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Abstract: In a modern power system, reducing carbon emissions has become a significant goal in
mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-
power generation, have been extensively implemented in the system. Despite the advantages of
wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in
the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable
wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs,
uncertainty and randomness still have a significant impact on the dispatching and operation of the
system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching
strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on
meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method
and the CURE clustering algorithm are employed for meteorological classification in order to better
identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to
enrich the wind-power datasets with different meteorological patterns, resulting in the construction
of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to
establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity
sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs.
Finally, the alternative direction method of multipliers (ADMM) and the column and constraint
generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching
model of MMGSs. Case studies indicate that the presented model has a great performance in
improving the wind-power description accuracy, increasing cost efficiency, and reducing system
carbon emissions. However, the case studies also report that the approach consumes a relative long
running time. Therefore, in future research, the solution algorithm will be further improved for the
purpose of raising the efficiency of the solution.

Keywords: adjustable robust optimization; uncertainty; meteorological classification; low-carbon
operation; economic operation

1. Introduction

With the issues of global pollution and fossil-energy depletion becoming more and
more severe, carbon-emission reduction has become an important focus for technological
development [1]. As a result of its remarkable advantages [2], renewable energy generation
has been adopted for low-carbon applications in the power system [3]. Research in this
area [4] has provided electricity generated by renewable energy to the green cottage and
obtained relatively greater benefits. However, the strong uncertainty and randomness of
renewable energy generation cause significant issues in terms of the security and efficiency
of the power system [5]. Microgrids are able to provide effective solutions for the local
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consumption of renewable energy owing to their flexible operation and high autonomy [6],
avoiding the issues caused by the direct connections of renewable energies to the grid.
Additionally, with the advancement of electricity marketization, it is possible to interconnect
a certain number of microgrids to form an MMGS [7]. An MMGS aims to achieve a balance
between power supply and demand by means of energy interaction and collaborative
optimization within the system, further promoting the consumption of renewable energies.
Compared to individual microgrids, MMGSs have better overall economic efficiency and
lower carbon emissions [8]. However, the uncertainty of the energy generation in the
microgrid, especially that produced by wind energy, may lead to poor energy utilization [9].
This leads to dispatching operation being dependent on units with a high carbon emission
and a failure to fully utilize the low-carbon characteristics of the microgrid [10]. Therefore, it
is highly valuable to study the dispatching strategy for MMGSs with regard to wind-power
uncertainty to ensure carbon-emission reduction and economic improvement.

As mentioned above, the uncertainty of wind-power generation in the microgrid leads
to difficulty in dispatching decisions. Mathematical approaches such as stochastic opti-
mization (SO) and robust optimization (RO) are widely employed to address dispatching
decisions involving uncertainties [11]. Li et al. [10] presented a scenario-based optimal oper-
ational model based on SO, mainly to handle the uncertainties involved in energy demand
and renewable generation. The effectiveness of the approach was verified according to the
experimental results. However, Chen et al. [12] pointed out that the probability distribution
of the random variables in SO is difficult to obtain precisely. They also suggested that in the
RO model, the range of renewable energy generation can be depicted by constructing an
uncertainty set without information on the probability distribution of variables. Although
RO is able to provide better dispatching strategies theoretically, Wang et al. [13] sug-
gested that the decision results based on RO are frequently overly conservative. Therefore,
Zhai et al. [14] presented an ARO model to address renewable energy uncertainty while
utilizing the controllable uncertainty set to reduce the conservatism of the solution. Case
studies illustrated that the ARO model can better balance the economy and robustness of
the dispatching strategy by controlling the frequency of worst-case scenarios. However, the
ignorance of the uncertainty probability information in ARO and the subjective determina-
tions of the current construction of the uncertainty set result in a lack of precise delineation
of the variables [15].

In order to address the shortage of ARO uncertainty intervals, historical data on
wind power are employed to provide scientific data support for the construction of the
uncertainty set [16]. Wu et al. [11] developed an ambiguity set of the probability distribution
of wind power based on the imprecise Dirichlet model, which used the historical data to
establish the uncertainty intervals without relying on subjective determinations. The model
was adopted into the ARO framework, which objectively improved the efficiency of the
final dispatching model. Wang et al. [17] constructed the ambiguity set of the probability
distribution of wind power based on the Wasserstein distance, and the experimental results
indicated that the description accuracy of the uncertainty gradually increased with the
increasing number of historical samples. The research suggests that the construction of the
ambiguity set highly depends on a sufficient amount of historical data.

Therefore, it is fundamental to generate a suitable amount of historical wind-power
data for ARO to build a precise ambiguity set in terms of achieving the optimal dispatching
strategy for microgrids. Jiang et al. [18] presented a generative adversarial network (GAN)
to generate synthesized wind-power scenarios. Ning et al. [19] generated a set number of
wind-power data samples using GAN to implement economic dispatching optimization.
The experimental results of these studies demonstrate that GAN can accurately capture the
probability-distribution characteristics of the sample data and generate new synthesized
samples with similar statistical characteristics to expand the historical dataset. Meanwhile,
Li et al. [20] and Qin et al. [21] reported that wind-power output is highly related to
the meteorology in the location of the microgrids; thus, the distribution of wind power
varies under different meteorological categories. Nevertheless, the existing research, which
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integrates data-generation techniques and the ambiguity set to reflect the uncertainty
of wind-power generation, tends to assume that the distributions in the ambiguity set
are similar. In addition, most studies employ only one uncertainty set to describe the
range of variation. It should be pointed out that a single uncertainty set is not conducive
to accurately portraying the uncertainty. Therefore, Xu et al. [8] clustered the historical
meteorological dataset to obtain various meteorological patterns, thereby building a wind-
power prediction model for different meteorological patterns. The simulations proved
that the clustering model can adequately extract historical data to improve the prediction
accuracy, with better results than the non-clustering model. Therefore, meteorological
classification combined with the generation of data using GAN is an effective way to
improve the utilization of data samples and the effectiveness of ARO in terms of achieving
the optimal dispatching strategy.

Additionally, to further reduce carbon emissions, studies involving coordinated dispatch-
ing for MMGS in combination with carbon trading have been conducted. Zhang et al. [22]
and Wang et al. [23] introduced the carbon-trading mechanism to MMGSs and constructed
a decentralized dispatching model using ADMM. The simulation results demonstrated
the effectiveness of the carbon-trading mechanism in guiding an MMGS to reduce carbon
emissions. Yang et al. [24] achieved efficient low-carbon operation by introducing stepped
carbon trading into an optimal dispatching mechanism, and the analysis showed a stronger
carbon-reduction ability compared to the traditional carbon-trading approaches. Therefore,
the further use of stepped carbon prices to limit carbon emissions as part of the dispatching
strategy can additionally improve the low-carbon performance of MMGSs.

Motivated by previous research, this paper focuses on the efficient low-carbon dis-
patching of MMGSs in light of wind-power uncertainty using stepped carbon trading. The
main contributions of this paper are summarized as follows: (i) According to the variability
of wind power in different meteorological scenarios, the meteorological features that are
highly relevant to wind-power output are determined. Then, a meteorological clustering
model is established to improve the effectiveness of utilizing the historical wind-power
data; (ii) a GAN-based synthesized data-generation technique and an ambiguity set are
employed to develop a wind-power interval estimation model for different meteorological
patterns, to better address wind-power uncertainty using historical data; (iii) taking into
account the carbon-trading mechanism, a two-stage ARO cooperative operation model
based on the improved uncertainty set of wind power is presented to achieve an optimal
low-carbon and economically efficient dispatching strategy for MMGSs.

The remainder of this paper is organized as follows. Section 2 presents the interval
estimation model of wind power with different meteorological patterns. Section 3 presents
the two-stage ARO low-carbon economic dispatching model of MMGS, considering the
carbon-trading mechanism. Section 4 introduces the solution method for the presented
model. Section 5 presents the experimental analysis. Section 6 presents the conclusions of
this paper.

2. Improved Data-Driven Uncertainty Set for Wind Power

In this section, based on the limited historical data of wind power and the correspond-
ing multi-dimensional meteorological information, the weather type labels of the original
data are obtained using the MRMR feature selection method and CURE clustering algo-
rithm. The CGAN is further employed to generate an appropriate number of wind-power
samples with different labels, in order to increase the number of samples for the original
wind-power data. Based on the achieved labels and the expanded wind-power data, a
grouping generative model of wind power is established. The generated samples are also
utilized to construct Wasserstein metric-based ambiguity sets. As a result, the uncertainty
interval of wind power can be obtained to precisely describe the uncertainty. The presented
data-driven model is illustrated in Figure 1.
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2.1. Wind Power Generative Model Considering Meteorological Classification
2.1.1. MRMR-Based Feature Selection Method

The features with redundancy or low relevance frequently have negative impacts
on the classification of meteorological data. Therefore, MRMR technology is applied to
obtain an optimally selected feature subset that has a minimum redundancy among the
interior features and maximum relevance to the wind power. The maximum relevance and
minimum redundancy indicators are defined in Equations (1) and (2):

maxD(S, ν), D =
1
|S| ∑

dp∈S
I(dp; ν) (1)

minR(S), R =
1

|S|2 ∑
dp ,dq∈S

I(dp; dq) (2)

where S denotes the set of the associated features affecting the wind power; I(·) represents
the mutual information; D(S, ν) describes the relevance between each feature dp in S and
the wind power ν; R(S) describes the redundancy among features in S; |S| denotes the
number of features contained in S.

Assuming the feature subset Sk−1 composed of k − 1 features has been determined,
the k-th feature selected from the remaining feature set should satisfy Equation (3).

max
dj∈{S−Sk−1}

(I(dq; ν)− 1
k− 1 ∑

dp∈Sk−1

I(dq; dp)) (3)

Finally, the meteorological features for which the values of the operator increment are
greater than zero are selected to form the feature subset SK. Then, the selected features and
the wind-power data in SK are normalized using Equation (4). As a result, a normalized
dataset Rnor containing the optimal feature information and wind power is constructed.
The details of Rnor are shown in Equation (5).

dnor =
(d− d) · (d− dmin)

dmax − dmin
+ d (4)
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Rnor = {d1,nor, d2,nor, · · · , dK,nor, νnor} (5)

Here, d and d denote the expected maximum and minimum values, which are taken
as 1 and −1, respectively; the subscript “nor” indicates that the value has been normalized.

2.1.2. Clustering of Meteorological Features Based on the CURE Algorithm

The CURE clustering algorithm is employed to implement the clustering for the high-
dimensional dataset Rmet to group similar weather patterns. Based on the clustered result,
the weather type labels llab can be obtained. Each corresponding wind-power sample in
Rnor can then be assigned a weather type label. Finally, the dataset Rlab containing the
labeled wind-power samples can be determined. The compositions of Rmet and Rlab are
shown in Equation (6):

Rmet = {d1,nor, d2,nor, · · · , dK,nor}, Rlab = {νnor, llab} (6)

The CURE algorithm is a hierarchical clustering method that uses multiple represen-
tative elements to represent a cluster. When clustering the normalized dataset Rmet, each
sample is firstly regarded as a cluster. Then, the algorithm combines the two closest clusters
to form a new cluster. When the pre-specified number of clusters is reached, the algorithm
terminates. The distance between two clusters is the distance between the nearest two
representative elements belonging to the two clusters, as determined in accordance with
Equation (7). The identification of the representative elements is based on [25].

dist(u, w) = min
u′∈u.rep,w′∈w.rep

d(u′, w′) (7)

Here, u.rep and w.rep represent the collection of the representative elements of cluster
u and cluster w, respectively; d(u′,w′) represents the distance between the representative
elements u′ and w′. The distance is determined using the square of the Euclidean distance.

2.1.3. Generation of Wind-Power Samples Using CGAN

CGAN is an improved model based on the original GAN model; it allows generation of
the data samples based on the predefined labels. Therefore, it can be adopted to generate the
labeled data samples serving the specific designed scenarios. It trains the model parameters
using the adversarial competition between its generator and discriminator. When the Nash
equilibrium is achieved, the training process terminates. Then, the samples with given
labels can be further generated. Figure 2 illustrates the basic structure of the CGAN model.
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Figure 2. Basic structure of the CGAN model.

The generator and discriminator are both deep neural networks defined by a set of
parameters. The objective of training the generator parameters is the generation of newly
synthesized samples in which the distribution is similar to the original data and which
eventually cheat the discriminator. The objective of training the discriminator parameters
is the identification of whether the input sample is a real sample or a synthesized sample.
Using the adversarial training of the above two neural networks, we can finally reach the
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Nash equilibrium point, which indicates that the synthesized samples have sufficiently
similar data features to those of the original samples. Therefore, they can be employed to
enrich the original to-be-processed dataset.

The training objective function of CGAN is shown in Equation (8). The weather type
label llab in the dataset Rlab is taken as the conditional information z and fed into the
generator along with the noise b. The generated sample and the real sample a are each
combined with z and then fed into the discriminator. Through the adversarial training of
CGAN, the generator can finally generate an appropriate amount of wind-power data as
conditioned by the weather type labels to acquire the generated dataset Rgen, as shown in
Equation (9).

min
G

max
D

V(D, G) = Ea∼Pa [ln D(a|z)] + Eb∼Pb
[ln(1− D(G(b|z)))] (8)

Rgen = {ν1, · · · , νm, · · · , νM} (9)

Here, E(·) denotes the expected value; D(a|z) is the probability that the real sample
a conditioned by label z is determined to be true in the discriminator. D(G(b|z)) is the
probability that the generated sample G(b|z) based on the noise b and label z is determined
to be true in the discriminator. νm is a generated wind-power sample with label m. M
represents the total number of labels.

2.2. Construction of Uncertain Interval under Ambiguity Probability Distribution

The weather type label llab for a certain day can be determined from the meteorological
information provided by the weather prediction for the day. Then, the generated samples
using the label llab in Rgen can be employed to delineate the wind power more precisely.
However, the probability distribution of wind power can remain uncertain. Therefore,
Wasserstein metric-based ambiguity sets containing a set of uncertain probability distri-
butions are constructed separately for the wind-power scenarios with different labels.
Specifically, this involves limitation of the probability distribution P̃m of the true wind
power ν̃m with label m in an ambiguity set Ωm. The probability expectation of the true
wind power in the ambiguity set Ωm with a given uncertainty set is employed as the index
to determine the worst-case scenario, as shown in Equation (10):

sup
P̃m∈Ωm

EP[P(ν̃m ≤ ν̂l
m‖ν̃m ≥ ν̂u

m)] (10)

where ν̂u
m and ν̂l

m represent the upper and lower bound of the uncertainty set of the wind
power with label m.

The Wasserstein distance is adopted to measure the distance between the empirical
distribution P̂m0 based on the generated sample ν̂m and the true distribution P̃m based on
ν̃m, as shown in Equation (10). The ambiguity set is modeled in Equations (11) and (12).
The construction of the empirical distribution is based on [17].

W(P̃m, P̂m0) = inf
Π

{∫
Ξ2
‖ν̃m − ν̂m‖Π(d(ν̃m), d(ν̂m))

}
(11)

Ωm =
{

Pm ∈ M(Ξm)
∣∣∣W(P̃m, P̂m0) ≤ εm

}
(12)

Here, ν̂m represents the generated sample with label m; ‖ · ‖ represents a norm
function, which is L1-norm in this paper; Π(d(ν̃m), d(ν̂m)) represents the joint probability
distribution of ν̂m and ν̃m; M(Ξm) represents the set of all probability distributions of ν̃m
with supporting set Ξm; εm controls the size of Ωm, which depends on the sample number
Nm with label m and the confidence level of Ωm [17].
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We substitute Ωm into Equation (10) and then convert Equation (10) into the form
shown in Equation (13):

inf
λ≥0,σn

{
λεm + 1

Nm

N
∑

n=1
σn

}
s.t.σn = 1, ∀νm ≤ ν̂mn < ν̂l

m, ν̂u
m < ν̂mn ≤ νm

1− λ(ν̂u
m − ν̂n) ≤ σn, ∀ν̂l

m ≤ ν̂mn < ν̂u
m

1− λ(ν̂n − ν̂l
m) ≤ σn, ∀ν̂l

m ≤ ν̂mn < ν̂u
m

0 ≤ σn, ∀ν̂l
m ≤ ν̂mn < ν̂u

m

(13)

where λ represents the dual variable; σn represents an auxiliary variable; νm and νm
represent the upper limit and the lower limit of ν̃m in the supporting set Ξm.

In order to simplify the calculation, it is assumed that the boundaries of the un-
certainty set, namely ν̂u

m and ν̂l
m, are symmetric about the mean value µ̂m, as shown in

Equation (14). Therefore, the relationship between the different uncertainty set bounds and
different probability expectation values fm can be obtained using Equation (15):

ν̂l
m = µ̂m − δ̂m, ν̂u

m = µ̂m + δ̂m (14)

fm
(
δ̂m
)
= sup

P̃m∈Ωm

EP[P(ν̃m ≤ µ̂m − δ̂m||ν̃m ≥ µ̂m + δ̂m)] (15)

where δ̂m is an auxiliary variable.
The probability point fm = 1 − θ can be approached gradually using the dichotomy

denoted by Equation (15). Its corresponding values ν̂l
m and ν̂u

m are further taken as the
lower and the upper boundaries of the uncertainty set U to complete the construction of
the uncertainty interval with the label m.

3. Modeling of MMGS Considering the Carbon-Trading Mechanism

The structure of the MMGS studied in this paper is shown in Figure 3. The MMGS
consists of a number of n combined heat and power microgrids, each of which contains
a wind turbine, distribution/gas network, controllable generation (CG) (gas turbine, gas
boiler, electric boiler), and electric/thermal load. Each microgrid is connected to the
distribution network, while different microgrids are connected to each other via tie line.
The dispatch center of every microgrid can exchange limited operational information with
other connected microgrids. Therefore, each microgrid has the ability to make decisions
independently to interact with the distribution network or the other microgrids in terms of
implementing electricity trading. At the same time, the microgrids also conduct carbon
trading with the carbon market to optimize the low-carbon and economic performance of
their own dispatching strategies.

RO adopts a bounded and closed uncertainty set to describe the variable range of
uncertain parameters. Then, the uncertainty set is searched for the case that makes the
optimization result the most pessimistic. Therefore, RO is an uncertainty handling method
that optimizes for the worst-case scenario in the uncertainty set of uncertain parameters.
Based on RO, an adjustable robust parameter is introduced to control the frequency of the
worst-case scenario in the uncertainty set. Thus, the ARO model is obtained.

In order to effectively cope with the risk brought by the uncertainty of wind-turbine
output to the microgrid dispatching, we construct a two-stage ARO microgrid model using
the following compact form, as shown in Equation (16):

min
x

{
Cda(x) + max

u
min

y
Crt(u, y)

}
(16)

where x, u, y, Cda(x), and Crt(u,y) represent the day-ahead dispatching strategy, the
worst-case scenario of wind-power output, the real-time adjustment strategy for x with
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the worst-case scenario, the day-ahead operation cost, and the real-time adjustment
cost, respectively.
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The uncertainty set U =
{

ν̃WT ∈ [νl
WT, νu

WT]
}

is adopted to describe the uncertainty of
wind power in the adjustment stage. In the aforementioned presentation, an adjustable
robust parameter represents the number of occurrences of the worst-case scenarios of wind-
power output during the dispatch period. The adjustable robust parameter Γ is introduced
to control the conservativeness of the model. Therefore, the wind-power output can be
described as shown in Equation (17):

∑
t∈T

(
P̃WT,t − Ppre

WT,t

νu
WT,t

ρ+t +
Ppre

WT,t − P̃WT,t

νl
WT,t

ρ−t ) ≤ Γ (17)

where νu
WT,t and νl

WT,t represent the fluctuation ranges of wind power at time t, which
is explained in detail in Section 2; Ppre

wind,t and P̃wind,t represent the predicted value and
real value of wind-power output at time t, respectively; ρ+t and ρ−t represent auxiliary
0–1 variables; and T represents the time set.

3.1. Modeling of Microgrid Dispatch in the First Stage

In the first stage, Microgrid i formulates the dispatching strategy x with the objective
of minimizing the day-ahead operation costs, which include the cost of purchasing and
selling electricity within the distribution network Cda

Grid,i, the cost of purchasing gas from
the gas network Cda

Gas,i, the cost of carbon trading Cda
C,i, and the cost of trading electricity

with other microgrids CMG,i. The details are shown in Equations (18)–(21).

min
x

Cda(x) = Cda
Grid,i + Cda

Gas,it + Cda
C,i + CMG,i (18)

Cda
Grid,i = ∑

t∈T
(τda

ebuy,tP
da
ebuy,i,t − τda

esell,tP
da
esell,i,t) (19)

Cda
Gas,i = ∑

t∈T
τGas(Gda

GT,i,t + Gda
GB,i,t) (20)

CMG,i = ∑
t∈T

∑
j∈Ψi

τex,tPex
ij,t (21)
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Here, τda
ebuy,t, τda

esell,t, τGas, and τex,t represent the price of electricity purchased from the
distribution network, the price of electricity sold to the distribution network, the price of
gas purchased from the gas network, and the price of electricity in interactions with other
microgrids at time t in the day-ahead stage; Ψi represents the set of microgrids connected
to Microgrid i; Pda

ebuy,i,t, Pda
esell,i,t, Gda

GT,i,t, Pda
GB,i,t, and Pex

ij,t represent the amount of electricity
purchased from the distribution network, the amount of electricity sold to the distribution
network, the amount of gas consumed by the gas turbine, the amount of gas consumed by
the gas boiler, and the amount of electricity interacting with Microgrid j in the day-ahead
stage at time t of Microgrid i, respectively. The details for the cost of carbon trading are
provided in Section 3.3.

The constraints in the first stage include energy-balance constraints, constraints for
interaction with distribution/gas networks, constraints for power interaction with other
microgrids, CG operation constraints, and carbon-balance constraints. The details of the
constraints are shown in Equations (22)–(27).

A. Energy balance constraints:

Pda
GT,i,t + Ppre

Wind,i,t + Pda
ebuy,i,t + ∑

j∈Ψi

Pex
ij,t = Pda

EB,i,t + Pda
esel,i,t + PEload,i,t (22)

Qda
GT,i,t + Qda

GB,i,t + Qda
EB,i,t = PHload,i,t (23)

where Pda
GT,i,t, Pda

EB,i,t, PEload,i,t, Qda
EB,i,t, and PHload,i,t represent the electric output of

the gas turbine, the electric power consumed by the electric boiler, the electric load
demand, the thermal output of the electric boiler, and the thermal load demand in
Microgrid i at time t in the day-ahead stage, respectively.

B. Constraints for interaction with distribution/gas networks:
0 ≤ Pda

ebuy,i,t ≤ Vebuy,i,tPmax
Grid,i

0 ≤ Pda
esell,i,t ≤ Vesell,i,tPmax

Grid,i
Vebuy,i,t + Vesell,i,t ≤ 1
0 ≤ Gda

GT,i,t + Gda
GB,i,t ≤ Gmax

Gas,i

(24)

where Vebuy,i,t and Vesell,i,t represent the states of the power purchased and sold from
Microgrid i to the distribution network at time t, which are 0–1 variables; Pmax

Grid,i
and Pmax

Gas,i represent the maximum value of power interacting with the distribution
network and the maximum value of gas purchased from the gas network, respectively.

C. Constraints for power interaction with other microgrids:

−Pmax
ij ≤ Pex

ij,t ≤ Pmax
ij (25)

where Pmax
ij represents the maximum value of the transaction power between Micro-

grid i and Microgrid j.
D. CG operation constraints:{

VCG,i,tPmin
CG,i ≤ Pda

CG,i,t ≤ VCG,i,tPmax
CG,i

−Rdw
CG,i ≤ Pda

CG,i,t − Pda
CG,i,t−1 ≤ Rup

CG,i
(26)

where VCG,i,t represents the operation state of the CG, which is a 0–1 variable; Pmin/max
CG,i

and Rup/dw
CG,i represent the maximum/minimum output of the CG and the maximum

up/down ramping capacities, respectively.
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Energy conversion model for CG:
Pda

GT,i,t = ηGTHngGda
GT,i,t

Qda
GT,i,t = ηHEηWH(1− ηGT)HngGda

GT,i,t
Qda

GB,i,t = ηGBHngGda
GB,i,t

Qda
EB,i,t = ηEBPda

EB,i,t

(27)

where ηGT, ηWH, ηHE, ηGB, and ηEB represent the conversion efficiencies of the gas turbine
power generation, the waste heat recovery, the heat exchanger, the gas boiler heating, and
the electric boiler heating, respectively. Hng represents the heat value of natural gas.

3.2. Modeling Real-Time Adjustment Dispatch in the Second Stage

Based on the x obtained in the first stage, Microgrid i searches for the worst-case
scenario of wind power u and formulates the corresponding real-time adjustment strategy
y after the realization of the wind-power uncertainty. The real-time adjustment cost consists
of the regulation cost of CG Crt

CG,i, the real-time grid interaction cost Crt
Grid,i, the real-time

gas purchasing cost Crt
Gas,i, the real-time carbon trading cost Crt

C,i, and the wind curtailment
cost Closs

Wind,i. The details are shown in Equations (28)–(32).

Crt(u, y) = Crt
CG,i + Crt

Grid,i + Crt
Gas,i + Crt

C,i + Closs
Wind,i (28)

Crt
CG,i = ∑

t∈T
(τ

up
GTGup

GT,i,t + τdw
GT Gdw

GT,i,t + τ
up
GBGup

GB,i,t + τdw
GB Gdw

GB,i,t + τ
up
EB Pup

EB,i,t + τdw
EB Pdw

EB,i,t) (29)

Crt
Grid,i = ∑

t∈T
(τrt

ebuy,tP
rt
ebuy,i,t − τrt

esell,tP
rt
esell,i,t) (30)

Crt
Gas,i = ∑

t∈T
τGas(G

up
GT,i,t − Gdw

GT,i,t + Gup
GB,i,t − Gdw

GB,i,t) (31)

Closs
Wind,i = ∑

t
τloss(P̃Wind,i,t − Pget

Wind,i,t) (32)

Here, τ
up/dw
GT , τ

up/dw
GB , τ

up/dw
EB , and τloss represent the up/down regulation of the price

of the GT, the up/down regulation of the price of the GB, the up/down regulation of the
price of the EB, and the wind penalty price, respectively; τrt

ebuy,t and τrt
esell,t represent the

purchased and sold prices of electricity in the real-time stage, respectively; Gup/dw
GT,i,t , Gup/dw

GB,i,t ,

and Pup/dw
EB,i,t represent the up/down regulation of gas to the GT, the up/down regulation of

gas to the GB, and the up/down regulation of power to the EB, respectively; Prt
ebuy,i,t and

Prt
esell,i,t represent the purchased and sold power in the real-time stage, respectively; Pget

wind,i,t
represents the real-time injected wind power.

The constraints in the second stage consist of the wind turbine regulation constraints,
the CG regulation constraints, the real-time energy balance constraints, and the real-
time power/gas interaction constraints. The details of the constraints are shown in
Equations (33)–(37).

A. Wind turbine regulation constraints:

0 ≤ Pget
Wind,i,t ≤ P̃Wind,i,t (33)
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B. CG regulation constraints:
0 ≤ Pup

CG,i,t ≤ Vup
CG,i,tR

up
CG,i, 0 ≤ Pdw

CG,i,t ≤ Vdw
CG,i,tR

dw
CG,i

Vup
CG,i,t + Vdw

CG,i,t ≤ 1
VCG,i,tPmin

CG,i ≤ Pda
CG,i,t + Pup

CG,i,t − Pdw
CG,i,t ≤ VCG,i,tPmax

CG,i
−Rdw

CG,i ≤ Pda
CG,i,t + Pup

CG,i,t − Pdw
CG,i,t − (Pda

CG,i,t−1 + Pup
CG,i,t−1 − Pdw

CG,i,t−1) ≤ Rup
CG,i

(34)

where Vup/dw
CG,i,t represents the ramping state of the CG, which is a 0-1 variable.

C. Real-time energy balance constraints:

Pda
GT,i,t + Pup

GT,i,t − Pdw
GT,i,t + Pget

Wind,i,t + Pda
ebuy,i,t + Prt

ebuy,i,t + ∑
j∈Ψi

Pex
ij,t

= Pda
EB,i,t + Pup

EB,i,t − Pdw
EB,i,t + Pda

esell,i,t + Prt
esell,i,t + PEload,i,t

(35)

Qda
GT,i,t + Qup

GT,i,t −Qdw
GT,i,t + Qda

GB,i,t + Qup
GB,i,t −Qdw

GB,i,t + Qda
EB,i,t + Qup

EB,i,t −Qdw
EB,i,t = PHload,i,t (36)

D. Real-time power/gas interaction constraints:

0 ≤ Prt
ebuy,i,t ≤ Pmax

Grid,i
0 ≤ Prt

esell,i,t ≤ Pmax
Grid,i

0 ≤ Pda
ebuy,i,t + Prt

ebuy,i,t ≤ Vebuy,i,tPmax
Grid,i

0 ≤ Pda
esell,i,t + Prt

esell,i,t ≤ Vesell,i,tPmax
Grid,i

0 ≤ Gda
GT,i,t + Gup

GT,i,t − Gdw
GT,i,t

+Gda
GB,i,t + Gup

GB,i,t − Gdw
GB,i,t ≤ Gmax

Gas,i

(37)

3.3. Carbon-Trading Mechanism

When there is a shortage of carbon allowance for a microgrid, it must buy its carbon
allowance from the carbon market. The cost of purchasing the carbon allowance should
be regarded as a part of the operation costs. In contrast, the microgrid can sell the surplus
carbon allowance to receive certain monetary compensation. The introduction of the
carbon-trading cost will change the total operational cost of the microgrid, thus guiding the
microgrid to adopt an efficient dispatching strategy to achieve the goal of reducing carbon
emissions. The microgrid employs the stepped carbon-trading mechanism to conduct
carbon trading with the carbon market, as shown in Equation (38).

CC,i =


τCEi, Ei ≤ lC
τC(1 + ρ)(Ei − lC) + τClC, lC ≤ Ei ≤ 2lC
τC(1 + 2ρ)(Ei − 2lC) + (2 + ρ)τClC, 2lC ≤ Ei ≤ 3lC
τC(1 + 3ρ)(Ei − 3lC) + (3 + 3ρ)τClC, 3lC ≤ Ei ≤ 4lC
τC(1 + 4ρ)(Ei − 4lC) + (4 + 6ρ)τClC, 4lC ≤ Ei

(38)

Here, CC,i, τC, lC, ρ, and Ei represent the carbon trading cost, the initial carbon-trading
price, the interval length of the carbon emission, the increase ratio of the stepped price, and
the carbon emissions traded with the carbon market, respectively.

Carbon emissions of the microgrid are mainly caused by the power purchased from
the distribution network, the operation of the gas turbine, and the operation of the gas
boiler. In Microgrid i, the formulation of the actual carbon emissions Ei,a and the free
allowance for the carbon emission Ei,0 are presented in [24] in detail. The carbon-balance
constraint in the dispatching process of Microgrid i is shown in Equation (39):

Ei,a − Ei,0 = Ei (39)
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4. Model Solution

Since each microgrid belongs to a different party, in order to guarantee the privacy of
the information and the independence of the decision making of each microgrid, ADMM is
employed to achieve a decentralized solution for MMGS optimal dispatching. At first, the
tie-line transmission power between two microgrids is decoupled using the coordination
variables P̂ij,t and the corresponding consistency constraint shown in Equation (40). Then,
the augmented Lagrangian function shown in Equation (41) is constructed. Therefore, the
original problem can be decomposed into multiple local optimization problems, which can
be solved in each individual microgrid system.

Pex
ij,t = P̂ij,t (40)

min
x

{
cTx + ∑

t∈T
∑

j∈Ψi

[
λ

q
ij,t

(
Pex,q

ij,t − P̂q
ij,t

)
+

ρpen

2

∥∥∥Pex,q
ij,t − P̂q

ij,t

∥∥∥2

2

]
+ max

u
min

y

(
dTy + eTu

)}
(41)

Here, λij,t represents the dual variable; ρpen represents the penalty factor, which is
greater than zero; the superscript q represents the number of iterations.

Each microgrid solves the optimization problem locally to obtain the local dispatching
strategies and the tie-line coupling variables. The two-stage ARO problem can be solved
using the C&CG algorithm. The details of the C&CG algorithm are presented in the
Appendix A [11]. The original problem can be decomposed into a master problem and a
sub problem. Then, the sub and master problems iterate alternately. The detailed procedure
of the nested iterative solution of ADMM and C&CG algorithms is shown in Algorithm 1.

Algorithm 1 The nested iterative solution process of the ADMM and C&CG methods

1: Initialize: dual variable λ, coordination variables P̂ij,t, convergence gap ξ, number of iterations q

2: Calculate: initial power of tie-line

3: Update: dual variable λq and coordination variables P̂q
ij,t

4: Each microgrid solves the optimal economic dispatching model in a decentralized way

5: Initialize: upper boundary U0, lower boundary L0, initial scenario set u1, convergence gap ε,
number of iterations l for robust dispatching

6: Calculate: master problem

7: Obtain: day-ahead dispatching strategy and corresponding adjustment strategy (xl,yl)

8: Update: lower boundary Ll

9: Calculate: sub problem

10: Obtain: worst-case wind-power scenarios and corresponding adjustment strategy (x∗l ,y∗l )

11: Update: upper boundary Ul

12: Repeat Step 6 to Step 11 until Ul − Ll < ε

13: Output: economic dispatching strategy for each microgrid

14: Update: dual variable λq+1, coordination variable P̂q+1
ij,t

15: Repeat Step 4 to Step 14 until the primary residuals and dual residuals are less than the
specified convergence gap ξ
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5. Case Study
5.1. Basic Parameter Setting

In order to verify the effectiveness of the presented data-driven wind-power uncertainty-
set-based low-carbon economic dispatching model for MMGSs, experiments are conducted
in the Win10 64-bit system. The optimal dispatching operation of the MMGS is modeled
using MATLAB R2018b and solved by Gurobi. The deep-learning network is built in the
Keras framework [26] based on Tensorflow 2.2, Python 3.6. An MMGS composed of four
microgrids is employed in this paper. The architecture of the MMGS is shown in Figure 3.
The structure and device parameters of the four microgrids are identical, while the electric
and thermal load demands and wind-power outputs of the microgrids are different. The
details of the load curves are shown in Figure 4. The system device parameters are shown
in Table 1. The operation cost coefficients are shown in Table 2. The prices of electricity
purchased and sold from the distribution network are shown in Table 3.
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Table 1. Device parameters of microgrids.

Parameter Value Unit Parameter Value Unit

Pmax
Grid 800 kW Pmax

ij 400 kW
Pmin

GT /Pmax
GT 50/400 kW Pmin

GB /Pmax
GB 0/400 kW

Pmin
EB /Pmax

EB 0/400 kW Rmin
GT /Rmax

GT 6.67/6.67 kW·h−1

ηGT 0.35 - ηWH 0.83 -
ηHE 0.8 - ηGB 0.9 -
ηEB 0.99 - Hng 9.7 kW/m3

lC 200 kg ρ 0.25 -

Table 2. Operation cost coefficient of microgrids.

Parameter Value Unit Parameter Value Unit

τCO2 0.03664 USD/kg τ
up
GT/τdw

GT 0.03344 USD/kW
τ

up
GB/τdw

GB 0.01599 USD/kW τ
up
EB /τdw

EB 0.01599 USD/kW
τloss 0.0756 USD/kW τgas 0.5089 USD/m3

Table 3. Electricity price of microgrids.

Time Period
Day-Ahead Stage Real-Time Stage

Purchased Price (USD/kW) Sold Price (USD/kW) Purchased Price (USD/kW) Sold Price (USD/kW)

(12:00–14:00,
19:00–22:00) 0.1309 0.06543 0.2617 0.03271

(08:00–11:00,
15:00–18:00) 0.07996 0.03998 0.1599 0.02006

(23:00–07:00) 0.02617 0.01309 0.05234 0.006543
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In terms of the CGAN employed in this paper, the generator adopts four fully con-
nected layers. The number of neurons in the hidden layers is 128, 256, and 128. The
activation function is a rectified linear unit (ReLU). In addition, the size of the output layer
is set to 24, which is the same as the number of real daily wind-power samples. In the
discriminator, four fully connected layers are also adopted. The number of neurons in
the hidden layers is 256, 128, and 64. The activation function is also ReLU. The number
of neurons in the output layer is set to 1. The historical data of a wind farm from 2017
to 2018 (640 days in total) are employed. The dataset includes daily multi-dimensional
meteorological data and wind-power data, with a sampling interval of 1 h. Additionally,
the historical data of 500 days are selected as the training dataset and the historical data of
the remaining 140 days are the testing dataset.

5.2. Validity Analysis of Uncertainty Set

Due to the large variability of the meteorological characteristics in different seasons,
the data of four days from four seasons are randomly selected from the testing dataset to
illustrate the capability of the presented model in accurately describing the wind power.
The data of these four days are substituted into the presented generative model with
labels in this paper (Model 1) and the generative model without feature selection and
feature clustering (Model 2) for comparison. The number of samples generated by these
two generative models is set to 3000, and the confidence level is 90%. Figure 5 shows the
uncertainty intervals of the four-day data with the two models. In the figure, the deep blue
line, the orange interval, and the gray interval are the actual value of the wind power, the
uncertainty interval of Model 1, and the uncertainty interval of Model 2, respectively.
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Figure 5. Comparison of the results of the wind-power interval estimation.

Figure 5 indicates that in the four-day experiments, the widths of the uncertain in-
tervals of the wind power for Model 1 and Model 2 are similar. However, the interval of
Model 1 can fully cover the actual value of the wind power, while that of Model 2 can
only partially cover the value. When the width of the uncertainty interval is close to the
actual value, the coverage rate is higher and the uncertainty portrayal is more accurate. The
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method presented in this paper can achieve a higher accuracy in describing wind power
for different meteorological patterns in all four seasons.

In order to evaluate the performance of CGAN in enriching the dataset, the samples of the
training dataset and the noise are inputted into CGAN to generate 3000 synthesized samples.
Then, the probability distribution of the generated samples is compared to the distribution
of the real samples. The comparison results of the sample distribution with Label 1 are
shown in Figure 6. It can be observed that the distribution results of the generated samples
based on the CGAN model are basically consistent with the real samples, demonstrating
the effectiveness of CGAN in sample generation.
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In order to verify the effectiveness of the data-driven ambiguity set, the widths of the
wind-power uncertainty interval with different sample sizes are compared. The comparison
results with Label 1 are shown in Figure 7. As the number of samples utilized to construct
the ambiguity set increases, the width of the obtained uncertainty interval gradually
narrows. This is mainly because the Wasserstein ball can limit the fluctuation range of
the probability distribution of wind power. The radius of the ambiguity set decreases
with the increasing number of samples, resulting in the unknown uncertainty distribution
approximating the true distribution of the historical data. Therefore, the conservativeness of
the model can be reduced. This indicates that the interval estimation using the data-driven
model presented in this paper, i.e., the expansion of the number of wind-power samples
serving the construction of the Wasserstein distance-based ambiguity sets, can effectively
improve the accuracy of the uncertainty portrayal when the historical data are insufficient.
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5.3. Analysis of Data-Driven Microgrid Dispatching Results
5.3.1. Comparison of Dispatching Results with Different Sample Sizes

In order to analyze the impact of the sample size on the microgrid dispatching, the
uncertainty intervals of the wind power driven by the sample sizes of the original amount
(102), 300, 500, 1000, and 3000 with Label 1 are employed for the dispatching of Microgrid 1.
The comparison of the cost and the carbon emission is shown in Figure 8. It can be observed
that with the increasing number of samples, both the cost and the carbon emissions of
the microgrid dispatching decrease. This is because more samples drive the uncertainty
interval to become narrower. As a result, the optimization can guarantee dispatching
under the worst scenario with a higher efficiency. Meanwhile, wind-power consumption
and carbon-emission reduction also benefit from the improvement in the accuracy of the
wind-power description. The results significantly suggest that data-driven wind-power
interval estimation can effectively improve efficiency and reduce the carbon emissions of
microgrid dispatching.
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5.3.2. Comparison of Dispatching Results of Uncertainty Optimization Algorithms

Subsequent experiments compared the performance of the presented data-driven ARO
method to that of the traditional RO and ARO methods in terms of microgrid dispatching.
In the experiment, the prediction errors of the wind-power uncertainty interval of the
traditional RO and ARO methods are assumed to be 20%. The presented data-driven ARO
adopts the uncertainty interval using 3000 generated samples with Label 4. The experiment
is carried out based on the dispatching of Microgrid 2. The results are shown in Figure 9.
The calculation times of the three optimization methods are shown in Table 4.
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Table 4. Comparison of the calculation time of different optimization methods.

Optimization Method Traditional RO Traditional ARO Data-Driven ARO

Time/s 4.33 121.36 108.94

The RO method utilizes the worst-case scenarios of wind power to achieve optimal
dispatching, which results in sacrificing both efficiency and lower carbon emissions to
improve robustness. Consequently, the results are conservative compared to the other
optimization methods. The ARO method introduces adjustable robust parameters to limit
the appearance frequency of the worst-case scenarios, making its dispatching results more
efficient and less carbon-emitting than those of RO. However, since the distribution in-
formation of the uncertain variables is neglected in ARO, the results remain conservative
compared to those of the presented data-driven ARO, from which a more accurate uncer-
tainty boundary can be obtained. Thus, a balance between the efficiency and robustness of
the dispatching strategy can be achieved, and carbon emissions can be further reduced.

Table 4 shows that the traditional RO takes the shortest computation time, while
the traditional ARO and data-driven ARO require a longer solution time due to multiple
iterations. The solution efficiencies of traditional ARO and data-driven ARO are similar.
This indicates that the improved ARO model presented in this paper does not carry a
burden on computational performance based on the traditional ARO.

5.4. Analysis of MMGS Dispatching with Different Dispatching Cases
5.4.1. Comparison of Dispatching Results Using Different Dispatching Cases

The four dispatching cases shown in Table 5 are conducted to verify the effectiveness
of the MMGS dispatching model presented in this paper.

Table 5. The settings of different dispatching cases.

Case Energy Interaction among Microgrids Carbon Trading

1 × ×
2 ×

√

3
√

×
4

√ √

Figure 10 shows the results of MMGS dispatching in four different cases. It can be
observed that without the energy interaction and carbon trading, the dispatching strategies
of the MMGS generate greater costs and carbon emissions. Although the introduction of
carbon trading generates a slightly higher cost, it significantly reduces carbon emissions.
The results suggest that involving energy interaction and carbon trading in the dispatching
of an MMGS is an effective way to improve the efficiency and lower the carbon emissions
of the system. The detailed data of the experiment are shown in Table 6, which gives the
energy-interaction costs with external networks (distribution network and gas network),
energy-interaction costs among microgrids, device-dispatching costs, carbon-trading costs,
and carbon emissions of the four microgrids.

Compared to Case 2, the energy-interaction cost of Case 4 is significantly changed. The
energy-purchase costs of the power-deficit Microgrids 1 and 2 decrease by USD 428.5167
and 392.7376, respectively. Simultaneously, the energy-interaction costs between the two
microgrids increase by USD 250.142 and USD 246.2674, respectively. Accordingly, the
energy-sold revenues due to the power surplus in Microgrids 3 and 4 decrease by USD
212.4599 and USD 254.3293, respectively. The energy-interaction revenues between the
two microgrids increase by USD 219.9794 and USD 277.4536, respectively. The total cost of
the MMGS decreases by USD 661.8415. The comparison between Case 3 and Case 1 also
shows similar results. This is because the power interaction among microgrids provides
an additional energy interaction avenue for the microgrids. As the interaction price is
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between the purchased and sold prices from the distribution network, the microgrid with
surplus electricity can sell electricity with a higher price while the microgrid with power
shortage can purchase power with a lower price. Each microgrid is able to change its
energy-exchanging strategy; this method favors power interaction among microgrids as it
reduces the energy-purchase cost and increases the energy-sold revenue. Eventually, the
total cost of the MMGS can be lower.
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Table 6. Details of the comparison of four different dispatching cases of the four microgrids.

MG Case
Energy-Interaction
Costs with External

Networks (USD)

Energy-Interaction
Costs among

Microgrids (USD)

Device
Dispatching
Costs (USD)

Carbon
Trading

Costs (USD)

Carbon
Emissions

(kg)

MG1

1 1041.9549 - 24.9475 - 6628.06
2 1102.6087 - 30.7238 127.145 4866.11
3 659.1139 257.5627 25.08995 - 3216.09
4 674.09201 250.142 22.8233 7.3277 3080.96

MG2

1 1543.4791 - 28.6927 - 8069.76
2 1568.3277 - 39.4603 253.6474 7222.47
3 1155.2733 254.8687 28.6927 - 4498.05
4 1175.5901 246.2674 39.8747 40.3065 4311.03

MG3

1 −11.2314 - 34.2466 - 464.71
2 −11.7853 - 38.5676 −29.3412 334.06
3 200.99 −220.276 30.4563 - 784.87
4 200.6745 −219.978 30.1524 −12.9717 780.85

MG4

1 −40.3239 - 24.1406 - 1204.60
2 −27.09633 - 39.8659 −27.9585 302.70
3 233.3495 −292.03617 23.5328 - 1385.80
4 227.2329 −277.4536 32.9904 −3.9066 959.20

Comparing the MMGS dispatching results before and after considering the carbon-
trading mechanism, it can be observed that due to the introduction of the carbon trading in
Cases 2 and 4, the total dispatching cost of each microgrid increases compared to that of
Cases 1 and 3. The total cost of the MMGS increases by USD 458.2795 and USD 76.5478,
respectively. However, the carbon emissions of most microgrids are decreased. The total
carbon emission of the MMGS decreases by 3641.78 kg and 752.78 kg, respectively. As
purchasing electricity from the distribution network and the output of gas units both
generate carbon emissions, the consideration of the carbon costs of the microgrids would
increase their total dispatching costs. However, after the introduction of the carbon-
trading mechanism, the microgrids prefer using relatively low-carbon gas units and carbon-
free wind power to meet load demands over purchasing electricity from the distribution
network. The microgrids are able to strategically choose energy-supply methods to obtain
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low costs and achieve the reduction in carbon emissions. This illustrates the effectiveness
of the carbon-trading mechanism in guiding MMGSs to reduce their carbon emissions.

5.4.2. Analysis of Power Interaction among Microgrids

Figure 11 shows the results of the electricity interaction of each microgrid in Case 4.
The positive step curve “MG1-MG2” in the figure indicates that Microgrid 1 buys electricity
from Microgrid 2, while the negative one indicates that Microgrid 1 sells electricity to
Microgrid 2.
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As can be observed from Figure 11, the amount of electricity exchanged among
microgrids is low during the periods of 01:00–06:00 and 23:00–24:00. This is because the
loads of all four microgrids are at low levels during these periods. Wind power is able
to meet their individual load demand, and they do not require a large amount of energy
interaction with the other microgrids. In other periods, the load demands of Microgrids 1
and 2 increase, resulting in the wind power in the microgrids not being sufficient to balance
the loads. At the same time, the wind power of Microgrids 3 and 4 is surplus; they have
more than enough power to meet their own load demand. As a result, there is a large
amount of energy interaction between Microgrids 1 and 2 and Microgrids 3 and 4.

6. Conclusions

In order to ensure efficient low-carbon dispatching in the power system, a data-driven
wind-power uncertainty-set-based low-carbon optimization dispatching model considering
wind-power uncertainty for MMGSs is presented here. The main conclusions drawn from
the case studies are as follows:

1. Synthesized wind-power samples can be generated to enrich the number of samples
using CGAN. Then, based on the meteorological classification, the grouped ambiguity
sets are constructed, and the wind-power uncertainty intervals can be obtained. Com-
pared to the interval estimation model without sample generation and meteorological
classification, this method can reduce the width of the uncertain intervals, which
improves the accuracy of the wind-power description.
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2. An ARO model based on the improved wind-power uncertainty intervals is further
constructed. Compared to the traditional uncertainty optimization methods, the
presented ARO model can improve wind-power consumption by decreasing the
deviation between the real wind power and the uncertainty intervals. Therefore,
based on the dispatching optimization of the ARO model, the efficiency can be
improved and carbon emissions can be reduced.

3. Additionally, a low-carbon dispatching strategy considering power interaction among
microgrids is further presented. This strategy can guarantee the benefits of each
microgrid while reducing the carbon emissions as a result of microgrid dispatching.

In summary, based on existing studies, this paper provides an improvement on the
construction of the uncertainty set of the traditional ARO. It avoids the drawback that an
SO encounters difficulty in precisely obtaining the probability distribution of variables.
The issue that the decision results based on RO are frequently overly conservative is also
mitigated. In addition, historical data are employed to provide scientific data support for the
construction of the uncertainty set of the ARO. Importantly, we leverage a meteorological
clustering model and a GAN-based synthesized data-generation technique to improve the
description accuracy of the uncertainty set.

Considering the strong correlation between electricity and carbon emissions, the
MMGS low-carbon economic dispatching strategy will be further studied in terms of reduc-
tions resulting from carbon trading. In view of the need for a higher solution speed
for the expansion of MMGSs, we will investigate more efficient solution methods in
future work.
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Appendix A

At first: the original “min–max–min” problem is decomposed into a “min” master problem
(MP) and a “max–min” sub problem (SP), which can be represented by Equation (A1) and
Equation (A2), respectively. 

min
x

{
cTx + φ

}
s.t.φ ≥ dTy + eTu
Ax = g, Bx ≤ h
Cx + Dy = r, Ex + Fy ≤ s
Gy ≤ u

(A1)


max

u
min

y
(dTy + eTu)

s.t.Cx + Dy = r, Ex + Fy ≤ s
Gy ≤ u

(A2)

Here, φ represents the auxiliary variable.
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The SP with the “max–min” structure cannot be solved directly. Therefore, the duality
theory is applied to derive the SP as a single-layer “max” optimization problem. The
derived SP is shown in Equation (A3).

max
u,α,β,γ

uTξ + rTα− xTCTα + sTβ− xTETβ

s.t.DTα + FTβ + GTγ = d
β ≤ 0, γ ≤ 0, ξ = e + γ

(A3)

Here, α, β, and γ represent the dual variables; ξ represents the auxiliary variable.
Due to the bilinear terms uTξ in the above SP model, the SP needs to be further

transformed. The Big-M method is employed to linearize the bilinear terms uTξ. The final
model of the SP can be described by Equation (A4).

max
u,α,β,γ

[
uupξ+ + udwξ− + upre(1− ξ+ − ξ−)+

rTα− xTCTα + sTβ− xTETβ
]

s.t.DTα + FTβ + GTγ = d
β ≤ 0, γ ≤ 0, ξ = e + γ

µ+
t + µ−t ≤ 1,

T
∑

t=1

(
µ+

t + µ−t
)
≤ Γ

−M
(
1− µ+

t
)
+ ξt ≤ ξ+t ≤ M

(
1− µ+

t
)
+ ξt

−M
(
1− µ−t

)
+ ξt ≤ ξ−t ≤ M

(
1− µ−t

)
+ ξt

−Mµ+
t ≤ ξ+t ≤ Mµ+

t ,−Mµ−t ≤ ξ−t ≤ Mµ−t

(A4)

Here, uup, udw, and upre represent the upper boundary value, lower boundary value,
and predicted value of the uncertain parameters, respectively. ξ+ and ξ− represent the
positive and negative values of ξ, respectively. µ+

t and µ−t represent auxiliary 0–1 variables.
Thus far, the original two-stage ARO model has been decomposed and transformed

into the MP shown in Equation (A1) and the SP shown in Equation (A4). Ultimately, the
MP and SP are iterated alternately to achieve the optimal economic dispatch.
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