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Abstract: Due to the integration of artificial intelligence with sensors and devices utilized by Internet
of Things technology, the interest in automation systems has increased. One of the common features
of both agriculture and artificial intelligence is recommendation systems that increase yield by
identifying nutrient deficiencies in plants, consuming resources correctly, reducing damage to the
environment and preventing economic losses. The biggest shortcomings in these studies are the
scarcity of data and the lack of diversity. This experiment aimed to identify nutrient deficiencies
in basil plants cultivated in a hydroponic system. Basil plants were grown by applying a complete
nutrient solution as control and non-added nitrogen (N), phosphorous (P) and potassium (K). Then,
photos were taken to determine N, P and K deficiencies in basil and control plants. After a new dataset
was created for the basil plant, pretrained convolutional neural network (CNN) models were used
for the classification problem. DenseNet201, ResNet101V2, MobileNet and VGG16 pretrained models
were used to classify N, P and K deficiencies; then, accuracy values were examined. Additionally,
heat maps of images that were obtained using the Grad-CAM were analyzed in the study. The highest
accuracy was achieved with the VGG16 model, and it was observed in the heat map that VGG16
focuses on the symptoms.

Keywords: basil plant; convolutional neural network; hydroponic cultivation; nutrient deficiencies;
transfer learning

1. Introduction

Developments in the fields of artificial intelligence and communication have enabled
the new industrial revolution called Industry4.0 to improve production using systems
that can communicate with each other and have the ability to detect and intervene in the
environment. This development in modern industry has affected many areas (education,
health, security) and agricultural production. As a result, autonomous or non-autonomous
methods such as geographical information systems, early warning and recommendation
systems, and monitoring and control systems to support production in agriculture have
started to be applied under the name Agriculture 4.0 [1].

The proper use of natural resources such as water and soil in agricultural production
has been an important issue over the last 20 years, after being a subject of research in the
past, with warnings about diminishing resources and environmental damage. Several
attempts have been made to increase yields in production via methods such as mecha-
nization, chemical use and fertilization. However, these implementations have caused
environmental, social and economic problems over time. The amount of arable land is
decreasing due to the improper use of fertilizers and chemicals, improper crop rotation and
negligent use of natural resources. In addition, climate change, considered both cause and
effect, has reduced the yield and quality of agricultural products [2]. Meanwhile, studies
have been carried out to develop different kinds of agricultural production techniques; to
use fertilizers according to the result of the analysis of the elements in plants, soil and water;
to perform irrigation according to the plant’s need for water [3,4]; to watch the weather
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conditions [5,6]; to detect plant pests (insects, weeds, etc.) [7,8] and to detect damage that
has already occurred [9,10].

Soilless culture, one of the production techniques in agriculture, is based on the
principle of fulfilling the soil’s function in plant growth as the natural growing environment
for plants. The nutrient and water needs of plants are provided via nutrient solution
application. In regions where environmental conditions such as the climate, water and
soil are unfavorable for agriculture, soilless cultivation techniques can be used to grow
products of high yield and quality. The controlled nutrition of plants in soilless culture
and the reuse of nutrient solutions in some soilless culture techniques ensure the proper
use of resources [11]. The controlled environment created for soilless agriculture reduces
the amount of the parameters that need to be controlled and followed. This makes soilless
cultivation suitable for being equipped with smart technologies that can sense and respond
to environmental conditions.

Some nutrients need to be fully supplied to the plant in order to grow with high
yield and quality. These nutrients are carbon (C), hydrogen (H), oxygen (O), nitrogen
(N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chlorine
(Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), zinc (Zn) and boron (B).
The plant, which has an absolute need for each element given above, presents various
symptoms in the absence of these nutrients, giving growers and researchers an idea about
the necessary nutritional supplement (fertilizer). With nitrogen deficiency (N-), older leaves
have a lighter color than the other parts of the plant. With phosphorus deficiency (P-), the
development of plants and fruits decreases, and brownness between the veins is observed
in old leaves, while underdevelopment and a dark green color are observed in young
leaves. With potassium deficiency (K-), the tips of plant leaves turn yellow and curl, and in
plants with fruits, the fruits are deformed and discolored. With calcium deficiency (Ca-),
young leaves turn yellow and leaf margins curl, while with magnesium deficiency (Mg-),
discoloration between leaf veins is observed [12]. Since the plant shows visible symptoms
in deficiencies of other elements as well as these elements, growers/researchers can guess
which element is deficient. As visual diagnosis can be used to identify nutrient deficiencies,
a system capable of analyzing the plant images or symptom images will help prevent
economic losses due to nutritional deficiencies.

The fact that plants show physical symptoms of nutritional deficiencies has encour-
aged artificial intelligence (AI) researchers to work on this topic. Many studies have been
published in the literature to show that nutrient deficiencies in plants can be predicted,
and necessary recommendations on fertilization can be made. In addition, the high per-
formance of deep learning applications in image processing with convolutional neural
networks (CNNs) has inspired many researchers to exploit CNNs for the detection of plant
disorders [13]. For the detection of healthy plants and nitrogen, phosphorus and potassium
deficiencies in plants, Yi [14] carried out studies with sugar beet, Wulandhari [15] with okra,
Guerrero [16] with banana, Sharma [17] with rice and Taha [18] with lettuce grown in water
culture. Researchers that used pre-trained neural networks, i.e., models called Transfer
Learning (DenseNet, NasNet, InceptionResnet, VGG, and GoogleNet), were able to make
predictions that demonstrated an accuracy above 86%. Kusanur [19] detected magnesium
and calcium deficiency in tomato plants, while Rahadiyan [20] detected potassium, calcium,
magnesium and sulfur deficiency in chili pepper. Due to the variety and lack of data in
the studies, processes such as resizing, shearing, rotation, scaling, mirroring and cropping
in images were observed to improve the results, while processes such as changing the
color scale or adding noise reduced the accuracy [14]. Apart from these processes, it was
shown by many researchers, including Taha [18], Islam [21], Yang [22], Ngugi [23] and
Azimi [24], that the performance of CNN models increased when the background of images
was removed.

Azimi [24] determined the level of nitrogen deficiency in sorghum plants, where
nitrogen deficiency at different rates (100%, 50% and 10%) was applied. It consists of
different color scales, such as RGB and NIR, in a dataset consisting of 96,867 photographs.
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In this study, machine learning models Resnet18, Nasnet and their designed deep learning
models were compared. They obtained an accuracy value of 0.84 with the model they
designed, which gave a better result than machine learning models and was close to pre-
trained deep learning models. Additionally, the study showed that background cleaning
improves the result.

Sharma [17] detected nitrogen, phosphorus and potassium deficiencies in the rice
plant with the model he built from combinations of different pre-trained CNNs. In this
study, which started with 11 ready-made models, 2 and 3 combinations of 4 models
(InceptionResNetV2, VGG19, DenseNet201 and Xception) and all of them were compared.
The best accuracy result was obtained from the combination of InceptionResNetV2 and
DenseNet201 with 96%.

In Taha’s study [18] which saw images taken from lettuce grown in a hydroponic
system, 96% accuracy was obtained with Inceptionv3. The study, in which nitrogen,
phosphorus and potassium deficiencies were detected, sets an example in terms of the
applicability of autonomous systems.

Since we found no study on basil plants after our research, we set up an experiment
based on the deficiencies of nitrogen, phosphorus, potassium, calcium and magnesium
elements in basil. Within the scope of the study, a dataset was created for healthy plants
and plants with nitrogen, phosphorus and potassium deficiencies, and then the transfer-
learning-based CNN models capable of making predictions for these four classes were
compared for their success in classification and their performance in feature detection.
Section 2 of this paper covers the creation of the dataset, basic information about the
methods used and the training of the models; Section 3 covers the evaluation of the
training, testing and Grad-CAM results and Section 4 covers the paper’s conclusion and
future studies.

2. Materials and Methods

The phases of study (Figure 1) consisted of setting up the experiment with nutritional
deficiencies in basil plant; collecting photographs of symptomatic plants; creating the
dataset; designing the fully connected layer; training the models; applying fine-tuning and
testing the models.
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Figure 1. Methodology of the study.

2.1. Experimental Setup

A controlled environment is required for the application of nutrient deficiencies. There-
fore, the experiment (Figure 2) was set up with 36 seedlings by planting 2 seedlings in 3 pots
in a perlite medium to observe macro element deficiencies using soilless agriculture techniques.
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Figure 2. Substrate culture (left) and hydroponic (right).

At the end of the second week, 1 plant from each pot was transferred to a hydroponic
medium (water culture), and 3 plants were grown in a perlite medium (substrate culture)
and 3 plants were grown in a hydroponic medium for 4 weeks.

In hydroponic culture, the solution in the container was changed once a week. The
nutrient solution was continuously aerated using an aquarium pump. In substrate culture,
plants were watered with 100 mL of the solution every 4 days. The nutrient solution
prepared according to the recommended recipe (Table 1) for vegetables with edible leaves
as well as aromatic plants was taken as a reference. Distilled water was used for nutrient
solution preparation.

Table 1. Recommend nutrient solution for aromatic plants.

Element N P K Ca Mg Fe Mn Zn B Cu Mo

Dosage (mg/L) 180 50 210 180 50 4 0.5 0.1 0.5 0.1 0.05

The solution described in Table 1 was used in all plants for one week after planting.
At the end of one week, lacking nutrient solutions were prepared via macro element (N, P,
K, Ca and Mg) deficiencies, which constitutes the subject of the experiment. Following that,
the implementation of nutrient deficiencies started with these 6 nutrient solutions.

A healthy plant (Figure 3a) has green leaves and a developed stem. In healthy plants,
more stem and leaf developments are observed compared to other experiments.
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In the case of N- (Figure 3b), there is chlorosis (yellowing) of the whole plant. Moreover,
the plant is underdeveloped compared to a healthy plant.

In the case of P- (Figure 3c), symptoms usually develop, with purple/black spots on
older/lower leaves. There is no deformity in younger/upper leaves.

K- (Figure 3d) developed in older/lower leaves of the plant with an increase in yellow
and brown shades similar to sunburn, first in spots and then on the leaf margins and
between the veins on the leaf.

2.2. Dataset
2.2.1. Image Acquisition

When symptoms appeared within 2 weeks after the experimental setup, photos were
taken using a personal phone camera (Galaxy S20 FE SM-G780G, 12MP, F1.8) with an
automatic setting of 3024 × 4032 pixels. Photographs were taken 3 days a week between
8.00 and 11.00 a.m. for plants showing symptoms of nutrient deficiency. Photographs
(Figure 4) of a single plant were taken from different angles, leaf-focused and plant-focused,
showing symptoms clearly.
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Figure 4. Plant-focused (left) and leaf-focused (right) images.

For each nutrient deficiency, 2 plants were separated for the test set and 4 plants
were separated for the training set during the experiment. Additionally, this process was
continued with the same groups throughout the experiment.

2.2.2. Preparing Dataset

Since symptoms of calcium and magnesium deficiencies were unavailable, photos of
these deficiencies (Ca- and Mg-) were not included in the dataset. The dataset consisted of
4 classes and 1757 photographs (Table 2) obtained from healthy plants and plants presenting
nitrogen, phosphorus and potassium deficiencies. Symptom-based photographs are also
included in the dataset. The main reason for the differences in the number of photographs
between classes is that symptoms occur at different times in plants. The balance between
the classes in the dataset was achieved in the preprocessing stage.

Table 2. Number of photos belonging to classes.

Status of Plant Number of Photos

Control 345
N- 456
P- 544
K- 412

Total 1757

The dataset was split into 2 groups, training and test, while the experiment was in
progress. The number of images in the groups after the collection of the photographs is
shown in Table 3.
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Table 3. Number of photos in train set and test set.

Number of Photos

Train Set 1126
Test Set 631

Data augmentation (Figure 5) is a common CNN regularization technique used to
prevent over-fitting. The number of samples and diversity in the dataset is increased with
processes such as image rotation and reflection [25]. In this study, preprocessing for images
was applied only to the images in the training set. Considering that color differences and
the addition of noise in the photos would affect the symptoms, basic processes such as
mirroring, shearing, rotation, zooming and cropping were applied to photos. In addition,
the brightness value was changed in a short range (±0.1) during data augmentation due to
the different levels of brightness in the original photos caused by weather conditions.
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Before preprocessing, a total of 1125 images in the training set were duplicated to
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In order to prevent empty pixels that occur in photographs due to techniques such
as shifting, zooming and shearing, the gaps were filled by taking the symmetry of the
resulting image.
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2.2.3. Deep Learning and CNN

Depending on the data used, the depth added to artificial neural networks via deep
learning not only adds complexity to the network but may also provide better learning
ability, precision and high performance. Thanks to the large number of layers in this model,
new features can be discovered and evaluated in each layer, and different features can be
interpreted. This added depth enables the network to perform complex tasks successfully.
In addition, deep learning makes it easy to work with big data, greatly automates feature
extraction and saves it from interventions such as manually making sense of the dataset
and choosing algorithms accordingly [26].

Convolutional neural networks are one of the most widely known and used types of
deep learning. The CNN model is based on the imitation of human sight and the neural
networks that form the visual cortex, which is why it has been commonly preferred in
image and video processing research. The CNN model attempts to distinguish differences
in multidimensional big data matrices received as input during training, then uses them
in tasks such as object detection/segmentation, image classification, natural language
processing, speech recognition and video processing [13,25]. The underlying properties
of the CNN model, such as sparse interaction and weight sharing, make the CNN model
useful for matrix inputs of two dimensions and above, such as image data. When the
connection between intermediate layers is established between neurons that use the same
features, this is called sparse interaction. Reducing the number of connections established
reduces training speed and resource consumption. Weight sharing, on the other hand, is
based on the logic that the parameters that are effective in extracting any given feature are
shared with other neural cells, considering that extracted features of a certain region may
be in a different location on a different image in cases where there is an input signal, such
as an image. This process both reduces the number of parameters that need to be calculated
and makes the model robust against sensitivities such as image shift, distortion and the
presence of the feature in a different location [25].

Pre-trained neural network models are preferred in many CNN applications against
problems such as the inadequacy of the dataset in terms of both quantity and diversity and
the long training time of the CNN architecture designed for complicated problems [25,27].
The architecture and weights of the pre-trained model to perform a particular task are
shared, and the feature extraction of this pre-trained model can be used to perform similar
tasks. In this method, the main idea is the transfer of knowledge, called transfer learn-
ing [28]. DenseNet [14,17,29], AlexNet [14], VGG [14,17,19], ResNet [14,19,24], Inception-
ResNet [15,17,30], Inception [19,30], EfficientNet [29,30] and MobileNet [29,30] are some
of the learning transfer models that are commonly used in the literature and have been
found by researchers to be successful in experiments related to plant health. Many different
parameters, such as the depth and width of the models, the convolution layers used, the
connections between the layers, etc., differentiate the architectures of the models and affect
the performance of the models in factors such as success and training time. In many studies,
the DenseNet architecture shows above-average performance [14,17,29,31], but the depth
of the network and a large number of parameters increase the number of calculations
and training time required during training. In this study, transfer learning models were
preferred to test the new dataset because of their success in previous studies. In such cases,
shallower models with fewer parameters, such as MobileNet [29,30,32], may be preferred
depending on the task to be performed and the system on which the model will run.

2.2.4. Grad-CAM

Grad-CAM is an algorithm that creates a heat map (Figure 6) to visualize which data
and features a model focuses on the image input it uses for the task. It allows for the
interpretation of the performance of the model by giving visual explanations of the image
instead of the interpretation of the success of the model with the computational results
obtained [33].
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2.2.5. Trained Details

In the study, the batch size was set to 64, and the input shape was set to (224, 224, 3).
Before training of the model, preprocessing was applied exclusively to the images split
for the training dataset, and new images were recorded. In addition, for applications with
randomness, such as batch generation and dilution, the “seed” value was kept constant so
that the models received the inputs similarly. “Imagenet” weights were set for DenseNet201,
ResNet101V2, MobileNet and VGG16 pretrained CNN models. The epoch max value was
selected as 100, but since the Early Stopping application was used in training, the training
was terminated after 3 epochs depending on the changes in the “loss” value at different
epoch values. Apart from the “loss” value, accuracy, precision and recall values were
obtained during training.

In the transition to the fully connected (FC) layer in the three models, flattening was
performed with “GlobalAveragePooling”. In addition, the FC layer (Figure 7) contains
2 blocks consisting of “BatchNormalization”, “Dropout” and “Dense” layers. The “Swish”
activation function was preferred for the “Dense” layers in the FC layer, while the “Softmax”
activation function was preferred for the Dropout layer. The optimization function “Adam”
and the loss function “categorical_crossentropy” were selected for training the model.
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After the training, which was started by setting the epoch max value to 100, the models
were fine-tuned by un-freezing the last layers of the models with a small learning rate of
1 × 10−5. The epoch max value was selected as 10 during the fine-tuning process, and the
Early Stop application was set to monitor the “loss” value.
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2.2.6. Hardware and Software

This study was conducted with the Python programming language in the Jupyter
Notebook development environment using a personal computer with an AMD Ryzen 7
4800H processor and NVIDIA GTX 1650Ti graphics card systems. Version 2.3.0 of the
Tensorflow library was used in the deep learning applications and was set to allow for the
use of the graphics card for computations.

3. Results and Discussion

In order for the models to be considered successful after training, their success in
the given tasks was compared with quantitative performance measures such as confusion
matrix (Table 5), accuracy (1), precision (2), sensitivity (3) and loss. The duration of training
was also analyzed [20].

Accuracy =
ΣT + ΣT

ΣT + ΣT + ΣF + ΣF
× 100 (1)

Precision =
ΣT

ΣT + ΣF
× 100 (2)

Recall =
ΣT

ΣT + ΣF
× 100 (3)

Table 5. Confusion matrix.

Predict

Positive
(Class_1)

Negative
(Class_2)

A
ct

ua
l

Positive
(Class _1)

True Positive
(TP)

False Negative
(FN)

Negative
(Class _2)

False Positive
(FP)

True Negative
(TN)

Heat maps (Figure 8) from the Grad-CAM approach were also evaluated as a qualita-
tive performance measure. If the concentrations in the heat maps obtained from the models
are on the plant/symptom, the model is assumed to have successfully extracted features.
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Low loss and high accuracy are expected in the performance results obtained from
the models. MobileNet completed the trainings (Table 6) faster than other models. A
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comparison of the loss and accuracy values of the models in the first training phase
revealed that the MobileNet model achieved better results, with 96.86% accuracy and
0.090 loss. With fine-tuning, the VGG16 model achieved the lowest loss, 0.022, and the
highest accuracy value, 99.89%.

Table 6. The results of models from training phase.

Before Fine-Tuning

Loss Acc
(%)

Pre
(%)

Rec
(%) Epoch Time

(s/epoch)

DenseNet201 0.117 95.92 96.23 95.60 25 62

Resnet101V2 0.124 95.87 96.20 95.54 17 66

MobileNet 0.090 96.86 97.22 96.51 16 30

VGG16 0.293 89.11 90.42 87.91 34 53

After Fine-Tuning

DenseNet201 0.048 98.49 98.73 98.38 10 66

Resnet101V2 0.024 99.55 99.62 99.46 10 82

MobileNet 0.032 99.12 99.22 99.06 10 31

VGG16 0.022 99.89 99.91 99.88 10 81

Except for VGG16, the performance of the models on the test set (Table 7) was close
to their performance in the training phase (Table 6). The low performance values (Acc:
79.71%, loss: 0.601) obtained with VGG16 before fine-tuning gave the highest accuracy and
the lowest loss values (Acc: 93.82%, loss: 0.185) among the models used in the study after
fine-tuning.

Table 7. The results of models from test phase.

Before Fine-Tuning

Loss Acc (%) Pre (%) Rec (%)

DenseNet201 0.288 89.54 89.87 88.59

Resnet101V2 0.561 83.68 84.59 83.52

MobileNet 0.408 85.26 86.71 84.79

VGG16 0.601 79.71 82.06 78.29

After Fine-Tuning

DenseNet201 0.303 90.17 90.66 89.22

Resnet101V2 0.435 86.37 87.46 86.21

MobileNet 0.232 92.08 92.32 91.44

VGG16 0.185 93.82 94.36 92.87

Confusion matrices (Figure 9) show that the four CNN models make predictions for
the N- and control classes with high accuracy, while the P- and K- classifications made by
the models have lower accuracy levels. This is because the symptoms look like different
class symptoms due to light differences in their images. This case was most common
among P-, K- and control classes due to light and shadow conditions.
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The heat maps from Grad-CAM show which pixels on the image the models con-
centrate on to make their predictions. In heat maps, the models are expected to focus on
the plants in the images and the symptoms of the plants. Although the MobileNet model
performed close to the VGG16 model in terms of training time and accuracy, the pixels it
used for classification mostly did not cover the plant. Analysis of the pixels selected by
the VGG16, ResNet, and DenseNet models showed that these models were able to success-
fully identify the distinguishing features for classification for most images. As shown in
Figure 10, analysis of the heat maps of the VGG16 model after fine-tuning revealed that it
was able to focus on the symptoms.

The loss value must be as low as possible to ensure the reliability of the estimate of
nutrient deficiency. Since “categorical crossentropy”, which we selected as the loss function,
calculates the loss value depending on the probability of the classes, a lower loss value
shows the reliability of the predictions and the probability of the models to make errors. In
the test results (Table 7), Densenet201 has the lowest loss, 0.288, before fine-tuning. After
fine-tuning, VGG16 has the most trustable predictions with 0.185 loss.
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We tested the dataset that we created in this study. Although the dataset contains
different growth stages of basil plants, the models we used for the test that performed well
in detecting nitrogen, phosphorus and potassium deficiencies in basil plants, demonstrating
89.54% accuracy and 0.288 loss. It can be seen that the results are even better with the
fine-tuning process. Fine-tuning improves the results to 93.82% accuracy and reduces the
loss to 0.185. After fine-tuning, the dataset gives more successful results in shallower CNNs.
Analysis of the calculated loss values, accuracy (Table 7) and heat maps (Figure 10) reveals
that VGG16 is the best model for our dataset considering the model’s performance after
fine-tuning. When examining the complexity matrices, it is noticeable that adding more
discriminative images for phosphorus and potassium deficiencies to the dataset could
improve the results.

4. Conclusions

Incorrect fertilization in plant farming causes a decrease in product quality and yield
and increases economic losses and pollution of the natural environment and resources.
For correct fertilization, it is necessary to determine the deficient nutrients in the plant.
The fact that nutrient deficiencies in plants manifest via physical symptoms allows us to
use the CNN model to determine which element is deficient. Although the CNN model
is successful in image processing, it is not widely used to control error-prone, real-time
systems such as plantage, where misdirection can have negative consequences. A scarcity
of data and lack of diversity are the main reasons for this. Therefore, we have created a new
dataset of plant-oriented and leaf-oriented symptom images by setting up an experiment
on nitrogen, phosphorus and potassium deficiencies in basil plants. The created dataset
was tested with DenseNet201, ResNet101V2, MobileNet and VGG16 networks, and analysis
was performed on the pixels that the models focused on when extracting features from
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images. In this study, difficulties were encountered, such as errors due to the presence of
old-age symptoms in healthy plants in the dataset, the similarity of samples due to the
early death of the plant with nitrogen deficiency and similarities between the symptoms
of different element deficiencies due to light and shade. Despite this, the learning models
proved successful in testing. Among the transfer learning models, DenseNet201 gave
the best result, with 89.54% accuracy before fine-tuning, and analysis of the heat maps
obtained from the Grad-CAM algorithm showed that it performed the classifications by
focusing on the pixels covering the plant and symptoms in the images. The MobileNet
model, which completed the training faster than the other models, showed high accuracy
at a rate of 92.08% after fine-tuning, but analysis of the heat map showed that it used
pixels that were not expected to be effective in classification. With the highest accuracy
rate of 93.82% after fine-tuning, the VGG16 model focused on symptoms unlike the other
models and achieved the highest performance for our dataset. In this study, we focused
on testing a new plant to create a detailed dataset and we achieved successful results in
our studies with transfer learning models. The basil plant grows within a short period of
time, so it is helpful to add different growth stages to the dataset. In addition, the rapid
response of the basil plant to changes in the environment speeds up the image acquisition
process. These factors support the improvement and elaboration of the dataset by setting
up new experiments on basil. In future studies, other nutrient deficiencies, especially Ca
and Mg deficiencies, will be included in the dataset; when considering that more than
one nutrient deficiency may occur at the same time, different combinations of deficiencies
will be included in the dataset; symptoms of an excess of nutrients will be included in the
dataset and the dataset will be diversified with these implementations. Then, a model will
be trained to test in a greenhouse environment. Given the excess of some nutrients in the
environment, an unsuitable pH value of the environment, etc., nutrient deficiencies, can
be seen, so adding environmental and biotic causes to the system as additional data for
detecting nutrient deficiency is planned. In addition, we planned to design a model that is
superiorly successful in regard to nutrient deficiencies in basil and functions with the right
pixels in feature extraction.
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Abbreviations

AI Artificial intelligence
Acc Accuracy
Ca Calcium
CNN Convolutional neural network
K- Potassium deficiency
K Potassium
Mg Magnesium
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N- Nitrogen deficiency
N Nitrogen
P- Phosphorous deficiency
P Phosphorous
Pre Precision
Rec Recall
TP True Positive
TN True Negative
FP False Positive
FN False Negative
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