using anomaly detector results and labels.

Keywords: anomaly detection; sensors; Internet of Things; unsupervised; Controller Area Network
bus; car; time series; recurrent neural network; long short-term memory; gated recurrent unit;
convolutional neural network; computational costs; anomaly likelihood

1. Introduction and Related Work

Predictive maintenance in the car industry refers to the anticipation and management
of failures and abnormalities occurring in a car. For example, if the oil pressure remains
too low for a long period of time, while it will not cause any immediate damage, it might
induce motor and mechanical parts’ failures and breaks in the near future. The user will
then have to go to the garage, broken parts will be replaced, and a root cause of the failure
will be identified, if possible. Anticipating and understanding such a failure occurrence
can bring about the following outcomes. First, comprehension of the root causes of part
failures allows for better design and manufacturing, enhancing the generation quality of
future products. Second, anticipating a part failure allows for better purchase management
and logistics for the replacement parts, resulting in financial optimization. Finally, it helps
the garage to better solve the issue by providing more information and knowledge about
the failure.

One can comprehend a vehicle as a complex electric and mechanical system that has
an inner control and sensing system. In Section 2, we offer more detailed information about
car architecture. The data produced by sensors, for example the oil pressure or the battery
voltage, can be extracted and then processed off-board. This results in multidimensional
time series data. As the car industry progresses towards more connected, electrical, and

Sensors 2023, 23, 5013. https://doi.org/10.3390/s23115013 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23115013
https://doi.org/10.3390/s23115013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9711-2209
https://doi.org/10.3390/s23115013
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23115013?type=check_update&version=2

Sensors 2023, 23, 5013 2 of 16

complex vehicles, the amount of data produced by sensors that can be processed for
predictive maintenance grows both in quality and quantity.

While ML algorithms are being used to process such information on the cloud, two
main costs are being generated: the infrastructure cost due to algorithm computations and
the bandwidth cost due to data transfers from cars to the cloud. Bandwidth costs and data
storage capacities can be blocking constraints in certain cases. Personal data protection can
also be problematic when trying to store personal cars’ usage data in the cloud. For all of
these reasons, getting the ML algorithms closer to the data producer, namely the car, as an
embedded system is a rising research topic. The main constraint is the low computational
capacity that is generally available in a vehicle. In this paper, we address this issue in
the context of unsupervised anomaly detection by lowering the size of the ML algorithm
while maintaining the same detection performance. The algorithm itself being a source
of complexity, we chose the simplest neural networks from among the best time series
anomaly detectors in the literature.

Building supervised machine learning algorithms to predict failures from sensors’ time
series would be ideal. However, obtaining the labels of failures is not so straightforward
and, in certain cases, can introduce significant noise. In fact, failures are not directly stored
as a statistic, but instead, one can record parts that have been replaced at the garage and
try to predict parts which will need to be replaced. When a vehicle is handled in a garage
because of a failure, replaced parts are not always linked to the real failure due to expertise
error and habits. Therefore, only a subset of possible failures can be covered by this kind of
approach. In practice, datasets of parts’ replacements tended to be heavily unbalanced.

On the other hand, the production of failures labels by experts would be very expensive
considering the complexity of parts and car models’ and scenarios’ variations. Unsuper-
vised anomaly detection could therefore be considered as a solution to this problem.

Anomaly Detection is a wide research field with many different techniques [1,2].
Unsupervised anomaly detection refers to the problem of finding abnormal patterns in the
data. In order to apply unsupervised anomaly detection within time series, companies such
as Amazon, Twitter, Etsy, and Yahoo have developed their own models that are a mixture
of classical statistical, decomposition, and machine learning algorithms [3–6]. Some models
are also bio-inspired, e.g., modeling the episodic memory of the cortex [7] using a model
called hierarchical temporal memory (HTM) [8]. Another bio-inspired model has been
presented in Reference [9]. In this work, an evolving spiking neural network (OeSNN) is
trained similarly to the HTM to learn sequences continuously. Both HTM and OeSNN
detect two kinds of anomalies. The first one is detected when the model predicts the wrong
value, and the second one is detected when the model is unable to predict anything from the
given context. Those models use local learning rules like Hebbian or genetic rules that have
been shown to be less powerful than the well-established gradient descent optimization. In
particular, these methods suffer from critical hyper parameters’ selection.

Convolutional neural networks (CNN) have been used to efficiently learn normal
patterns and reveal anomalous ones [10]. This model was also successfully applied to
spectral residual in Reference [11]. The field of graph theory also proposed a graph- and
attention-based anomaly detector for multivariate time series in Reference [12].

Heavier models like generative adversarial networks (GAN) based on bidirectional
Long Short Term Memory (LSTM) were proposed in Reference [13]. Modeling such correla-
tions over time, or building a temporal model of time series, is an active area of development
with manifold solutions [14]. One of the state-of-the-art approaches is LSTM [15]-based
anomaly detection, which has had a great impact on the field of unsupervised anomaly
detection [16]. In Reference [17], LSTM neural networks were used to predict time series
after training on normal time series without any anomalies. A threshold was then applied
to the error between the learned prediction and the true time series in order to find anoma-
lous patterns. Some simple one-layer LSTM networks can be used as in Reference [16],
although stacked (or deep) LSTM networks with several layers show better results, as
demonstrated in References [17–21]. Gated recurrent unit (GRU) [22] is a lighter version of

Sensors 2023, 23, 5013 3 of 16

LSTM also in the family of recurrent neural networks (RNN), and it shows very similar
performance in time series modeling. We propose to compare LSTM and GRU models in
terms of detection performance and computational costs in order to further our goal of
lowering the computational cost of our anomaly detector.

In the car industry, HTM have been used to conduct unsupervised anomaly detection
on time series using nine variables provided by racing cars’ recordings [8]. Several papers
can be found about intrusion detection, safety, and cybersecurity, as connected cars are
exposed to hacks [23–25]. Intrusion detection conducted using a complex CNN-LSTM and
attention mechanisms in CAN traffic logs can be found in Reference [26]. Within the same
application, a multilayer perceptron was employed in Reference [27]. These works focus
on the way information transits through the CAN and not on the information itself, as this
is sufficient to detect an intrusion. Fewer works have been found that focus directly on
the information provided by the car sensors and the commands that transit through the
CAN, such as oil pressure, engine temperature, etc. This approach can be used for intrusion
detection but also allows for the detection of abnormal complex behavior happening inside
the car. In Reference [28], a more classical and statistical method, the Kalman filter, is
employed to model such time series and to detect any that are abnormal. In the same
context, hidden Markov models have been used to find abnormal internal behaviors [29].
For this kind of car sensor data, we propose the use of LSTM-, GRU- and CNN-based
anomaly detectors.

One can find a large community of researchers working on image and video classi-
fication for autonomous driving cars. This field also includes anomaly detection, as is
exhaustively presented in Reference [30]. Finally, an original approach that uses acoustic
recordings inside the car to find anomalies is proposed using feature extractions and deep
autoencoders in Reference [31]. It can be seen that most of the state-of-the-art unsupervised
anomaly detection algorithms have yet not been applied to car sensors’ time series. The
goal of this paper is to prove that such a task can be achieved using small yet powerful
anomaly detectors. This is why, among all available models, LSTM, GRU, and CNN were
chosen for use. These neural networks allow architectures to be kept simple while using
the powerful gradient descent optimization method.

In this paper, our contribution is to apply state-of-the-art LSTM- and CNN-based,
unsupervised anomaly detection to real car time series and to evaluate the results with
respect to abnormal labels. We do not focus on any specific kind of anomaly, and our
solution aims at highlighting any complex multidimensional behavior of a vehicle. We
then compare our models with different amounts of layers and cells and show that similar
anomaly detection performance can be obtained using smaller models even if this limits
their prediction accuracy. We finally introduce a method of correlating variables to those
specific anomalies using the anomaly detector results and labels.

Our paper is organized as follows. In Section 2, we introduce the data that we are
working on, focusing on how they have been produced and extracted from the vehicle and
the workflow leading to anomaly detection. In Section 3, we describe in detail the addressed
issue and the three state-of-the-art models and architectures we used, including the entire
process of unsupervised anomaly detection. In Section 4, we specify the performance
metrics we used to evaluate our models and the qualitative results we obtained from the
aforementioned data. In this section, we also introduce and evaluate a method for finding
variables that are the most correlated with the abnormal labels. In the last section, we
discuss the overall work presented in this paper in terms of opportunities and limitations,
focusing on our main contributions. We then introduce possible future work that could
enhance our models based on our findings.

2. Car Time Series Extracted from the CAN Bus

In this section, we present the process of data generation in the car and how it can be
exploited for machine learning purposes.

Sensors 2023, 23, 5013 4 of 16

2.1. The Data and the Car

A car is a complex assembly of mechanical and electrical parts. The control and
sensing of all of those parts are processed by electric computing units (ECU). ECUs are
microcontroller-based units that can receive, process, and send information from and to
other ECUs. Specifically, information transits through a controller area network (CAN) bus.
For example, one ECU might control the oil temperature while receiving and processing
information about the motor rotational speed that has been sent from the ECU managing
the motor area. In a modern car, tens of ECUs can process information simultaneously
while the car is running. Information transiting through the CAN bus is thus a very good
reflection of the car’s global state. In order to extract this information, a spy system can
listen to the information transiting on the CAN bus and save it in a structured manner,
associating a sample to its variable and timestamp. Then, the resulting data can be sent to a
cloud database and into an anomaly detector, as shown in Figure 1.

Sensors 2023, 23, 5013 4 of 16

2.1. The Data and the Car

A car is a complex assembly of mechanical and electrical parts. The control and
sensing of all of those parts are processed by electric computing units (ECU). ECUs are
microcontroller-based units that can receive, process, and send information from and to
other ECUs. Specifically, information transits through a controller area network (CAN) bus.
For example, one ECU might control the oil temperature while receiving and processing
information about the motor rotational speed that has been sent from the ECU managing
the motor area. In a modern car, tens of ECUs can process information simultaneously
while the car is running. Information transiting through the CAN bus is thus a very good
reflection of the car’s global state. In order to extract this information, a spy system can
listen to the information transiting on the CAN bus and save it in a structured manner,
associating a sample to its variable and timestamp. Then, the resulting data can be sent to a
cloud database and into an anomaly detector, as shown in Figure 1.

Figure 1. Flow chart presenting the process of data generation in a modern car leading to anomaly
detection. Within the car, ECUs handle sensors and communicate some of their values through
the CAN bus. That CAN bus can be read in order to extract those sensors’ data and can then be
sent to the cloud or be exploited internally by another ECU. The resulting time series are then
resampled, a prediction is emitted after each sample, and an anomaly is either detected or not given
the prediction error.

2.2. Our Dataset

The dataset used in this paper consists of the recordings of 486 variables gathered
from an Alpine Renault car during driving tests conducted on circuits. Those tests were
conducted over the course of 4 months, resulting in 17 GB of data. The sampling rate of
the recordings was 10 Hz. In order to simplify the training and evaluation of the model,
we filtered variables with respect to their complexity and retained only the richest ones.
As many variables correspond to commands with only one to three discrete values and
are rarely triggered, most of the signals show very few variations through time and are
therefore poorly informative. Those are the variables which we filtered out. This process
resulted in an 85-variable system. As recordings do not have the same temporal length,
this dataset can be seen as a set of multivariate time series with different lengths. Finally,
we resampled the data to 1 Hz using the average in order to save time on training and
testing. This dataset is not public but is necessary in order to apply state-of-the-art anomaly
detectors to real case studies. Nevertheless, we have included a comparison of different
state-of-the-art models as well as the ones we have chosen in Table 1. These were applied
to an open-source benchmark in order to ensure that our method and implementation
were valid.

Figure 1. Flow chart presenting the process of data generation in a modern car leading to anomaly
detection. Within the car, ECUs handle sensors and communicate some of their values through
the CAN bus. That CAN bus can be read in order to extract those sensors’ data and can then be
sent to the cloud or be exploited internally by another ECU. The resulting time series are then
resampled, a prediction is emitted after each sample, and an anomaly is either detected or not given
the prediction error.

2.2. Our Dataset

The dataset used in this paper consists of the recordings of 486 variables gathered
from an Alpine Renault car during driving tests conducted on circuits. Those tests were
conducted over the course of 4 months, resulting in 17 GB of data. The sampling rate of
the recordings was 10 Hz. In order to simplify the training and evaluation of the model,
we filtered variables with respect to their complexity and retained only the richest ones.
As many variables correspond to commands with only one to three discrete values and
are rarely triggered, most of the signals show very few variations through time and are
therefore poorly informative. Those are the variables which we filtered out. This process
resulted in an 85-variable system. As recordings do not have the same temporal length,
this dataset can be seen as a set of multivariate time series with different lengths. Finally,
we resampled the data to 1 Hz using the average in order to save time on training and
testing. This dataset is not public but is necessary in order to apply state-of-the-art anomaly
detectors to real case studies. Nevertheless, we have included a comparison of different
state-of-the-art models as well as the ones we have chosen in Table 1. These were applied
to an open-source benchmark in order to ensure that our method and implementation
were valid.

Sensors 2023, 23, 5013 5 of 16

Table 1. Comparison of state-of-the-art anomaly detectors on the public benchmark Yahoo [32]. The
LSTM (ours) corresponds to the LSTM with 50 cells and two layers, as presented in Section 4, using
the semi-supervised threshold. A1 to A4 correspond to different groups of time-series that can be
found within the Yahoo benchmark.

Model A1 A2 A3 A4 Mean

Hierarchical Temporal Memory (HTM) [33] 0.59 0.66 0.33 0.29 0.47

Online evolving Spiking Neural Network (OeSNN-UAD) [9] 0.70 0.69 0.41 0.34 0.54

Deep learning-based Anomaly detection approach for Time-series
(DeepAnT) using a Long Short Term Memory (LSTM) [10] 0.44 0.97 0.72 0.59 0.68

Deep learning-based Anomaly detection approach for Time-series
(DeepAnT) using a Convolutional Neural Network (CNN) [10] 0.46 0.94 0.87 0.68 0.74

Time-series Anomaly Detection using Generative Adversarial
Networks (TadGAN) [13] 0.8 0.87 0.69 0.6 0.74

Long Short Term Memory (LSTM) (ours) 0.71 1 0.82 0.76 0.82

2.3. Labels

The utilized labels consist of 3683 timestamps in which an anomaly linked to the
oil pressure was noticed. They were automatically generated following expert rules over
five key variables, namely the oil pressure, the oil temperature, the mean effective torque,
the engine RPM, and the engine coolant temperature. The abnormality is here defined as
problematic oil pressure behavior. It is worth noting that this highly specific abnormal
behavior does not cover all possible abnormal behaviors of the car and thus provides a
limited evaluation of our unsupervised anomaly detector.

3. System Model and Problem Formulation
3.1. System Model

The overall system model is represented in Figure 2. We considered a time series T of
n samples, each sample being an indexed vector of m dimensions representing variables
with n ∈ N and m ∈ N, such that

T = {x0, x1, . . . , xn−1}. (1)
Sensors 2023, 23, 5013 6 of 16

Figure 2. Process of anomaly detection.

3.2. Unsupervised Anomaly Detection

In this section, we review our baseline algorithm formed by a stacked LSTM-based
anomaly detector from References [17,19]. We added the anomaly likelihood method to the
anomaly detection process as proposed in Reference [7]. This method allows the anomaly
detector to focus on dynamic variations of the prediction error. As different variables
at different moments can present behaviors that are more or less difficult to predict, the
error prediction average might vary, and this makes the usage of a simple threshold
tricky. Anomaly likelihood adapts nicely to this complex behavior, as it evaluates the local
probability of a prediction error to occur and also prevents random point anomalies. Finally,
we explain below how we acquired all of the parameters.

In Table 1, we have gathered the anomaly detection results found in References [9,13]
on the public Yahoo benchmark [32]. We added our LSTM with 50 cells and two layers, as
presented in Section 4, using semi-supervised threshold optimization, just as in the work
of Reference [10]. For this model, we used 100 epochs, a learning rate of 10−3, and a time
window of w = 100. We can see that LSTM and CNN performed well compared to some of
the more complex models such as generative adversarial networks (TadGAN) or those that
are bio-inspired. As we wanted to use small models with simple architectures in order to
reduce computational costs while still providing good performance, we chose to exploit
LSTM and CNN predictors in this paper. We also chose to compare the GRU [22] with the
LSTM, as it is a simplified version of the LSTM. All of these predictors are described below.

3.3. LSTM Predictor

The first block of the anomaly detector is formed by an LSTM neural network, which
is an RNN that has proven to be very efficient in capturing the temporal dependencies of a
time series using internal memory [15]. The LSTM cell is described in Figure 3. Each cell is
recurrent and outputs to vectors ct and ht. One LSTM layer can be made of several cells. In
the following sections, we use the notation LSTM (n,m) to refer to an LSTM with x cells in
the first layer and y cells in the second layer.

Figure 3. The Long Short Term Memory cell. ht and ct are the hidden and context vectors respectively.
σ stands for the sigmoid activation function.

The overall stacked LSTM we used has two layers. It takes a sample xt as an input
and predicts the next sample xt+1 while using its internal state recurrently. A simple linear

Figure 2. Process of anomaly detection.

Each time series sample xt, t ∈ {0, . . . , n− 1} is potentially corrupted by an anomaly
that modifies its “normal behavior” in the sense that the value registered at this point does
not fit with the usual pattern of the time series. The goal of the anomaly detector is then to
associate each sample xt with an estimated binary anomaly label ât ∈ {0, 1}m in order to
indicate whether said sample is corrupted by an anomaly. These labels then form the time
series A.

A = {â0, â1, . . . , ân−1}. (2)

Sensors 2023, 23, 5013 6 of 16

3.2. Unsupervised Anomaly Detection

In this section, we review our baseline algorithm formed by a stacked LSTM-based
anomaly detector from References [17,19]. We added the anomaly likelihood method to the
anomaly detection process as proposed in Reference [7]. This method allows the anomaly
detector to focus on dynamic variations of the prediction error. As different variables
at different moments can present behaviors that are more or less difficult to predict, the
error prediction average might vary, and this makes the usage of a simple threshold
tricky. Anomaly likelihood adapts nicely to this complex behavior, as it evaluates the local
probability of a prediction error to occur and also prevents random point anomalies. Finally,
we explain below how we acquired all of the parameters.

In Table 1, we have gathered the anomaly detection results found in References [9,13]
on the public Yahoo benchmark [32]. We added our LSTM with 50 cells and two layers, as
presented in Section 4, using semi-supervised threshold optimization, just as in the work
of Reference [10]. For this model, we used 100 epochs, a learning rate of 10−3, and a time
window of w = 100. We can see that LSTM and CNN performed well compared to some of
the more complex models such as generative adversarial networks (TadGAN) or those that
are bio-inspired. As we wanted to use small models with simple architectures in order to
reduce computational costs while still providing good performance, we chose to exploit
LSTM and CNN predictors in this paper. We also chose to compare the GRU [22] with the
LSTM, as it is a simplified version of the LSTM. All of these predictors are described below.

3.3. LSTM Predictor

The first block of the anomaly detector is formed by an LSTM neural network, which
is an RNN that has proven to be very efficient in capturing the temporal dependencies of a
time series using internal memory [15]. The LSTM cell is described in Figure 3. Each cell is
recurrent and outputs to vectors ct and ht. One LSTM layer can be made of several cells. In
the following sections, we use the notation LSTM (n,m) to refer to an LSTM with x cells in
the first layer and y cells in the second layer.

Sensors 2023, 23, 5013 6 of 16

Figure 2. Process of anomaly detection.

3.2. Unsupervised Anomaly Detection

In this section, we review our baseline algorithm formed by a stacked LSTM-based
anomaly detector from References [17,19]. We added the anomaly likelihood method to the
anomaly detection process as proposed in Reference [7]. This method allows the anomaly
detector to focus on dynamic variations of the prediction error. As different variables
at different moments can present behaviors that are more or less difficult to predict, the
error prediction average might vary, and this makes the usage of a simple threshold
tricky. Anomaly likelihood adapts nicely to this complex behavior, as it evaluates the local
probability of a prediction error to occur and also prevents random point anomalies. Finally,
we explain below how we acquired all of the parameters.

In Table 1, we have gathered the anomaly detection results found in References [9,13]
on the public Yahoo benchmark [32]. We added our LSTM with 50 cells and two layers, as
presented in Section 4, using semi-supervised threshold optimization, just as in the work
of Reference [10]. For this model, we used 100 epochs, a learning rate of 10−3, and a time
window of w = 100. We can see that LSTM and CNN performed well compared to some of
the more complex models such as generative adversarial networks (TadGAN) or those that
are bio-inspired. As we wanted to use small models with simple architectures in order to
reduce computational costs while still providing good performance, we chose to exploit
LSTM and CNN predictors in this paper. We also chose to compare the GRU [22] with the
LSTM, as it is a simplified version of the LSTM. All of these predictors are described below.

3.3. LSTM Predictor

The first block of the anomaly detector is formed by an LSTM neural network, which
is an RNN that has proven to be very efficient in capturing the temporal dependencies of a
time series using internal memory [15]. The LSTM cell is described in Figure 3. Each cell is
recurrent and outputs to vectors ct and ht. One LSTM layer can be made of several cells. In
the following sections, we use the notation LSTM (n,m) to refer to an LSTM with x cells in
the first layer and y cells in the second layer.

Figure 3. The Long Short Term Memory cell. ht and ct are the hidden and context vectors respectively.
σ stands for the sigmoid activation function.

The overall stacked LSTM we used has two layers. It takes a sample xt as an input
and predicts the next sample xt+1 while using its internal state recurrently. A simple linear

Figure 3. The Long Short Term Memory cell. ht and ct are the hidden and context vectors respectively.
σ stands for the sigmoid activation function.

The overall stacked LSTM we used has two layers. It takes a sample xt as an input
and predicts the next sample xt+1 while using its internal state recurrently. A simple linear
layer allows for the conversion of the LSTM output vector ht into a prediction of xt+1, as
shown in Figure 4.

In this paper, we also compare the LSTM with two other models.

Sensors 2023, 23, 5013 7 of 16

Sensors 2023, 23, 5013 7 of 16

layer allows for the conversion of the LSTM output vector ht into a prediction of xt+1, as
shown in Figure 4.

Figure 4. Organization/architecture of the Long Short Term Memory.

In this paper, we also compare the LSTM with two other models.

3.4. CNN Predictor

A convolutional neural network (CNN) is a well-known machine learning algorithm
that has been proven to be very powerful, especially for image classification. In Refer-
ence [10], it was used to predict time series and to detect anomalies the same way we
proposed in this paper. It is one of the state-of-the-art approaches to unsupervised anomaly
detection. The limitation of a CNN lies in its inability to integrate temporal information
longer than its convolutional window. As can be seen in Figure 5, the time series is cut
into windows in which we run the convolutions. The model can then predict the next time
series sample xt+w+1 given the window {xt, . . . , xt+w}. This CNN model has two layers
made up of a 1D convolution layer followed by an ReLU activation function. lt and ht are
intermediate hidden vectors generated by the model. In the following sections, we use the
notation CNN (n,m) to refer to a CNN with n channels in the first layer and m channels in
the second layer.

Figure 5. Organization/architecture of the Convolutional Neural Network.

3.5. GRU Predictor

Finally, we propose to use a gated recurrent unit (GRU) network [22], which is a
simplified version of the LSTM with fewer gates in each cell forming a lighter RNN. Its
architecture is exactly the same as that of the LSTM shown in Figure 4. Depending on the
complexity of the task, a GRU can sometimes perform just as well or even better than an
LSTM while having fewer parameters. We show such a result very clearly in Table 2. In the

Figure 4. Organization/architecture of the Long Short Term Memory.

3.4. CNN Predictor

A convolutional neural network (CNN) is a well-known machine learning algorithm
that has been proven to be very powerful, especially for image classification. In Refer-
ence [10], it was used to predict time series and to detect anomalies the same way we
proposed in this paper. It is one of the state-of-the-art approaches to unsupervised anomaly
detection. The limitation of a CNN lies in its inability to integrate temporal information
longer than its convolutional window. As can be seen in Figure 5, the time series is cut
into windows in which we run the convolutions. The model can then predict the next time
series sample xt+w+1 given the window {xt, . . . , xt+w}. This CNN model has two layers
made up of a 1D convolution layer followed by an ReLU activation function. lt and ht are
intermediate hidden vectors generated by the model. In the following sections, we use the
notation CNN (n,m) to refer to a CNN with n channels in the first layer and m channels in
the second layer.

Figure 5. Organization/architecture of the Convolutional Neural Network.

3.5. GRU Predictor

Finally, we propose to use a gated recurrent unit (GRU) network [22], which is a
simplified version of the LSTM with fewer gates in each cell forming a lighter RNN. Its
architecture is exactly the same as that of the LSTM shown in Figure 4. Depending on the
complexity of the task, a GRU can sometimes perform just as well or even better than an
LSTM while having fewer parameters. We show such a result very clearly in Table 2. In the
following sections, we use the notation GRU (n,m) to refer to a GRU with n cells in the first
layer and m cells in the second layer.

Sensors 2023, 23, 5013 8 of 16

Table 2. Performance evaluation comparison between the LSTM [17], GRU, and CNN [10] models.
CNN (n,m) refers to a CNN with n channels in the first layer and m channels in the second layer,
while LSTM (n,m) and GRU (n,m) refer to an LSTM or GRU with n cells in the first layer and m cells
in the second layer.

Model wa f1 TPR FPR MSE MACS #Parameters

CNN (8-8) 5 s 0.114 0.254 1.66× 10−4 0.012 102,240 10,564

CNN (16-16) 5 s 0.114 0.254 1.84× 10−5 0.009 211,392 21,812

CNN (32-32) 5 s 0.12 0.253 0 0.007 450,432 46,612

GRU (50-50) 5 s 0.114 0.261 3.12× 10−5 0.003 40,600 39,984

GRU (100-100) 5 s 0.114 0.261 2× 10−5 0.002 126,200 124,884

GRU (150-150) 5 s 0.114 0.261 0 0.002 256,800 254,784

LSTM (50-50) 5 s 0.114 0.261 1.34× 10−5 0.005 52,600 51,884

LSTM (100-100) 5 s 0.114 0.261 2.45× 10−5 0.003 165,200 163,684

LSTM (150-150) 5 s 0.114 0.261 2.67× 10−5 0.003 337,800 335,484

CNN (8-8) 30 s 0.241 0.251 5.44× 10−5 0.012 102,240 10,564

CNN (16-16) 30 s 0.241 0.251 0 0.009 211,392 21,812

CNN (32-32) 30 s 0.247 0.249 0 0.007 450,432 46,612

GRU (50-50) 30 s 0.243 0.258 0 0.003 40,600 39,984

GRU (100-100) 30 s 0.243 0.258 1.31× 10−5 0.002 126,200 124,884

GRU (150-150) 30 s 0.243 0.258 0 0.002 256,800 254,784

LSTM (50-50) 30 s 0.243 0.258 1.31× 10−5 0.005 52,600 51,884

LSTM (100-100) 30 s 0.243 0.258 0 0.003 165,200 163,684

LSTM (150-150) 30 s 0.243 0.258 0 0.003 337,800 335,484

CNN (8-8) 60 s 0.265 0.249 2.66× 10−5 0.012 102,240 10,564

CNN (16-16) 60 s 0.265 0.249 0 0.009 211,392 21,812

CNN (32-32) 60 s 0.268 0.244 0 0.007 450,432 46,612

GRU (50-50) 60 s 0.267 0.254 0 0.003 40,600 39,984

GRU (100-100) 60 s 0.267 0.254 2.58× 10−5 0.002 126,200 124,884

GRU (150-150) 60 s 0.267 0.254 0 0.002 256,800 254,784

LSTM (50-50) 60 s 0.266 0.254 2.58× 10−5 0.005 52,600 51,884

LSTM (100-100) 60 s 0.266 0.254 0 0.003 165,200 163,684

LSTM (150-150) 60 s 0.266 0.254 0 0.003 337,800 335,484

3.6. Anomaly Detection

During training, for each sample xt, the predictor output a prediction x̂t+1. The mean
square error (MSE) over all dimensions and time was then computed between the predicted
and true samples of one time series.

MSE =
1

nm

n−1

∑
t=0
||(x̂t − xt)

2||1 (3)

where ||.||1 stands for the norm 1 of a vector.
This error was used as a loss function in order to optimize the predictor using a

gradient descent optimization. Using this method and using an LSTM or a GRU, we were
able to take full advantage of having time series of different lengths in the dataset. No

Sensors 2023, 23, 5013 9 of 16

information was lost due to padding or cutting the time series. The predictor was able to
efficiently adapt to the variation in time series length.

In a vehicle, most of variables that we exploited here are correlated; for example, a
failure in the oil pressure impacts the engine temperature. We made use of this assumption
and provided all of the m variables to the predictor together in order to help it to capture
more-complex temporal and cross-variable correlations and better predict the signal.

By comparing the true values of the tth sample xt with the predicted values, the
prediction squared error for the tth sample was formed as:

et = (x̂t − xt)
2 (4)

We then obtained the time series of the squared prediction errors:

E = {e0, e1, . . . , en−1} (5)

We then applied the anomaly likelihood method to the time series E as in reference [7]
so as to obtain the anomaly scores st and labels ât. Note that we adapted its expression
here for the use of multidimensional time series.

First, we computed the parameters µt and σ2
t of a sliding normal distribution of w

samples of E.

µt =
∑w−1

i=0 et−i

w
(6)

σ2
t =

∑w−1
i=0 (et−i − µt)

2

w− 1
(7)

We then used the Gaussian tail probability (Q-function [34]) of the recent sliding
average of W ′ samples of prediction errors in order to obtain the anomaly score.

st = 1−Q
(

µ̃t − µt

σt

)
(8)

where,

µ̃t =
∑W′−1

i=0 et−i

W′
(9)

Finally, we used a threshold vector θ to compute the found anomalies.

âi
t =

{
1 if si

t ≥ θi

0 otherwise
(10)

where âi
t is the scalar of the ith dimension of the vector ât.

After the prediction, each variable was treated separately with its own parameters;
thus, there were m anomaly likelihoods being processed in parallel.

We finally defined the set AT of timestamps in which at least one variable was found
to be abnormal.

AT = {t ∈ [tO, tn−1] | ||ât||1 > 0} (11)

With ti being the timestamp of the corresponding time series sample.

4. Results

After learning the predictor parameters, we ran our unsupervised anomaly detector
through all the time series of our dataset and then exploited the results through different
evaluations.

For all models, during the learning phase we used 300 epochs, a learning rate of 10−4

with the Adam optimization, and 2000 subsequences of 100 points each; additionally, we
used 20% of the data for testing. The Adam optimization is one of the best and most-utilized

Sensors 2023, 23, 5013 10 of 16

gradient-descent-based optimization algorithms for neural networks such as CNN and
RNN that exists in the field of machine learning [35].

Below, we will first evaluate how well our algorithm catches the given anomalies
using our specific labels, and then we will propose measuring the correlation between
labels and variables using the multidimensional nature of our algorithm.

4.1. Evaluation with Labels (Oil Pressure Failure)

As explained in Section 2, labels that have been provided to our team express a specific
abnormal behavior due to failures in oil pressure and do not cover all possible abnormal
behaviors.

These labels point to specific timestamps in the dataset where this oil pressure failure
has been detected. This abnormal behavior is not instantaneous and appears for several
seconds. Thus, we have to consider a time window wa around those timestamps’ labels to
assess whether an abnormal sample found by our algorithm matches one label. We define
the set of true positives TP as:

TP = {t ∈ AT|∃tl ∈ L, tl −wa ≤ t ≤ tl + wa} (12)

With L and AT being, respectively, the set of labels and found anomalies timestamps.
We only consider one true positive sample with respect to one label even if there are

several true positives in that label window, hence the usage of the set formalism.
We then define the false positive (FP), true negative (TN) and false negative (FN) sets

as follows.
FP = {t ∈ AT | @tl ∈ L, tl −wa ≤ t ≤ tl + wa} (13)

TN =

{
t ∈ [tO, tn−1]\AT | @tl ∈ L,

tl −wa ≤ t ≤ tl + wa

}
(14)

FN =

{
t ∈ [tO, tn−1]\AT | ∃tl ∈ L,

tl −wa ≤ t ≤ tl + wa

}
(15)

In order to obtain a clearer evaluation, we then compute respective rates—namely the
true positive rate (TPR) for TP and so on—corresponding to those last ensembles as:

TPR =
|TP|
|L| (16)

FPR =
|FP|

n
(17)

TNR =
|TN|

n
(18)

FNR =
|FN|

n
(19)

Provided in Table 3 are the TPR, FPR, TNR, and FNR obtained with windows wa of 5,
30, and 60 s and an LSTM with two layers of 50 cells with the notation LSTM (50-50).

Table 3. Performance evaluation of the LSTM (50-50) on limited labels.

wa TPR FPR TNR FNR

5 s 0.19 0.065 0.91 0.0093

30 s 0.62 0.062 0.079 0.0082

60 s 0.86 0.061 0.64 0.0076

Sensors 2023, 23, 5013 11 of 16

The best results were obtained using the largest wa = 60 s, and they achieved 86%
successful detection.

The FPR is 0.061%. If false positives were normally distributed over time and consider-
ing our 1 Hz sampling rate, this would mean that the model sends a false positive alert, on
average, every 16 s. First, we have to remember here that our labels are limited to one spe-
cific kind of anomaly, and thus, this relatively high FPR might not depict an unsatisfactory
behavior of our unsupervised anomaly detector. A subset of anomalies might correspond
to actual abnormal behaviors of the vehicle which are not given in our labels.

The evaluation of whether our false positives match abnormal behaviors is not always
straightforward. Visual interpretation can be difficult, as the model processes 85 vari-
ables altogether.

In Figure 6, we show an example of a successful detection made by our model regard-
ing the oil pressure problem. As the engine mean effective torque is rising, the oil pressure
should do the same; however, it does not do so here, which constitutes abnormal behavior.
We also see how anomaly likelihood offers a nice dynamic adaptation of the quadratic error
processing to find anomalies.

Figure 6. Blue: signal, Results for a slice of the engine oil pressure (a) and engine mean effective
torque (b) time series. On the left side, we see a specific abnormal behavior of the oil pressure. As
the mean effective torque rises, the oil pressure is supposed to do so as well, but it does not do so
here, which constitutes an abnormal behavior that our model successfully highlighted despite a label
is missing at this timestep. On the right side, we see an example of a true positive and the impact
of the anomaly likelihood, which adapts to the variation of the prediction error from the left to the
right side. This method also induces a little delay in the anomaly detection time because of the local
average that is computed.

4.2. LSTM Computation Costs Comparison

Here we evaluate LSTM models with respect to different amounts of cells and layers.
We start with our baseline LSTM (50-50) and run smaller architectures. We also compute
the number of parameters and multiply–accumulate operations (MACs) for each model in

Sensors 2023, 23, 5013 12 of 16

order to evaluate their computational costs using the pytorch-OpCounter (access date: 12
January 2022) library https://github.com/Lyken17/pytorch-OpCounter.

In Table 4, the LSTM (10) shows the best TPR, but, for a better evaluation, the FPR has
to be considered, as discussed below.

Table 4. Performance evaluation comparison between different Long Short Term Memories for
wa = 60 s.

Model TPR FPR TNR FNR

LSTM (10) 0.86 0.061 0.64 0.0076

LSTM (50) 0.68 0.048 0.65 0.0081

LSTM (10-10) 0.84 0.068 0.63 0.008

LSTM (50-50) 0.69 0.049 0.65 0.008

When evaluating the anomaly detection results, the two main factors to be considered
are the TPR and the FPR. We want the highest TPR while keeping the FPR as low as
possible. Depending on the threshold used during anomaly detection, TPR and FPR vary.
It is difficult to equalize at least one of these across different models. Thus, we propose to
use the positive likelihood ratio (PLR) defined in Equation (20), which allows for better
evaluation and comparison between different models.

PLR =
TPR
FPR

(20)

In Table 5, we first see that the LSTM (50) gives the best PLR of 14.2. We can also
observe that the LSTM (10) with only 10 cells performs very similarly with a PLR of 14.1
but offers a computation cost about 6.6 times lower. As a result, our best predictor for
anomaly detection is the LSTM (10). This is one of the lightest in terms of parameters
and MACs, which makes it a better candidate for embedded systems. However, it is also
one of the worst predictors with an MSE of 0.0059. This is an interesting property of the
overall anomaly detector process that allows for the use of simpler predictors despite the
prediction performance limitation.

Table 5. Computation costs comparison between different LSTMs; the PLR is computed with respect
to wa = 60 s.

Model Test MSE PLR MACS #Parameters

LSTM (10) 0.0059 14.1 4.8 K 4.8 K

LSTM (50) 0.0021 14.2 31.8 K 31.5 K

LSTM (10-10) 0.007 12.4 5.7 K 5.6 K

LSTM (50-50) 0.002 14 52.6 K 51.9 K

In order to evaluate more directly and quantitatively each state-of-the-art model,
including the CNN [10], we have tested all models with various sizes and without the
anomaly likelihood. The method used to find anomalies this time is semi-supervised, and
we also use the f1 score defined in Equation (23) to evaluate our results [10]. The model is
processed exactly as before for training and prediction.

recall =
TP
P

(21)

where TP is the number of true positives and P the number of real positives.

precision =
TP
PP

(22)

https://github.com/Lyken17/pytorch-OpCounter

Sensors 2023, 23, 5013 13 of 16

where PP is the number of predicted positives.

f1 = 2· precision.recall
precision + recall

(23)

Instead of using the anomaly likelihood method, we simply search for the anomaly
threshold that maximizes the PLR. This threshold is the value above which the prediction
error is considered to be abnormal. As finding this threshold requires labels, this method is
therefore semi-supervised. This allows us to focus our performance analysis more on the
ML model itself and avoid unsupervised post-processing bias.

In Table 2, all of the models’ performances are given in detail. We can see that the best
f1 score was achieved by the CNN (32-32) followed very closely by the GRU (50-50) which
is much lighter in terms of computational costs.

Considering the window wa = 5 s for example, we observe that the CNN (8-8), the
GRU (50,50), and the LSTM (50,50) reach the same f1. However, this GRU has 23% reduced
parameters and consumes 23% fewer MACs than this LSTM. This GRU, while having
3.79 times greater parameters than this CNN, still consumes 60% fewer MACs than this
CNN. This result highlights that CNN might not always represent the best solution for
time series, as convolutions induce a lot of calculation over a given time window. As no
information is integrated from one time window to another, a CNN indeed needs to process
N sliding time windows while an LSTM or a GRU processes N samples.

In terms of TPR and FPR, the GRU also shows the highest performance with the lowest
computational costs. From one time window wa to another, the signal is being resampled
in our implementation method, meaning that signals do not have the same length and
some labels can be merged together. This has an impact over the range of f1, TPR, and FPR
scalars, which makes comparisons between those metrics across time windows difficult.

In accordance with the previous results, we see that the f1 score, TPR, and FPR are not
or very slightly impacted by the model size whereas the prediction performance increases
accordingly to with size. We thus show again that the best prediction model might not be
the best anomaly detection model in terms of anomaly detection performance and com-
putational costs. Finally, the proposed semi-supervised anomaly threshold optimization
method offers very low or null FPRs.

In the next section, we present a method to correlate variables with a specific kind
of anomaly.

4.3. Correlation of Variables with Labels

As our labels are focused on one specific abnormal behavior, the question was raised
as to whether it is possible to explain which variables are linked to that behavior.

In our case, abnormal behavior has been defined by experts using five expert vari-
ables: MeanEffTorque, EngineRPM, RST_EngineOilPressure, RST_EngineCoolantTemp,
and RST_OilTemperature. The anomaly is linked to a problem with the oil pressure.

Making use of our anomaly detector and the way it handles each variable indepen-
dently after prediction, we propose to use our model PLR to correlate variables with the
anomaly, the underlying idea being that variables showing better detection are more linked
to the anomaly.

We look at variables with the highest PLR. In Figure 7, we see that three of our five
expert variables are ranked within the first quarter of variables with the best PLR out
of the total 85 variables. Modifying the parameters of the anomaly detection model will
impact this result, but we always find most of the five expert variables in that best quarter.
Please note that we find oil pressure to be the second-best variable. This method thus
effectively points out variables that are correlated with the anomaly, although we would
need additional expert feedback in order to understand the role of the neighbor variables.
We also want to know whether they are correlated to the anomaly. Unfortunately, we were
not able to obtain that feedback yet.

Sensors 2023, 23, 5013 14 of 16

Figure 7. Variables correlations with labels. Variables are shown ordered by decreasing PLR. Circled
in green are the variables that are known by experts to have caused the oil pressure failure.

5. Discussion and Future Work

In this paper, we have proposed unsupervised anomaly detection models using dif-
ferent state-of-the-art algorithms such as a LSTM, GRU, or CNN and anomaly likelihood
or a semi-supervised anomaly threshold optimization. We applied these models in order
to effectively point out abnormal temporal behaviors over a real, complex, multivariate
sensor time series that was extracted from a vehicle CAN bus during circuit tests.

The evaluation of these models with respect to some limited labels shows an acceptable
rate of detection, although there is still room for improvement. First, as our labels only
express one specific abnormal behavior, it is difficult to fully evaluate our model. Second,
further advanced data prepossessing and feature engineering conducted with experts
would certainly help.

The comparison between different LSTMs, GRUs, and CNNs shows that the anomaly
detector can work just as well or even better with smaller predictors despite a slight
decrease prediction performance. Under certain circumstances, we have shown that the
GRU can save up to 23% of parameters and 60% of MACs operations compared to the
LSTM and the CNN. This is an interesting property for embedded systems, as it allows for
a reduction of the algorithm computational cost.

As future works, we intend to embed anomaly detectors inside vehicles and thus
expose our models directly to high computational cost constraints. We are currently
studying spiking neural networks as a candidate to tackle this problem. An in-depth
anomaly detection performance and computational costs study should be performed in the
future on public data benchmarks so as to focus on the reduction of computational costs, as
this is lacking in the literature presented in this paper.

Finally, we proposed a method for evaluating the correlation between variables and
a specific abnormal behavior given in labels. This method shows interesting results and
would need further in-depth evaluation in order to refine it.

Author Contributions: Conceptualization, Y.C., A.V., B.M. and A.P.; methodology, Y.C., A.V., B.M.
and A.P.; software, Y.C.; validation, A.V., B.M. and A.P.; investigation, Y.C. and A.V.; data curation,
Y.C. and A.V.; writing—original draft preparation, Y.C. and A.P.; writing—review and editing, Y.C.
and A.P.; supervision, B.M., A.V. and A.P.; project administration, A.P.; funding acquisition, B.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Renault and the ANRT (Research contract LEAT—Renault
n◦2021-C-5854/CNRS n◦239386).

Sensors 2023, 23, 5013 15 of 16

Data Availability Statement: The Yahoo anomaly benchmark can be found here: https://webscope.
sandbox.yahoo.com/catalog.php?datatype=s&did=70 (accessed on 12 Jaunary 2022). The Renault car
data is publicly unavailable.

Acknowledgments: This material is based upon work supported by the French technological research
agency (ANRT) through a CIFRE thesis in collaboration with Renault.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15. [CrossRef]
2. Shaukat, K.; Alam, T.M.; Luo, S.; Shabbir, S.; Hameed, I.A.; Li, J.; Abbas, S.K.; Javed, U. A review of time-series anomaly detection

techniques: A step to future perspectives. In Advances in Information and Communication, Proceedings of the 2021 Future of Information
and Communication Conference (FICC), Vancouver, BC, Canada, 29–30 April 2021; Springer: Berlin/Heidelberg, Germany, 2021;
Volume 1, pp. 865–877.

3. Guha, S.; Mishra, N.; Roy, G.; Schrijvers, O. Robust random cut forest based anomaly detection on streams. In Proceedings of the
33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.

4. Kejariwal, A. Introducing Practical and Robust Anomaly Detection in a Time Series. Twitter Engineering Blog. Web, 15. 2015.
Available online: https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-
in-a-time-series (accessed on 12 January 2022).

5. Stanway, A. Etsy Skyline. Online Code Repos. 2013. Available online: https://github.com/etsy.skyline (accessed on 12 January
2022).

6. Laptev, N.; Amizadeh, S.; Flint, I. Generic and scalable framework for automated time-series anomaly detection. In Proceedings
of the ACM SIGKDD International Conference, Sydney, NSW, Australia, 10–13 August 2015; pp. 1939–1947.

7. Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 2017,
262, 134–147. [CrossRef]

8. Widanage, C.; Li, J.; Tyagi, S.; Teja, R.; Peng, B.; Kamburugamuve, S.; Baum, D.; Smith, D.; Qiu, J.; Koskey, J. Anomaly detection
over streaming data: Indy500 case study. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), Milan, Italy, 8–13 July 2019; pp. 9–16.

9. Maciąg, P.S.; Kryszkiewicz, M.; Bembenik, R.; Lobo, J.L.; Del Ser, J. Unsupervised anomaly detection in stream data with online
evolving spiking neural networks. Neural Netw. 2021, 139, 118–139. [CrossRef] [PubMed]

10. Munir, M.; Siddiqui, S.; Dengel, A.; Ahmed, S. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in
Time Series. IEEE Access 2019, 7, 1991–2005. [CrossRef]

11. Ren, H.; Xu, B.; Wang, Y.; Yi, C.; Huang, C.; Kou, X.; Xing, T.; Yang, M.; Tong, J.; Zhang, Q. Time-series anomaly detection
service at microsoft. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, USA, 4–8 August 2019; pp. 3009–3017.

12. Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; Zhang, Q. Multivariate time-series anomaly
detection via graph attention network. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM),
Sorrento, Italy, 17–20 November 2020; pp. 841–850.

13. Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante, A.; Veeramachaneni, K. Tadgan: Time series anomaly detection using
generative adversarial networks. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA,
USA, 10–13 December 2020; pp. 33–43.

14. Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling.
Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]

15. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory; MIT Press: Cambridge, MA, USA, 1997; Volume 9, pp. 1735–1780.
16. Bontemps, L.; McDermott, J.; Le-Khac, N. Collective anomaly detection based on long short-term memory recurrent neural

networks. In Proceedings of the International Conference of Future Data and Security Engineering, Can Tho City, Vietnam, 23–25
November 2016.

17. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series. In
Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
Bruges, Belgium, 22–24 April 2015.

18. Filonov, P.; Lavrentyev, A.; Vorontsov, A. Multivariate industrial time series with cyber-attack simulation: Fault detection using
an lstm-based predictive data model. arXiv 2016, arXiv:1612.06676.

19. Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of the
International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015.

20. Cherdo, Y.; De Kerret, P.; Pawlak, R. Training lstm for unsupervised anomaly detection without a priori knowledge. In Proceedings
of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 4297–4301.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://doi.org/10.1145/1541880.1541882
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series
https://blog.twitter.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series
https://github.com/etsy.skyline
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1016/j.neunet.2021.02.017
https://www.ncbi.nlm.nih.gov/pubmed/33689918
https://doi.org/10.1109/ACCESS.2018.2886457
https://doi.org/10.1016/j.patrec.2014.01.008

Sensors 2023, 23, 5013 16 of 16

21. Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Soderstrom, T. Detecting spacecraft anomalies using lstms and
nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on KNOWLEDGE
Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 387–395.

22. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

23. Meyer, P.; Häckel, T.; Korf, F.; Schmidt, T.C. Network anomaly detection in cars based on time-sensitive ingress control. In
Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16
December 2020; pp. 1–5.

24. Rajbahadur, G.K.; Malton, A.J.; Walenstein, A.; Hassan, A.E. A survey of anomaly detection for connected vehicle cybersecurity
and safety. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 421–426.

25. Zhou, A.; Li, Z.; Shen, Y. Anomaly detection of CAN bus messages using a deep neural network for autonomous vehicles. Appl.
Sci. 2019, 9, 3174. [CrossRef]

26. Sun, H.; Chen, M.; Weng, J.; Liu, Z.; Geng, G. Anomaly detection for in-vehicle network using CNN-LSTM with attention
mechanism. IEEE Trans. Veh. Technol. 2021, 70, 10880–10893. [CrossRef]

27. Boumiza, S.; Braham, R. An anomaly detector for CAN bus networks in autonomous cars based on neural networks. In
Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–6.

28. Wang, Y.; Masoud, N.; Khojandi, A. Real-time sensor anomaly detection and recovery in connected automated vehicle sensors.
IEEE Trans. Intell. Transp. Syst. 2020, 22, 1411–1421. [CrossRef]

29. Narayanan, S.N.; Mittal, S.; Joshi, A. OBD_SecureAlert: An anomaly detection system for vehicles. In Proceedings of the 2016
IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016; pp. 1–6.

30. Bogdoll, D.; Nitsche, M.; Zöllner, J.M. Anomaly detection in autonomous driving: A survey. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 4488–4499.

31. Pereira, P.J.; Coelho, G.; Ribeiro, A.; Matos, L.M.; Nunes, E.C.; Ferreira, A.; Pilastri, A.; Cortez, P. Using deep autoencoders for
in-vehicle audio anomaly detection. Procedia Comput. Sci. 2021, 192, 298–307. [CrossRef]

32. Yahoo! Webscope Research. S5—A Labeled Anomaly Detection Dataset, Version 1.0(16M). Available online: https://webscope.
sandbox.yahoo.com/catalog.php?datatype=s&did=70 (accessed on 12 January 2022).

33. Lavin, A.; Ahmad, S. Evaluating Real-Time Anomaly Detection Algorithms–The Numenta Anomaly Benchmark. In Proceedings
of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December
2015; pp. 38–44.

34. Karagiannidis, G.K.; Lioumpas, A.S. An improved approximation for the Gaussian Q-function. IEEE Commun. Lett. 2007, 11,
644–646. [CrossRef]

35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app9153174
https://doi.org/10.1109/TVT.2021.3106940
https://doi.org/10.1109/TITS.2020.2970295
https://doi.org/10.1016/j.procs.2021.08.031
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://doi.org/10.1109/LCOMM.2007.070470

	Introduction and Related Work
	Car Time Series Extracted from the CAN Bus
	The Data and the Car
	Our Dataset
	Labels

	System Model and Problem Formulation
	System Model
	Unsupervised Anomaly Detection
	LSTM Predictor
	CNN Predictor
	GRU Predictor
	Anomaly Detection

	Results
	Evaluation with Labels (Oil Pressure Failure)
	LSTM Computation Costs Comparison
	Correlation of Variables with Labels

	Discussion and Future Work
	References

