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Abstract: We propose a novel slot-pattern-control based coded compressed sensing for unsourced
random access with an outer A-channel code capable of correcting t errors. Specifically, an RM
extension code called patterned Reed–Muller (PRM) code is proposed. We demonstrate the high
spectral efficiency due to its enormous sequence space and prove the geometry property in the
complex domain that enhances the reliability and efficiency of detection. Accordingly, a projective
decoder based on its geometry theorem is also proposed. Next, the “patterned” property of the
PRM code, which partitions the binary vector space into several subspaces, is further extended as
the primary principle for designing a slot control criterion that reduces the number of simultaneous
transmissions in each slot. The factors affecting the chance of sequence collisions are identified.
Finally, the proposed scheme is implemented in two practical outer A-channel codes: (i) the t-tree
code and (ii) the Reed–Solomon code with Guruswami–Sudan list decoding, and the optimal setups
are determined to minimize SNR by optimizing the inner and outer codes jointly. In comparison
with the existing counterpart, our simulation results confirm that the proposed scheme compares
favorably with benchmark schemes regarding the energy-per-bit requirement to meet a target error
probability as well as the number of accommodated active users in the system.

Keywords: block fading channels; machine-to-machine communications; unsourced random access;
geometry theory; projective decoder; error correcting codes; complex Reed–Muller codes

1. Introduction

The continuous evolution of massive machine type communication (mMTC+) [1] will
still be one of main use cases of sixth-generation (6G) wireless networks [2,3]. In this context,
the battery-limited terminals sporadically connected to the network grow exponentially
and they are expected to send short information packets for low transmission latency [4,5].

The most promising way is to address grant-free transmission, i.e., the device transmits
the packet without requiring coordination among users [6–8]. The “Sourced random access
(SRA)” case refers to assigning separate dictionaries to individual users, i.e., employing
different encoders for users [9,10]. Due to a large number of users, the SRA mechanism
will result in exorbitant complexity as the AP does not know which decoder to utilize
and is forced to try all possibilities. Therefore, employing the same coding protocol for all
users is the most promising approach. Such schemes are known as “Unsourced random
access (URA)” [11]. By using this mechanism, AP is not required to recognize active users’
identities and all users are allowed to share the same codebook, avoiding complex identity
assignment and authentication processes among a large number of users. Additionally,
the access and transmission performance of the overall system are analyzed based on the
per-user probability of error (PUPE) for all active users.

Since then, several papers have been published demonstrating fundamental limits for
various massive access channel models and configurations (see, e.g., [12–14]). Many trans-
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mission schemes have been proposed to achieve performance as close to these fundamental
limits as possible [15–17].

The Background for Unsourced Random Access with Outer A-Channel Codes: The
URA benefited greatly from the outer A-channel codes [18,19], e.g., the coded compressed
sensing is a divide-and-conquer scheme that uses random inner codes of capacity 2G con-
catenated with an outer G-ary A-channel code, in which a tree code is a type of A-channel
code designed for this purpose. This flexible structure made it easy to adapt to new chan-
nel models. Several subsequent studies on URA (e.g., [16,20–24]) made use of an outer
A-channel code.

The field of study [19] for a tree code as the outer A-channel code is extended in
paper [25], which leverages the approximate message passing (AMP) strategy in conjunc-
tion with sparse regression codes. The coded compressed sensing (CCS) strategy is further
improved in [16], where the inner AMP decoder and the outer tree decoder are authorized
to exchange soft information via a shared message-passing protocol. By using the same
sensing matrix as in [19], the authors reduce complexity in [26]. The paper [27] proposes a
coded demixing strategy to facilitate the joint detection of high dimensional sparse signals
concerning different bases.

The Background for Reed–Muller Sequence: The second-order Reed–Muller-related
codebook construction schemes have been widely utilized in compressed sensing [28–31].
For instance, in [28], the complexity of the chirp reconstruction is dependent on the number
of measurements rather than the signal dimension since RM sequences are utilized to build
deterministic measurement matrices. In [29], the idea of using a measurement matrix whose
columns are codewords of a linear code is proposed. In addition, a quadratic reconstruction
algorithm that takes advantage of the multivariable quadratic functions is further employed.
According to [31], full-duplex compressed neighbor discovery is supported by on–off RM
signatures. Additionally, RM sequences are regarded as excellent options for massive access
in mMTC due to their large codebook capacity and ability to be used in low-complexity
random access [32]. The non-orthogonal RM sequences are used as signatures for active
device detection [33] which is the grant-based access scheme that suffers from low access
efficiency and high signaling overhead in mMTC. As described in [34], an incremental
massive random access scheme is proposed. Furthermore, RM sequences leveraged as the
inner codes for the URA scheme are proposed in [35,36] and the tree coding is used for
stitching messages in packetized and slotted transmissions.

In this paper, based on the “patterned” property of the proposed patterned Reed–
Muller (PRM) sequences, we design a slot-pattern-control (SPC) criterion that corresponds
one-to-one to an information segment to construct the slot occupation guideline for each
active user. We then partition the users’ messages into several sub-blocks and add the same
SPC segment in each block as a prefix to make up the input signal of the inner encoder.
On this basis, each sequence related a single codeword from a proposed common codebook
called patterned Reed–Muller codes. For recovering the PRM sequences received at the
receiver, an algorithm exploiting the geometry of PRM sequences is proposed. Moreover,
the outer tree code is replaced with an error-correcting code and the codewords with a
distance at most t from the channel output are recovered by outer codes.

1.1. Main Contributions of the Paper

To summarize, our contributions are listed as follows:

• This paper designs a common codebook that optimizes URA energy efficiency per-
formance by embedding zero bits in the second-order Reed–Muller sequences in
accordance with a specific principle, which is the simplified version proposed by
Pllaha et al. (2022) [37–39], and we denote it as a patterned Reed–Muller (PRM) code.

• Instead of the available common codebook that uses Reed–Muller (RM) properties in
the binary domain, we explore its exclusive natures in the complex domain. In detail,
we prove the algebraic and geometric properties of the second-order Reed–Muller
sequence in the complex field, and related theories for PRM codes are also proven.
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• A projective decoder is proposed for the PRM sequence and the fundamental theory
for proposing such precise detection algorithm stems from its geometry property.

• The dependencies enlightened by the patterned property of PRM sequences prescribe
how the information messages are mapped to the elements in a pool of slot-pattern
controls (SPCs). The information message guides a single user to select the corre-
sponding SPC from the pool and users randomly select SPCs as their transmission
criteria to reduce collision chance.

• The factors affecting the reliability of the PRM detection are discussed. As a result
of our simulations, we conclude that the proposed slot-pattern-control PRM-based
scheme offers significant advantages in terms of error probability.

• Instead of the outer tree code proposed by Amalladinne et al. (2020) [19], we couple the
proposed slot-pattern-control PRM-based scheme with two practical list recoverable
codes. The first is a modification of the tree code called t-tree code and the second is
based on the Reed–Solomon codes and Guruswami–Sudan list decoding algorithm.
The optimal setups are determined to minimize SNR by optimizing the inner and outer
codes jointly. In regimes of practical interest, the proposed scheme compares favorably
with benchmark schemes regarding the energy-per-bit requirement to meet a target
error probability as well as the number of accommodated active users in the system.

In Section 2, we introduce the system model. Several theorems of RM for the complex
field are proved in Section 3. In Section 4, we construct the proposed PRM sequence and
design a single-user decoding algorithm based on a proven theorem. Section 5 provides a
high-level description of the transmitter architecture, decoding procedures and a proposed
slot-pattern-control pool design, followed by Section 6 on the factors influencing the PRM
detection ability. The performance of the proposed transmission schemes is assessed via
numerical simulations in Section 7. Section 8 concludes the paper.

1.2. Notation

This paper uses lowercase letters to represent scalars. Column vectors and matrices
are denoted by boldface letters in lower case and upper case, respectively. We represent
Fm

2 as the binary field. Sym(m; 2) denotes the group of binary m×m symmetric matrices.
We will denote matrices (resp., vectors) with upper case (resp., lower case) bold letters. AT

will denote the transpose and A−T will denote the inverse transposed span(A) column
space and the row space of A. Since all our vectors are columns, we will typically deal
with column spaces. Im will denote the m×m matrix (complex or binary). U(N) denotes
the set of unitary N × N complex matrices and H will denote the conjugate transpose of
a matrix. The length N column vectors of all zeros and all ones are denoted as 0N and
1N , respectively. We use A = [ai]

I
i=1 to represent the I-element vector made up of the

elements ai, where i = 1, . . . , I. The result of appending the column vector B1 ∈ CT1×1 to
B2 ∈ CT2×1 has the form of B = [B1; B2] ∈ C(T1+T2)×1. 0N is an all-zero column vector of
length N. 0Υ×Υ denotes a full-zero matrix of size Υ×Υ. We denote by CN (0, IN) a complex
standard normal random vector. The symbol |·| is the cardinality of a set. O(·) represents
the complexity order. E[·] denotes the expectation operator and D[·] denotes the variance
operator. Pr[e] means a probability of the event e. The vector vn−1 is the decimal number
(n− 1), while conversely we have that decimal(vn−1) = n, i.e., decimal(·) converts the
binary vector to the corresponding decimal number and then increases the result by one.

2. System Model

In this paper, let us reuse the system proposed in [19,36]. Users are always silent in
the absence of information to transmit. There are K potential users in the system and Ka
components are active, which typically means Ka is far less than K in the mMTC scenario
due to the infrequent activity of users. Ka users transmit codewords drawn at random from
a common codebook containing entries derived from a G-ary alphabet [G] = {1, · · · , G}
over T channel uses. The relationship between inputs and outputs of a channel over H
slots is expressed as
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Y =
Ka⋃

k=1

[Ck,1, · · · , Ck,H ], (1)

where Ck,h ∈ [G] represents the inner codeword sent by user k in the m-th message segment,
1 ≤ h ≤ H, and the length of the codeword is N = 2m.

The expectation is that each active user will send B bits of information to the receiver
utilizing T channel uses. Specifically, the set {W1, W2, . . . , WKa} for B-bit messages, which
contain all messages sent by Ka users, are encoded into H-length G-ary A-channel codes,
where Wk ∈ [N ], [N ] = {1, · · · ,N} and N = 2B. We then define the URA code for the
A-channel as:

encoder En : [N ] 7→ [G]H ;

decoder D̂ :

NT times︷ ︸︸ ︷[{
K⋃

k=1

(
[G]

k

)}
, · · · ,

{
K⋃

k=1

(
[G]

k

)}]
7→
(
[N ]

K

)
,

where K is the number of simultaneous appearances in each block, K < Ka. We require
‖En(W)‖2

2 ≤ HNP, which means the power limitation. In this article, a proposed slot-
pattern-control technique is used to carry out the packetized and slotted transmission;
hence, the H-length outer codes are distributed throughout NT slots and T = N · NT .

At the receiver, after detecting codewords in each slot, the A-channel decoder is used
to couple the divided information chunks. Here, a quasi-static Rayleigh fading channel
is considered, in which the channel remains constant inside a single slot but fluctuates
independently between slots. We assess performance from the perspective of messages and
use the miss detection rate (MDR) and the false-alarm rate (FAR) as the primary indicators,
which are given as

Pe ,
1

Ka
∑

k∈Ka

Pr
[
Wk /∈ D̂(Y)

]
, (2)

and
Pf , Pr

[
D̂(Y)\{Wk|k ∈ Ka} 6= ∅

]
, (3)

respectively, where Ka = {1, . . . , Ka}. Energy efficiency is of critical importance for the
mMTC scenario; our goal is to minimize the energy per bit (Eb/N0 = HNP/B) spent by
each user.

3. Reed–Muller Sequences

The existing unsourced random access systems using Reed–Muller sequences pri-
marily investigate the RM features in the binary domain [35]. In reality, the complex RM
sequences are unit norm vectors on CN , which exhibit subtle algebraic and geometric prop-
erties. In this section, we present a novel direction for comprehending the RM sequence by
revealing its particular theories in the complex domain, which offer the theoretical bases
for constructing RM expansion codes.

3.1. Binary RM Codes

For an m×m binary symmetric matrix P ∈ Sym(m; 2) and a binary vector B ∈ Fm
2 ,

the n-th entry of the complexed RM sequence is denoted as

CP,B(n) =
1√
N

i2vT
n−1B+vT

n−1Pvn−1 , n = 1, . . . , N, (4)

where n is the decimal expression of binary vector vn−1, i.e., decimal(vn−1) = n. In other
words, the RM sequence in (4) is an algebraic equation associated with the time index
v, where n in CP,B(n) represents the decimal time index and vn−1 is the corresponding
binary expression. To facilitate presentation, the index-related RM is illustrated via a simple
example and we write out a basis of RM(3, 2) as follows [40,41]:
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(v1, v2, v3) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)
A = {2, 1} 1 1 0 0 0 0 0 0
A = {3, 1} 1 0 1 0 0 0 0 0
A = {3, 2} 1 0 0 0 1 0 0 0
A = {1} 1 1 1 1 0 0 0 0
A = {2} 1 1 0 0 1 1 0 0
A = {3} 1 0 1 0 1 0 1 0
A = ∅ 1 1 1 1 1 1 1 1

The first row lists all indices v ∈ Fm
2 for each bit position within a codeword, which can also

be denoted as (decimal(1, 1, 1), decimal(1, 1, 0), . . . , decimal(0, 0, 0)) or directly (8, 7, . . . , 1).
Binary Reed–Muller codes consist of the evaluation vectors of multivariate polynomials
over the binary field F2. The codeword RM(m, r) with parameters m and r consist of all
the evaluation vectors of polynomials with m variables and degree no larger than r. The
second to the last rows are polynomials of degree two, degree one and zero, respectively. It
is noteworthy that the first-order part coincides with the first line (bit position indices) and
the above basis is the generation matrix for RM(3, 2).

3.2. Geometry of Complex RM Sequence

Complex RM sequences are made of two parts: a mask sequence [28] mS = [ivTPv]v∈Fm
2

and a Hadamard sequence hB = [i2vTB]v∈Fm
2

. Overall, the exponents in (4) are evaluations
(modulo 4) of degree 2 polynomials in m variables and therefore the collection is just an
exponentiated second-order Reed–Muller code. However, from a geometric perspective, it
is not sufficient to consider only the first- and second-order polynomials. This subsection
offers a novel interpretation of RM in the complex domain.

As a matter of fact, for Pauli matrices E(x, y) with x, y ∈ Fm
2 , the absolute value of

CH
P,BE(x, y)CP,B cannot exceed 1 (see more details in [42–44]). To proceed, we define a

notion associated with shift er for the Reed–Muller sequence as CP,B:

FA(y) = CH
P,BE(er, y)CP,B, (5)

where 0 ≤ r ≤ m, er is the standard basis vector in m-dimensional space. To conclude, we
summarize the CP,B related geometry theorem in Theorem 1.

Theorem 1. CH
P,BE(er, y)CP,B is equivalent to implementing a Walsh–Hadamard transform

(WHT) on RM sequence CP,B.

Proof of Theorem 1. The formula CH
P,BE(er, y)CP,B can be extended as follows:

FA(y) = CH
P,BE(er, y)CP,B

= CH
P,B ·

ieT
ry ∑

a∈Fm
2

(−1)aT yea+er · eT
a

 · CP,B

=
ieT

ry
N
· ∑

a∈Fm
2

CH
P,B ·

[
(−1)aT y ·D(er, 0)ea · eT

a

]
· CP,B

=
ieT

ry

N ∑
a∈Fm

2

[
CH

P,B ·D(er, 0)
]
· [D(0, y) · CP,B]

=
ieT

ry

N ∑
a∈Fm

2

CP,B(a + er) · (−1)yT a · CP,B(a)

=
ieT

ry

N ∑
a∈Fm

2

(−1)(Per+y)T a,

(6)
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where N = 2m. The result of (6) completes the proof.

In fact, the Hadamard transformations of “shift”, “multiplication” and “shift and mul-
tiplication” in Equation (6) show that the process is actually a translation of the “shift-and-
multiply” technique into the operation of the Pauli matrices. In essence, this transformation
constitutes the difference between the traditional binary RM sequence and the complex one.

The complex RM sequence CP,B still has the following theorem.

Theorem 2. There is a relationship between between Pr and Br as follows:

E(er, Pr)CP,B = (−1)Br · CP,B, (7)

where Pr = P · er and Br is the r-th element of vector B.

Proof of Theorem 2.

E(er, Pr)CP,B =

ieT
r Pr ∑

v∈Fm
2

(−1)PT
r v · ev+er · eT

v

 ∑
a∈Fm

2

iaTPa+2aTB · ea


=

iPr,r
√

N
∑

v∈Fm
2

(−1)PT
r v · ivTPv+2vTB · ev+er

=
iPr,r
√

N
∑

v∈Fm
2

(−1)(er+v)TPi · i(er+v)TP(er+v)+2BT(er+v) · ev

=
1√
N

∑
v∈Fm

2

i2eT
r Pr+2PT

r v+eT
r Per+eT

r Pv+vTPer+vTPv+2Bi+2BTv · ev

=
1√
N

∑
v∈Fm

2

i2Br i3Pr,r i4vTPer+2BTv+vTPv · ev

=
(−1)Br

√
N

∑
v∈Fm

2

ivTPv+2BTv · ev

= (−1)Br · CP,B

(8)

where Pr,r = eT
r Pr = eT

r Per and Br = eT
r B. This completes the proof.

Pauli matrices are in one-to-one correspondence to a set of half-space projection
operators. Thus, from an estimated E(er, Pr), a projection operator

λ
(r)
RM,v =

[IN + v · E(er, Pr)]

2
, (9)

can be constructed, for which we have

λ
(r)
RM,vCP,B =

{
CP,B, if v = (−1)Br ,
0, if v 6= (−1)Br .

(10)

4. Expansion of Complex Reed–Muller Sequences

In this section, an alternative code of binary subspace chirp (BSSC) in [39] is proposed,
which simplifies the number of subspaces in Fm

2 , preserves the “patterned” behavior
and ultimately exhibits less interference than BSSCs. A geometric feature of the proposed
code is also demonstrated, which provides the theoretical basis for the proposed decoding
algorithm. We finally propose a projective decoder based on its geometry theorem.
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4.1. Patterned Reed–Muller Codes

The novel patterned Reed–Muller (PRM) codeword introduces a new parameter Υ
that signifies all possible subsets of m. Specifically, all potential subsets for m of rank

Υ ∈ {1, 2, · · · , m} are denoted as χ ⊆ [m]. Thus, the possible count |χ| =
(

m
Υ

)
varies with

variable Υ. The first-order item of the RM generation matrix (mentioned in Section 3.1) is
employed here as the position indices v ∈ Fm

2 . In order to retrieve the PRM sequence, it
is necessary to manipulate the position indices in a precise manner: first, place “0” bits
in all positions but Iχv + ĨχB|mΥ+1, where B|mΥ+1 denotes the sub-sequence of post-(m− Υ)
bits of vector B and Iχ is a matrix of size m× Υ with column vectors eχ(1), eχ(2), · · · , eχ(Υ),
and eχ(r) is the unit vector with non-zero at the r-th position(1 ≤ r ≤ Υ). Accordingly,
matrix Ĩχ is of size m× (m− Υ) with column vectors eχ̃(1), eχ̃(2) · · · eχ̃(m−Υ), where χ̃ is
the complement set of χ in m. Second, a sequence RM(Υ, 2) is then added to the above
non-zero positions and written as follows:

CP̂,B,Iχ
(v) =

{
1√
2Υ

i2wTB|Υ1 +wT P̂w, if v = Iχw + ĨχB|mΥ+1,

0, otherwise,
(11)

where w ∈ FΥ
2 and P̂ is the symmetric matrix for RM(Υ, 2).

As a matter of fact, the PRM sequence simply reduces the subspace matrix Hτ to Iχ;
we refer the reader to [39] for more details. Let us further define the matrix Q = [Iχ Ĩχ]
and write (11) in the following format:

CP̂,B,Iχ
(v) =

(−1)wt(B|mΥ+1)

√
2Υ

i2BT(Q−1v)+(Q−1v)TP(Q−1v) ·
[
φ
(

B, Q−1v, Υ
)]

, (12)

in the case of B|mΥ+1 = Q−1v|mΥ+1, φ
(
B, Q−1v, Υ

)
equal to 1.

We now depict the PRM sequence with a toy example before concluding its general

rule. Let m = 4, the vector B = [0101] and matrix S =


1 1 0 0
1 1 1 1
0 1 1 0
0 1 0 0

 are fixed; on this basis,

three different dimensional spaces of Υ = 1, Υ = 2 and Υ = 3 in Fm
2 with the corresponding

subsets χ ∈ {1}, χ ∈ {12} and χ ∈ {124} are substituted into (11). The resulting sequences
are depicted in Figure 1.
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Figure 1. The top line is the indexes of bit position. White = 0, Blue = 1, Purple = −1, Orange= i,
Green = −i.

We conclude the PRM sequences with the following properties:
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• The evidence demonstrates that, given a sequence of length N = 2m, PRM codes may

increase the origin capacity of
√

N
log2 N+3

while maintaining the code distance and the
cardinality of the PRM set Γ is equal to

|Γ| =
m

∑
Υ=1

(
m
Υ

)
· 2m · 2

Υ(Υ+1)
2 ; (13)

• In PRM sequence construction, the RM(Υ, 2) is not just inserted into a 2m-length

sequence, but has a sign (−1)wt(B|mΥ+1) attached (Equation (12) illustrates this). The sign
comes from the i2BT(Q−1v) part, i.e., the constraint of φ

(
B, Q−1v, Υ

)
means the post-

(m− Υ) bits should be equal, which leads to the two identical vector multiplication
(modulo 4) equal to the weight of B|mΥ+1 or (Q−1v)|mΥ+1;

• The vector B|Υ1 and matrix P serve as the determinants of the non-zero RM(Υ, 2)
part, where only the upper matrix PΥ is valid. Moreover, the subspace Iχ and B|mΥ+1
determine the “patterned” form.

4.2. Geometry Property of PRM sequence

This section discusses the geometry property of PRM along the lines of Section 3.2
and summarizes the conclusion in Theorem 3.

Theorem 3. The PRM sequence fulfills the following equation for any z ∈ Fm−Υ
2 :

E
(

Iχer, Ĩχz + IχP̂er
)
· CP̂,B,Iχ

= (−1)BT(er;0m−Υ)+(B|mΥ+1)
Tz · CP̂,B,Iχ

, (14)

where Υ is dimension of the set χ and er denotes the unit vector on domain FΥ
2 , 0 ≤ r ≤ Υ, while P̂

is a (Υ× Υ)-element symmetric binary matrix of rank Υ.

Proof of Theorem 3. The left term of Equation (14) can be expanded as

E
(

Iχer, Ĩχz + IχP̂er
)

CP̂,B,Iχ

(a)
=1/H · i(Iχer)T(Îχz+IχP̂er) · ∑

w∈Fm
2

(−1)(Ĩχz+IχP̂er)
T

weT
w+Iχerew

· ∑
a∈Fm

2

i(Q
−1a)TPQ−1a+2BTQ−1a φ

[
B, Q−1a, Υ

]
ea

=1/H · iPr,r ∑
a∈Fm

2

(−1)(Ĩχz+IχP̂er)
T

a · iaTQ−TPQ−1a+2BTQ−1a · φ
[
B, Q−1a, Υ

]
ea+Iχer

(b)
=1/H · iPr,r ∑

a∈Fm
2

i

2(Ĩχz + IχP̂er)
T
(a + Iχer)︸ ︷︷ ︸

A · i
(a + Iχer)

TQ−TPQ−1(a + Iχer)︸ ︷︷ ︸
B

· φ
[
B, Q−1(a + Iχer), Υ

]
︸ ︷︷ ︸

C

·ea,

(15)

where H = 2Υ. The equals sign (a) is based on the formula for Pauli matrices (see
Equation (14) in [38] for details) and (b) is the process of replacing all variable a with
(a + Iχer). Next, we will develop each item A, B and C in the last equation of (15).

Using process (Iχ)T · Iχ = IΥ, we expand item A into the following equation

A = 2(Ĩχz + IχP̂er)Ta + 2Pr,r, (16)
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where Pr,r is the r-th diagonal element (from top down) of the matrix P̂. We further employ
the equation Q−1 · Iχ = (Iχ)T · Iχ and (Ĩχ)T · Iχ = 0Υ×Υ and item B can be expressed as

B = (Q−1a)TP(Q−1a) + 2BQ−1a + 2(P̂r; 0m×r)
TQ−1a + Pr,r + 2BT(er; 0m−r), (17)

where P̂r = P̂er. Similarly, we have

C = φ
[
B, Q−1a +

(
er; 0m−r), Υ

]
. (18)

The following equation can be obtained by substituting (16)–(18) into (15):

1/H · i4Pr,r(−1)BT(er;0m−r)

· ∑
a∈Fm

2

i2(Ĩχz+IχP̂er)Ta · i2(P̂r;0m×r)TQ−1a · i(Q−1a)TP(Q−1a)+2BQ−1a · φ
[
B, Q−1a + (er; 0m−r), Υ

]
· ea

(c)
=1/H · (−1)BT(er;0m−r) ∑

a∈Fm
2

i2(Ĩχz)Ta · i(Q−1a)TP(Q−1a)+2BQ−1a · φ
[
B, Q−1a + (er; 0m−r), Υ

]
· ea

(d)
=1/H · (−1)BT(er;0m−r)+(B|mΥ+1)

Tz ∑
Iχw+ĨχB|mΥ+1∈F

m
2

i(w;B|mΥ+1)
T P̂(w;B|mΥ+1)+2BT(w;B|mΥ+1) · eIχw+ĨχB|mΥ+1

(e)
=(−1)BT(er;0m−r)+(B|mΥ+1)

Tz · CP̂,B,Iχ
,

(19)

where the equals sign (c) uses the equation i2(Ĩχz+IχP̂er)Ta · i2(P̂r;0m×r)TQ−1a = i2(Ĩχz)Ta, while
(d) replacing a with Iχw + ĨχB|mΥ+1 as well as using the following formula

φ
[
B, Q−1a +

(
er; 0m−r), Υ

]
=φ
[
B, Q−1(Iχw + ĨχB|mΥ+1) + (er; 0m−r), Υ

]
=φ
[
B, (w; BΥ

1 ) + (er; 0m−r), Υ
]

=φ
[
B, (w + er; BΥ

1 ), Υ
]
= 1

(20)

to eliminate φ(·) as 1. We use the equation

CP̂,B,Iχ
= ∑

Iχw+ĨχB|mΥ+1∈F
m
2

i(w;B|mΥ+1)
T P̂(w;B|mΥ+1)+2BT(w;B|mΥ+1) · eIχw+ĨχB|mΥ+1

(f)
= ∑

w∈FΥ
2

iwT P̂w+2BΥ
1 +wt(BΥ

1 ) · eIχw+ĨχB|mΥ+1

(21)

in (e). Thus, (19) agrees with the conclusion in Theorem 3.

Lemma 1. For any z ∈ Fm−Υ
2 , the following projection operator exists

λ
(r)
PRM,v(z|z∈Fm−Υ

2
) =

[
IN + v · E

(
Iχer, [Ĩχz + IχP̂er]z∈Fm−Υ

2

)]
2

, (22)

where v = (−1)
Br+(B|mΥ+1)

Tz|
z∈Fm−Υ

2 . For any vector z̃ ∈ Fm−Υ
2 we get

λ
(r)
PRM,v(z̃) · CP̂,B,Iχ

=

{
CP̂,B,Iχ

, if v = (−1)Br+(B|mΥ+1)
T z̃;,

0, if v 6= (−1)Br+(B|mΥ+1)
T z̃.

(23)
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If z̃ = 0m−Υ is fixed, we have

λ
(r)
PRM,v(0

m−Υ) =
IN + v · E

(
Iχer, IχP̂er

)
2

, (24)

and we get

λ
(r)
PRM,v(0

m−Υ) · CP̂,B,Iχ
=

{
CP̂,B,Iχ

, if v = (−1)Br;,

0, if v 6= (−1)Br.
(25)

Lemma 1 is the core idea of the detection algorithm.

4.3. The Proposed Geometry-based PRM Detection

We model a single-user scenario in which the receiver observes

y = CP̂,B,Iχ
+ n, (26)

where CP̂,B,Iχ
is a PRM sequence while n represents an additive noise. Unlike the RM

sequence decoding algorithm, PRM code needs to decode three items, i.e.,
{

Iχ, P̂, B
}

.
In view of the fact that decoding the second-order RM(Υ, 2) at non-zero positions can
be accomplished only if the subspace Iχ is known, the knowledge of subspace matrix
Iχ should be recovered in priority. Algorithm 1 summarizes the detail of the proposed
decoding algorithm.

Due to the indeterminate rank of the received PRM sequence, we traverse all possible
ranks 1 ≤ Υ ≤ m and reserve L candidate subspaces beneath each rank (line 1). Lines 2–5
describe the process for collecting candidates: for each vector fχ(Υ) ∈ Fm

2 , we compute the
related yHE(0, fχ(Υ))y and its summation form

Fsum(fχ(Υ)) =
2(m−Υ)

∑
j=1

∣∣∣yHE
(

0, f(j)
χ(Υ)

)
y
∣∣∣. (27)

By searching the largest 2(m−Υ) estimatios of Fsum, the corresponding set
[
f(j)

χ(Υ)

]2(m−Υ)

j=1

and the subspace matrix Ĩχ(Υ) are identified and placed as a candidate, in which the relation

between
[
f(j)

χ(Υ)

]2(m−Υ)

j=1
and Ĩχ(Υ) is

[
f(j)

χ(Υ)

]2(m−Υ)

j=1
= span

(
Ĩχ(Υ)

)
. (28)

We repeat the above steps and keep L candidates in set Iχ(Υ) =

{[
Ĩ(l)χ(Υ)

]L

l=1
, Υ
}

.

The subsequent RM(Υ, 2) recovery is based on the subspaces in candidates Iχ(Υ) . As

shown in lines 9–18, the symmetric matrix P̂l and the vector Bl for decoding RM(Υ, 2)
are recovered layer by layer within the l-th interaction, where the subscript l denotes
the current l-th candidate in Iχ(Υ) . Since the matrix is of Kerdock set with symmetric
properties, we denote the set of indexes for the rows determined by decoded layers asR
(R = 1, . . . , r− 1). Utilizing the estimated row vectors to complete the symmetric matrix,
the current matrix for the r-th layer decoding can be represented as P̂R. Hence, the search
space under the l-th submatrix is limited to

Fl,r =
{

f ∈ Fm
2 | fi = P̂R(i, r) for all i ∈ R

}
, (29)
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where the value of P̂R(i, r) refers to the i-th row and r-th column of matrix P̂R. On this
basis, for all vectors f ∈ Fl,r, an equation written as

Fsum(f) =
2(m−Υ)

∑
j=1

∣∣∣yHE
(

I(l)χ(Υ)
· er, f

)
y
∣∣∣ (30)

is calculated to search the largest 2(m−Υ) values of Fsum(f) and herein find the corresponding

set
[
fj
]2(m−Υ)

j=1 based on

[
fj
]2(m−Υ)

j=1 = span
(

Ĩ(l)χ(Υ)

)
+ I(l)χ(Υ)

P̂r,ler. (31)

We finally get P̂r,ler, where P̂r,l is the r-th row/column vector for P̂l .

Algorithm 1: Estimation of single PRM sequence
input :The received signal y in (26).
output : ĈP̂,B,Iχ

and the corresponding
{

Iχ, P̂, B
}

.

1 for Υ← 1 to m do
2 Initialize the subspace representative matrix and its corresponding dimension,

and denote as Iχ(Υ) =

{[
0(i)χ(Υ)

]L

l=1
, Υ
}

;

3 Investigate the (m
Υ) possibilities of χ(Υ). For each χ(Υ), the corresponding matrix Ĩχ(Υ)

and the (m− r)-dimensional subspaces are computed using formula (28) ;
4 Keep L candidates with the maximum value by substituting (28) in (27) and place the

corresponding subspace in the set Iχ(Υ) =

{[
Ĩ(l)χ(Υ)

]L

l=1
, Υ
}

;

5 for
{

Ĩ(l)χ(Υ)
, Υ
}
∈ Iχ(Υ) do

6 Initialize the first row vector P(l,1) = 0Υ of matrix Pl and the corresponding
Fl,1 ∈ Fm

2 ;
7 for r = 1, . . . , Υ do
8 Compute formula (30) for all possible f ∈ Fl,r to find the corresponding set[

fj
]2(m−Υ)

j=1 ;

9 According to (31) and the current Ĩ(l)χ(Υ)
, it is straightforward to recover the

vector P̂r,ler ;
10 Fix z(m−Υ) = 0m−Υ; we compute the Fr(f) in (32) and obtain

v = sign(Fr(f));
11 Compute sign-bit vector Br,l according to (33);

12 Projector is λ
(r)
PRM,v(0

m−Υ) =
(

IN + v · E
(

I(l)χ(Υ)
er, f

))
/2;

13 Projected vector is yr+1 = λ
(r)
PRM,v(0

m−Υ) · yr;
14 Update the partial estimated symmetric matrix P̂r,l according to the symmetry

property and the corresponding Fl,r+1 using (29) ;
15 Let y = yr+1;
16 end
17 Output the current results P̂l , dechirp to find B̂l ;
18 end
19 Save L candidates Ĉ

P̂1,B1,I(1)χ
, . . . , Ĉ

P̂L ,BL ,I(L)
χ

;

20 end
21 Find the nearest codeword to y and denote it as ĈP̂,B,Iχ

;



Sensors 2023, 23, 5239 12 of 24

In the case of Bl decoding, as can be seen from Lemma 1, we first compute Fr(f) by
substituting (31) into (30) and letting z(m−Υ) = 0m−Υ:

Fr(f) = yHE
(

I(l)χ(Υ)
· er, I(l)χ(Υ)

P̂r,ler
)

y, (32)

we then obtain sign(Fr(f)) = (−1)Br,l . Therefore, Br can be obtained immediately as

Br,l =

{
1, if sign(Fr(f)) = −1;
0, if sign(Fr(f)) = 1.

(33)

(33) can be summarized as the relationship of

Br,l =
(1−v)

2
, (34)

where v = sign(Fr(f)).
The power of y (subscripts for r = 1 is omitted) projected with this operator is∥∥∥λPRM,v(0m−Υ) · y

∥∥∥2

=yH · λPRM,v(0m−Υ) · y

=
1
2
[CH

P̂,B,Iχ
CP̂,B,Iχ

+ vCH
P̂,B,Iχ

E
(

I(l)χ(Υ)
er, f

)
CP̂,B,Iχ

+ vCH
P̂,B,Iχ

E
(

I(l)χ(Υ)
er, f

)
n + CH

P̂,B,Iχ
n

+ vnHE
(

I(l)χ(Υ)
er, f

)
CP̂,B,Iχ

+ vnHE
(

I(l)χ(Υ)
er, f

)
n + CH

P̂,B,Iχ
n + nHn]

≥1
2

[
CH

P̂,B,Iχ
CP̂,B,Iχ

+ v · Fr(f)
]
,

(35)

where f = I(l)χ(Υ)
P̂r,ler. We see that the halfspace to which the projection of y is largest.

We perform a projection operation on the r-th layer signal y before performing the
next layer decoding by employing the projection operator λ

(r)
DRM,v(0

m−Υ) (see line 14 in
Algorithm 1). While 2 ≤ r ≤ Υ, the input signal becomes

yr = λ
(r)
PRM,v · yr−1

=CP̂,B,Iχ
+

r−1

∏
i=1

λ
(i)
PRM,v · n

=CP̂,B,Iχ
+

1
2r−1

r−1

∏
i=1

(
IN + vi · E

[
Iχei, IχP̂ei

])
· n,

(36)

which indicates that the power of noise is halved within each iteration.
Line 21 evaluates the L results under each rank and retains the optimal solution.

Finally, line 23 selects the optimal solution for the results of all ranks.

5. Unsourced Random Access Scheme Using Patterned Reed–Muller Sequence

The k-th active user preferentially converts its message sequence U(k) into the cor-
responding M-length J-ary Reed–Solomon code, which completes the outer A-channel
coding. Before conducting the inner encoding, a random prefix message is repeatedly
added into M sub-blocks. The combination of the prefix and J-ary bits can produce a G-ary
message in each slot. By using this prefix, an slot occupation criterion is selected from a
common pool Ω. The binary sequence transformed by a G-ary bit is subsequently mapped
to an element in a common codebook Γ and the resulting codeword is then transmitted
to the AP side. In the receiver, the AP detects the users’ messages using the proposed
projection method. In the sequel, we will describe every module of the proposed URA
system in detail.
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5.1. Transmitter

The specific structure of the transmitter is shown in Figure 2. This subsection provides
a detailed description of how the transmission sequence is generated in the transmitter,
followed by the construction of the slot-pattern-control pool.
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Figure 2. The diagram of the transmitter technique in our proposed URA system.

5.1.1. Transmitter Design

The A-channel code used for the outer encoding is derived from paper [22]: the
kth user’s message U(k) of length B is mapped to a J-ary Reed–Solomon code of length

H, designated
[
M(k)

RS,h

]H

h=1
=
(

M(k)
RS,1, M(k)

RS,2, · · · , M(k)
RS,H

)
∈ [J]H , 0 ≤ h ≤ H, where

M(k)
RS,h ∈ [J] is the h-th output bit of outer coding. To satisfy the coding rate requirement,

we repeatedly append the binary prefix sequence X(k)
p to each J-ary bit M(k)

RS,h to create the

G-ary sequence. Thus, the length of the binary sequence X(k)
p is set to log2 (G/J) and we

denote xp = log2 (G/J). For further interpretation, a G-ary bit is divided into 2xp cosets,
each containing 2J components, and this process can be summarized as follows:

m̆(k)
PRM,h = z

([
X(k)

p ; M(k)
RS,h

])
, (37)

where z(·) is the bijective mapping: z(·) : [2xp ]× [J] and m̆(k)
PRM,h ∈ G. By repeating (37) H

times, an H-length sequence
[
m(k)

PRM,h

]H

h=1
=
(

m̆(k)
PRM,1, m̆(k)

PRM,2, · · · , m̆(k)
PRM,H

)
is obtained,

which serves as the input sequence for the inner encoder. We require a one-to-one matching
between m̆(k)

PRM and codeword C(k)
PRM from the common codebook (we omit the subscript m

here for simplicity), and, herein, m̆(k)
PRM is the input signal of the inner encoder while the

output codeword is C(k)
PRM.

Let the message m̆(k)
PRM have a length of N (k)

PRM,h; it is evident that N (k)
PRM = log2 G.

Furthermore, according to the codebook capacity |Γ| of Equation (13), the size of information bits
that a PRM sequence can carry in each slot for user k isN (k)

PRM = blog2(|Γ|)c. Finally, the output
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of inner coding over H slots is recorded as
[
C(k)

PRM,h

]H

h=1
=
(

C(k)
PRM,1, C(k)

PRM,2, · · · , C(k)
PRM,H

)
.

This process of the transmitter is depicted in Figure 2.

5.1.2. The Construction of Slot-Pattern-Control Pool

In the practical encoding procedure, each user inserts its H-length RS code into NT
slots by looking up a criterion from the common dictionary Ω. Specifically, we construct a
collection pool Ω for holding the common slot-pattern-control criteria and the k-th user
retrieves the matching SPC from the pool based on the specific X(k)

p .
The slot-pattern-control scheme is designed using a manner that refers to the con-

struction of PRM code as a heuristic algorithm: the initial step is to unify all users’ slot
indices, which can be managed by utilizing the binary notation t ∈ Fm̈

2 to identify each
slot. It is evident that, for a time slot of length NT , the equation NT = 2m̈ is necessary.
Next, we extend the subspace generation rule in Fm

2 for the PRM construction to classify
NT time slots into several sub-slots; in detail, let Ngroup denote the possible number of r
dimensional spaces in Fm

2 with Ngroup = (m̈
r ) and the corresponding subset is represented

as ξ. Obviously, the length of ξ is r and ξ ∈ Fm̈
2 . On the condition that r is constant, the slots

used to place the 2r-length (H = 2r) outer codeword are labeled as[
t(h)ξ

]H

h=1
= Iξ xr + Ĩξb|m̈r+1 xr ∈ Fr

2, (38)

where the set {Iξ xr} (span all xr ∈ Fr
2) indicates a subspace and the vector Ĩξ b|m̈r+1 controls

the cosets of the subspace. Since vector b|m̈r+1 has 2(m̈−r) possibilities, nsubgroup = 2(m̈−r)

cosets exist for each subspace. On this basis, the pool Ω generates a total of |Ω| = (m̈
r ) ·

2(m̈−r) candidates and the length of the information X(k)
p is fixed as xp = blog2|Ω|c. In

this way, once the user has acquired the knowledge of X(k)
p (there exists a one-to-one

correspondence between
{

b|m̈r , ξ
}

-pair and sequence X(k)
p ), an H length codeword is

successively inserted into the slots in accordance with (38).

In general, given a SPC
[
t(h)ξ

]H

h=1
and a random slot index th ∈ Fm

2 , the signals to be
sent in slot th are formulated as

xk,n =


C(k)

PRM,h, if th ∈
[
t(h)ξ

]H

h=1
;

0N , if th /∈
[
t(h)ξ

]H

h=1
.

(39)

We let the vector th[ξ] ∈ Fr
2 retain the certain bits from vector t(h)ξ at locations of ξ

and regard h = decimal(th[ξ]) + 1 as the decimal index of non-zero position in all slots.
Moreover, n = decimal(th) + 1, 1 ≤ n ≤ NT .

5.2. Slot-Based PRM Detection and Reed–Solomon List Recovery Decoding

The complete signal sent by the active user k is expressed as

xk =
[
xk,1; . . . ; xk,NT

]
, (40)

after receiving the signals, the AP prioritizes performing decoding operations in each slot.
To be more specific, the received signal in time slot n (1 ≤ n ≤ NT) can be expressed as

yn =
Ka

∑
k=1

hk,n · xk,n + nn, (41)

where hk,n ∼ CN (0, 1) denotes the channel coefficient between the active user k and
AP in slot n. The coefficients hk,n are estimated in the process of identifying the most
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probable transmitted signals, while nn ∼ CN (0, IN) is the complex additive white Gaussian
noise (AWGN).

In Algorithm 2, we summarize the process of PRM reconstruction in a multi-user
scenario within a single slot. We consider the input signal Y = (y1, . . . , yNT

) as a linear su-
perposition of Ka users and require the AP to output all the message set {W1, W2, . . . , WKa}.
Lines 1–7 of Algorithm 2 summarize the OMP-based inner-code detection algorithm in the
multi-user scenario. Since OMP is an iterative algorithm, the number of output codewords
is equivalent to the count of decoding iterations K0. For the outer-decode process, we
denote Y = (Y1, . . . , YH), (Yh ⊆ [H]) as the input signal of the outer-decoder, which results
from removing the coset sequence from the messages received from inner decoding and
connecting the repeated NT results. This process is described in lines 8–10. Lines 12 to 15
perform the outer Reed–Solomon decoding process and the detailed procedure is suggested
in the literature [22]. All possibilities of decoding results for each user are saved in the
list VL.

Algorithm 2: PRM reconstruction in a multi-user scenario
input : Y = (y1, . . . , yNT

)
output :VL

1 for n← 1 to NT do
2 for k← 1 to K0 do
3 Insert the signal yn to ALgorithm1 and record the output as Ĉ(k)

P̂,B,Iχ
;

4 Determine (ĥ1,n, . . . , ĥK0,n) that minimize∥∥∥∥∥yn −
K0

∑
k=1

hk,n · Ĉ
(k)
P̂,B,Iχ

∥∥∥∥∥
2

Reduce yn to yn = yn −∑K0
k=1 ĥk,n · Ĉ

(k)
P̂,B,Iχ

;

5 end
6 end

7

([
m(1)

PRM,h

]H

h=1
, . . . ,

[
m(Ka)

PRM,h

]H

h=1

)
can be obtained through one-to-one correspondence

with
(

Ĉ(1)
P̂,B,Iχ

, . . . , Ĉ(Ka)

P̂,B,Iχ

)
;

8 According to Equation (37), the J-ary bit M(k)
RS,h for user k on h-th slot is obtained by

removing a prefix segment X(k)
h after the mapping operation z−1(·) ;

9 The J-ary bits are added into a set Y(h) and eventually a received lists Y = (Y1, . . . , YH) is
obtained after connecting the repeated NT results ;

10 Fix the length of information bits of RS code k0 ;

11 set of points B(k) with multiplicities b(k)i,h ;
12 Interpolation. Find a bivariate polynomial g(x, y) of minimal (1, k0 − 1)-weighted degree

that passes thought each (βh, αi), i ∈ [J], h ∈ [H], with multiplicity bi,h. ;
13 Factorization. Find all the factors of g(x, y) of type y− f (x) with deg f (x) < k0 ;
14 The list of decoded output is noted as VL ;

6. Performance Analysis

Our proposed URA system depends on the reliability of PRM detection in each chunk
and the efficiency of the outer decoder in coupling the information between slots. The purpose
of this section is to discuss how the PRM sequence is distributed in each sub-block, which is
one of the most crucial factors influencing slot-based inner-code detection performance.
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The PRM Distribution for a Single Slot

The number of sequences for a received signal involved in linear superposition is the
key factor governing the distribution of codewords within a particular slot.

Next, we define a random variable T to further explore the above event t̃s ∈
[
t(i)ξ

] 2m̈
nsubgroup

i=1
and we use T = 1 to denote the event that “a set corresponding to the selected rule contains
a specific slot index”.

To examine the probability that the time slot t̃s will be chosen, evaluate the likelihood

that the event “a slot t̃s is contained in the chosen set
[
t(i)ξ

] 2m̈
nsubgroup

i=1
” takes place is sufficient,

which can be described as t̃s ∈
[
t(i)ξ

] 2m̈
nsubgroup

i=1
and the probability equals

Pr

[
t̃s ∈

[
t(i)ξ

] 2m̈
nsubgroup

i=1

]
=

Ngroup

2m̈−r · Ngroup
= 2r−m̈ = n−1

subgroup, (42)

where Ngroup = (m̈
r ) and nsubgroup = 2(m̈−r). This result is numerically equivalent to the

probability that a coset will be selected when a subspace Iξ is provided. As a matter of fact,
a specific slot will appear only once in each manner of partitioning the space Fm

2 . Thus,
with a total of (m̈

r ) partition manners, a specific bit will appear (m̈
r ) times in all conceivable

subsets 2(m̈−r) · (m̈
r ). Furthermore, the number of subgroups is nsubgroup and the exact

location is repeated Ngroup times for a given subspace Iξ ; herein, users who choose the
same subspace but different subgroups will not collide; in other words, for two random
selections within a given subspace, the probability that no conflicts will arise equals the
chance of selecting two different subsets.

Next, we use T = 1 to denote the event “a set corresponding to the selected rule
contains a specific slot index”. According to (42), the variable T obeys the Bernoulli
distribution; we then derive the expectation E[T ] = n−1

subgroup. As the value of |Ω| is 2xm ,

the number of probable appearances for slot t̃s is formulated as

Nt = 2xp · n−1
subgroup, (43)

which holds for arbitrary locations.
Let the random variable K denote the total number of simultaneous appearances for

Ka users in slot t̃s. Consider the case in which users select separate elements from pool Ω,
which means that all users are not putting elements back while selecting rules. Thus, the
probability mass function (PMF) of K is calculated as follows

Prunrepeatable[K = κ] =

(
Nt
κ

)(
Ngroup · nsubgroup −Nt

Ka − κ

)
(
Ngroup · nsubgroup

Ka

) , (44)

where κ = 1, · · · ,Nt, Ka = 0, · · · ,Ngroup · nsubgroup. Accordingly, the variableK is expected
to be

Eunrepeatable[K] =
Ka ·Nt

Ngroup · nsubgroup
, (45)

and variance have the form of

Dunrepeatable[K] =
Ka ·Nt

Ngroup · nsubgroup

Ngroup · nsubgroup − Ka

Ngroup · nsubgroup − 1

(
1− Nt

Ngroup · nsubgroup

)
. (46)
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It is assumed that users are not prohibited from selecting the same rules more than once
(SPC collisions) and K obeys the PMF being

Prrepeatable[K = κ] =

(
Ka
κ

)(
Nt

Ngroup · nsubgroup

)κ(
1− Nt

Ngroup · nsubgroup

)Ka−κ

. (47)

K obey the binomial distribution with its expectation and variance expressed as

Erepeatable[K] =
Ka ·Nt

Ngroup · nsubgroup
, (48)

and

Drepeatable[K] =
Ka ·Nt

Ngroup · nsubgroup

(
1− Nt

Ngroup · nsubgroup

)
. (49)

We find that Eunrepeatable[K] = Erepeatable[K], while Dunrepeatable[K] = Drepeatable[K].
Different strategies for picking rules from pool Ω do not affect the average number of
codewords in one slot. Furthermore, when the active users choose from the separate SPCs,
the inner codes are distributed more uniformly throughout the slots. In the presence of
selecting the same rules more than once, the probability that many PRM sequences could
collide in one slot increases, thus resulting in a higher multi-user interference (MUI).

7. Simulation Results
7.1. The Distribution of Slot-Based PRM Sequences

The simulations in this subsection illustrate the probability distribution of the number
of PRM codes that can be accommodated simultaneously in one slot, i.e., Pr(K). We denote
“PRM-RS, no collision” and “PRM-RS, collision”, respectively, as the practical simulation
results with and without SPC collision. Moreover, we denote “PRM-RS, Equation (44)”
and “PRM-RS, Equation (47)”, respectively, as the theoretical results calculated from (44)
and (47). The parameters for our PRM-RS scheme are m̈ = 8 and r = 5, and the sequence
distributions for Ka = 100, 150 and 200 users are, respectively, depicted in Figures 3–5.
Moreover, Figure 6 illustrates the results with parameters m̈ = 8 and r = 6 under Ka = 100.
Observations can be drawn from this as follows:

1. PRM sequences are distributed more evenly when active users employ different SPCs.
If collisions occur, more codewords will overlap at one slot, resulting in a rise in
multi-user interference (MUI) and an increased probability of failure detection.

2. According to Figures 3–5, the distributions of “PRM-RS” and “RM-Shift” almost
overlap until ka = 200. Compared to the benchmark, the overall simulation of the
simultaneously accommodated codeword count for “PRM-RS” becomes larger when
the number of users exceeds 200.

3. Figure 6 illustrates that the “no collision” case is no longer valid when r = 6.

Even though the distribution is only improved under certain conditions (user count
less than 200), the proposed inner-code construction and detection algorithm, in conjunction
with the outer error correction technique, can improve the overall performance. This will
be discussed in more detail in the next subsection.

7.2. The Overall Performance of the SPC-Based CCS for URA System
7.2.1. t-Tree Code as the Outer Code

To begin with, let us employ a decoder capable of correcting up to t errors as the
outer code in different URA schemes, i.e., “t-tree code” and “PRM-tree”. The benchmarks
called “t-tree code” from [22] are plotted by the green lines in Figure 7. We then evaluated
the proposed “PRM-tree” scheme, i.e., the proposed PRM sequence is employed as the
inner codeword, in which the former xp-bit message is filled with the selected SPC, and the
remaining J-bit is used to transport the user’s messages; moreover, the decoder capable
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of correcting t errors continues to make up the outer code. Following [22], we employ the
greedy information bits allocation method, assigning the maximum number of information
bits at each subsequent slot keeping the E[|Vl |] ≤ 225 constraint to find the minimum
Eb/N0 (see Section VII in [22] for more details). Based on this, parameters of H, N, NT , m,
m̈, G, J and xp in the proposed URA scheme are also considered.

5 10 15 20 25 30

0  

0.1

PRM-RS, no collision

PRM-RS, collision

PRM-RS, Equation (44)

PRM-RS, Equation (47)

Figure 3. The distribution of PRM sequences across slots for m̈ = 8, r = 5 and m = 8 for the
benchmark scheme, both under Ka = 100.

5 10 15 20 25 30

0  

0.1

PRM-RS, no collision

PRM-RS, collision

PRM-RS, Equation (44)

PRM-RS, Equation (47)

Figure 4. The distribution of PRM sequences across slots for m̈ = 8, r = 5 and m = 8 for the
benchmark scheme, both under Ka = 150.
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0.1

PRM-RS, no collision

PRM-RS, collision

PRM-RS, Equation (44)

PRM-RS, Equation (47)

Figure 5. The distribution of PRM sequences across slots for m̈ = 8, r = 5 and m = 8 for the
benchmark scheme, both under Ka = 200.

0 5 10 15 20 25 30

0  

0.1

PRM-RS, collision

PRM-RS, Equation (47)

Figure 6. The distribution of PRM sequences across slots for m̈ = 8, r = 6 and Ka = 100.

The PRM capacity formula under one rank Υ is shown below:

|Γ|Υ =

(
m
Υ

)
· 2m · 2

Υ(Υ+1)
2 , (50)

it is worth noting that |Γ|Υ and |Ω|r share the similar Formula (48).
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Figure 7. The performance for quasi-static Rayleigh fading channel is expressed as the required
Eb/N0 per active user vs. the number of active users Ka, given the channel uses T = 32, 768, the users’
messages B = 10 bits and the target error probability Pe = 10−1, Pf = 10−3. The optimal parameters
in our PRM-based scheme are carefully chosen to minimize the required Eb/N0. The curves are
presented as follows: t-tree code for t = 1, · · · , 5 from [22], PRM-tree scheme (optimal parameters
are taken from the Tables 1 and 2), Reed–Solomon scheme from [22] and PRM-RS scheme (optimal
parameters are taken from Table 3).

Increasing t requires a longer outer-code length H, where H = 2r. By substituting m̈
and r into (48), it is easy to see that the H value directly controls the SPC capacity |Ω|r. On
this basis, the optimal setups of H for t = 1 and t = 2, 3 are set to be 32 and 64, respectively.
However, t = 4, 5 cases are not valid in our URA setups since H = 64 is no longer sufficient
for t = 4, 5 and thus H = 128 is the next choice (H must be a power of two). It can be seen
from Equation (42) that the value of |Ω|r related to H = 128 requires a larger m̈ to preserve
the average number of probable appearances in each slot, whereas N = 2m would become
smaller under the constraint of T = NT · N (T is fixed and NT = 2m̈), which results in the
collapse of the inner-code performance. Table 1 presents the optimal G-ary, xp and J-ary for
different t, as well as the outer-code length (and rate). Optimal parameters for the overall
system are carefully selected as in Table 2. Simulations are shown in Figure 7, where purple
lines illustrate the resulting energy efficiency for t = 1, 2 and 3 of “PRM-tree”. Based on the
simulations, we can infer the following observations:

1. PRM sequence for a given rank suffices for a user’s message delivery, indicating that
the PRM codebook is highly spectral efficient due to its large sequence space.

2. The outer-code length H = 32(r = 5) is used for t = 1 and 64(r = 6) for t = 2, 3.
Substituting r = 5, 6 and m̈ = 8 into (38), we observe that the latter case (r = 6)
performs relatively poorly since it has a greater number of simultaneous appearances,
which leads to inner-code failure at Ka = 200 for t = 1 and, for t = 2, 3, Ka = 150.
This result is consistent with Figure 6.

3. For the curves of t = 2, 3, the “PRM-tree” scheme corrects the case of the “t-tree code”
scheme in which the overall performance degrades as t increases, i.e., an outer code
with a larger t performs better on the condition that the inner code has the same length
and the required path number is sufficient (“PRM-tree” schemes use 225 paths and 210

paths for “t-tree code”).
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Table 1. Optimal G-ary, xp and J-ary, as well as the outer-code length H (and rate R = B
H log2 J ) for

different t.

t G xp J Ka = 50 Ka = 100 Ka = 150 Ka = 200

t = 1 19 9 10 32 (0.3125) 32 (0.3125) 32 (0.2232) 32 (0.3125)
t = 2 15 7 8 64 (0.1953) 64 (0.1953) − −
t = 3 15 7 8 64 (0.1953) 64 (0.1953) − −

Table 2. URA system parameters for “PRM-tree” scheme.

Parameter Description Specific Value

Transmit a message of size, B 100 bits

PRM sequence length, N = 2m 27 (m = 7)

The length of RS codes, H = 2r 25 (r = 5)/26 (r = 6)

The number of slots, NT 28 (m̈ = 8)

The number of complex channel uses, T 215

The capacity of slot-occupation pool, |Ω|r 448 (r = 5)/112 (r = 6)

The length of slot-occupation control, xp 9/7

G-ary 19/15

J-ary 10/8

The capacity of PRM codebook, |ΓΥ| 286, 720 (Υ = 3)/21, 504 (Υ = 2)

The code rate 0.3125/0.1953

7.2.2. PRM-Based Reed–Solomon Scheme

A “PRM-RS” scheme based on the inner PRM code in conjunction with an outer Reed–
Solomon code (as illustrated in Algorithm 2) is simulated in this section, and the per-user
error probability Pe as a function of Eb/N0 for Ka = 130, 180 and 200 for this “PRM-RS”
scheme is obtained (in Figure 8). The optimal system parameters are depicted in Table 3. It
can be seen from Figure 8 that:

1. The minimum Pe exceeds 0.1 when the user count reaches 220.
2. The simulation curves in Figure 8 are consistent with the bar chart performances in

Figure 6, i.e., when the number of users exceeds 200, the number of simultaneous
transmissions exceeds the identifiable maximum.

Table 3. URA system parameters for “PRM-RS” scheme.

Parameter Description Specific Value

Transmit a message of size, B 100 bits

PRM sequence length, N = 2m 27 (m = 7)

The length of RS codes, H = 2r 25 (r = 5)

The number of slots, NT 28 (m̈ = 8)

The number of complex channel uses, T 215

The capacity of slot-occupation pool, |Ω|r 448 (r = 5)

The length of slot-occupation control, xp 9

G-ary 15

J-ary 6

The capacity of PRM codebook, |ΓΥ| 21, 504 (Υ = 2)

The code rate of RS 0.5208
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Figure 8. Probability of error Pe vs. Eb/N0 for three system loads (number of active users), Ka = 130, 180
and 220.

The energy efficiency is the minimum energy required to serve Ka users with PUPE
less than 0.1, which is depicted in the blue line in Figure 7 under our optimal setups (see
Table 3). We also need to adjust the number of CRC bits bc to suppress falsely detected
messages following the same method as operated in [22]. The benchmark is the RS scheme
in [22] which is plotted using an orange line.

The increase of r necessitates a lengthier m̈ to maintain the SPC pool capacity and the
length of the inner code cannot be increased due to the channel uses T constraint. Further-
more, the decrease in inner-code length also weakens its performance. Therefore, we fix
the SPC capacity as |Ω|r with m̈ = 8 and r = 7. On this basis, when the prefix length xp
is fixed, a rise in value G leads to a larger J, which directly increases the outer code rate.
Additionally, an increase in the outer code rate would weaken its performance. In light
of this, carefully selecting the G value is critical. Simulation demonstrates that it is more
efficient than the original RS when Ka is less than 185, even with a constant inner-code
length for different user counts.

8. Conclusions

In this paper, We addressed a general framework for CCS under the packetized
and slotted transmission protocol based on inner PRM codes and outer error correction
codes. First, we propose PRM sequences to transmit information chunks in slots since
their geometry property facilitates computationally efficient PRM detection. Furthermore,
we extend the space segmenting strategy of PRM sequences to construct a predefined
dictionary of SPCs for slot occupation and the SPC selection mechanism is prescribed by
an information segment for each user. The factors influencing slot-based PRM detection
performance are discussed. We validate the error probability advantage of our proposed
PRM-based URA scheme through simulation. We further proposed to use list recoverable
codes correcting t errors in the coded compressed sensing scheme. Specifically, we propose
two practical constructions of outer codes. The first one is a modification of the tree code.
It utilizes the PRM as inner codes and adds a SPC, and the major difference is a decoder
capable of correcting up to t errors. The second one is based on the Reed–Solomon codes
and Guruswami–Sudan list decoding algorithm. The optimal setups are determined to
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minimize SNR by optimizing the inner and outer codes jointly. Both schemes provide
better energy efficiency compared with the benchmark. In the following study, we will
perform a matrix decomposition of the Clifford matrix GF related to the patterned Reed–
Muller sequence and view this decomposition process as a reconstruction of the transmitter
design. Moreover, the model is extended to accommodate multiple antennas for the URA
system. We will also consider an iterative decoding algorithm to solve the signal recovery
at the receiver.
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