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Abstract: Recent advancements in 3D deep learning have led to significant progress in improving
accuracy and reducing processing time, with applications spanning various domains such as medical
imaging, robotics, and autonomous vehicle navigation for identifying and segmenting different
structures. In this study, we employ the latest developments in 3D semi-supervised learning to
create cutting-edge models for the 3D object detection and segmentation of buried structures in
high-resolution X-ray semiconductors scans. We illustrate our approach to locating the region of
interest of the structures, their individual components, and their void defects. We showcase how
semi-supervised learning is utilized to capitalize on the vast amounts of available unlabeled data
to enhance both detection and segmentation performance. Additionally, we explore the benefit of
contrastive learning in the data pre-selection step for our detection model and multi-scale Mean
Teacher training paradigm in 3D semantic segmentation to achieve better performance compared with
the state of the art. Our extensive experiments have shown that our method achieves competitive
performance and is able to outperform by up to 16% on object detection and 7.8% on semantic
segmentation. Additionally, our automated metrology package shows a mean error of less than 2 µm
for key features such as Bond Line Thickness and pad misalignment.

Keywords: 3D semi-supervised Learning; 3D object detection; 3D semantic segmentation; contrastive
learning; 3D metrology

1. Introduction

Quality control and evaluation play a critical part in the semiconductor packaging
domain. It is essential to make sure that the fabricated wafers and semiconductor packages
have been manufactured as expected and do not include any major defects. Hidden defects
in miniaturized interconnects within 2.5D-3D High Bandwidth Memory (HBM) packages
are a primary source of low yield. Identifying these defects is both challenging and time
consuming. The prevalent failure analysis approach involves a destructive process of cross-
sectioning a semiconductor package. Following this, optical inspection is used to detect
embedded process defects such as solder extrusions, pad misalignment, embedded voids,
and solder shorts. Typically, this failure analysis step is performed manually, which is aided
by standard image processing techniques. However, this method demands significant effort,
man-hours, domain expertise, and costly tools. Moreover, it only provides information on
a single 2D plane, necessitating repetition if more information is needed in adjacent regions.
Modern 3D X-ray machines can offer a satisfactory resolution for examining and analyzing
concealed features such as Through Silicon Vias (TSVs), micro-bumps, and other metallic
structures. This method could serve as an exceptional non-destructive failure analysis
technique in the future. At present, scanning takes 2–8 h per sample, and some areas are
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affected by glaring artifacts such as beam hardening [1]. As a result, these tools may not be
practical for real-world deployment. However, like any technology, future advancements
will help decrease acquisition time and enhance the quality of these scans.

Artificial Intelligence (AI) has significantly impacted technological advancements
in various fields, such as visual surveillance, predictive maintenance, object detection,
and image segmentation. Specifically, due to computing advancements and a growing
focus on efficient machine learning methods, the scientific community has made great
strides in the 3D deep learning domain. Recently, deep learning has been utilized for
2D–3D detection and segmentation tasks in buried packages [2]. Usually, a substantial
amount of labeled data is needed to train an accurate model using deep learning-based
approaches. This process demands numerous man-hours and can be extremely costly. In
a fast-paced world where a chip may undergo multiple revisions annually, companies
may not have the time or resources to spend months developing deep learning models for
failure analysis that might become obsolete within a year. We build upon our previous
work, which developed fully supervised learning (FSL)-based 2D object detection and
segmentation models, which is followed by a 2D semi-supervised segmentation learning
(SSL)-based approach. We introduce a novel hierarchical consistency regularized Mean
Teacher framework for performing 3D object detection and segmentation on 3D X-ray scans,
consisting of dense High Bandwidth Memory (HBM) packages with only a limited amount
of 3D labeled data. This method employs an efficient and advanced AI-based automated
attribute measurement technique that delivers crucial information about the HBMs, such as
Bond Line Thickness (BLT), solder extrusion, void-to-solder ratio, and pad misalignment.
As labeled and diverse semiconductors data are usually very difficult and expensive to
obtain, a semi-supervised approach delivers better detection and segmentation accuracy
with less labeled data.

In this paper, we describe our innovative approach for identifying HBMs using mul-
tiple views and contrastive learning. We further extend this approach by employing
semi-supervised object detection to enhance performance. After locating these bumps in
3D X-ray Machine (XRM) data, we isolate them into individual Regions of Interest (RoI). In
the second step, these RoIs are processed by another novel semi-supervised based segmen-
tation model capable of identifying various components such as Copper Pillar (CuPillar),
Copper Pad (CuPad), Solder, and Void defects. Figure 1 presents our overall approach from
3D scans to metrology analysis. Our contributions are summarized as follows:

• A multi-view SSL 2.5D object detection approach to accurately identify each HBM
bump using contrastive learning as data pre-selection.

• An improved multi-scale 3D SSL semantic segmentation method for recognizing
individual components of HBMs as well as void defects.

• A 3D Metrology package that performs data cleaning and measures critical features
relevant for HBM failure analysis.

We present the related works in Section 2. We introduce our proposed method in
Section 3. A detailed description of our multi-view semi-supervised object detection ap-
proach is in Section 3.1, our 3D semi-supervised image segmentation methodology is in
Section 3.2 and our 3D metrology is in Section 3.3. Section 4 investigates our object de-
tection and 3D segmentation approach, showcasing our capabilities by displaying end
results. In particular, Section 4.4 demonstrates our result on 3D metrology. Lastly, we
conclude this work in Section 5 and discuss the gaps in the current approach and potential
future directions.
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Figure 1. Our proposed method to perform accurate 3D metrology on 2.5D-3D bumps. First, we
locate each bump individually in the 3D scan using our multi-view semi-supervised object detection.
Second, we employ our 3D semi-supervised segmentation model to identify each component of the
bump. Finally, we use our custom 3D metrology Python toolbox to measure and identify various
defects such as pad misalignment, void-to-solder ratio, Bond Line Thickness, etc.

2. Related Work
2.1. Object Detection

Object detection has been extensively studied in computer vision over the years and
applied to many applications in autonomous navigation [3], medical imaging [4], and
robotics [5]. The advances in deep learning significantly improved the results thanks to
higher computational capabilities, huge public datasets, and new detector architectures.
There are two main categories of object detectors: one-stage detectors and two-stage
detectors. One-stage detectors include YOLO [6,7] and SSD [8]. Those models directly
detect the objects on the grid after the feature representation. They usually have faster
inference and require less computational load. The two-stage detectors include faster-
RCNN and its derivatives [9]. They have an additional region proposal network as an
intermediate step. They usually have better accuracy but require more computational
load. Object detection has also been applied to 3D scans in medical imaging [10] and
semiconductors [2,11]. It is often included as a first step in specific frameworks, as the size
of 3D scans is often too big to be processed as a whole. Object detection can then select
and extract the regions of interest for further processing. The usual applications are quality
control, defect detection, and metrology.

Existing object detector models still require a huge amount of annotated data in order
to achieve good performance. Current detectors can take advantage of big public datasets
such as MS COCO [12]. However, in semiconductor applications, annotations require
expert domain knowledge, and generating relevant data is time-consuming. Thus, it is then
difficult to train an object detector to achieve an accurate performance. Semi-supervised
learning [13,14] has been introduced to tackle this issue. This approach leverages a small
portion of labeled data and unlabeled data and is able to have a better performance
compared to fully supervised methods [15,16]. Their architecture is also different and
they rely on data augmentations, mutual learning, and pseudo-labels. Semi-supervised
frameworks such as Mean Teacher [17] and Unbiased Teacher [18] were published in
the literature and outperformed fully supervised methods in the object detection task.
However, their choice of unlabeled data was not optimal. It actually relied on a random
selection among the dataset and according to the split between labeled and unlabeled
data. Depending on the data distribution of data in the datasets, the random choice



Sensors 2023, 23, 5470 4 of 17

may introduce a bias in the detection results, and the labeled data may not include a
representative sampling of the dataset, which limits the accuracy of the detection.

Contrastive learning has been introduced to learn features that are common and
uncommon between classes. MoCo [19] and simCLR [20] demonstrated promising results
on unsupervised training representations. Unsupervised learning generally involves two
aspects: loss functions and pretext tasks [19]. Contrastive or adversarial losses have been
widely used for unsupervised learning. Contrastive losses [21] focus on the similarity
between sampling pairs, while adversarial losses [22,23] focus on the difference between
probability distributions.

2.2. Semantic Segmentation

The field of semantic segmentation using deep learning methods has been widely
studied and applied to various domains, including medical imaging [24] and semiconductor
materials [1]. Many scenarios require dense mask predictions to reveal and identify the
internal structures present in 3D regions.

The advent of deep learning techniques, particularly convolutional neural networks
(CNNs), has led to significant advancements in semantic segmentation tasks. Early works
in the field employed fully convolutional networks (FCNs) to perform an end-to-end pixel-
wise classification of input images [25]. Following the success of FCNs, various network
architectures have been proposed to improve the performance of semantic segmentation.
Some notable examples include the U-Net [26], which introduced skip connections between
the encoding and decoding paths to improve the localization of segmented objects, and
the V-Net [27], a 3D extension of the U-Net architecture specifically designed for volu-
metric data. Annotation difficulty, data complexity, and class imbalance [28] are some of
the major challenges in 3D segmentation. Some recent improvements have introduced
strong data augmentations for better generalization ability [29] and adopted various loss
functions [30,31].

The scarcity of labeled data and the expensive annotation process in many applica-
tion domains have motivated the exploration of semi-supervised learning techniques for
semantic segmentation. Semi-supervised learning aims to improve model performance
by leveraging a large amount of unlabeled data alongside a smaller labeled dataset. Vari-
ous approaches have been proposed for semi-supervised semantic segmentation, such as
adversarial training [32] and self-training [33]. These methods share the common goal of
leveraging the information in the unlabeled data to enhance the learning process and im-
prove model performance. The recent success of semi-supervised learning emerges under
various tasks involving the teacher–student training paradigm. Several self-ensembling
methods, such as Mean Teacher [17], are introduced as a consistency regularization method
to counter different perturbations between the student and the teacher model.

Following the spirit of Mean Teacher, many achievements have been made to further
improve teacher–student training, such as enhanced shape-awareness [34]. In addition,
various consistency-based methods are proposed to improve the semi-supervised per-
formance, including uncertainty-aware consistency [35], transformation consistency [36],
multi-task consistency [37], and multi-scale consistency [38]. Recent studies indicate that
multi-scale consistency is a straightforward yet effective approach for enforcing consistency
between different networks at various scales, achieving great success in many tasks [39,40].
Moreover, the feature maps of hidden layers in networks can be extracted to produce
multi-scale predictions for deep supervision, improving the discrimination capability.

In this work, we build upon the existing literature by employing a semi-supervised
Mean Teacher method with multi-scale V-Net pyramid architecture for the semantic seg-
mentation of 3D semiconductor memory and logic bump data. Our approach aims to
leverage the strengths of deep learning-based semantic segmentation, the Mean Teacher
paradigm, and semi-supervised learning techniques to address the challenges associated
with the limited availability of labeled data in this domain.
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3. Our Approach

Each XRM scan includes 1000 slices of a resolution 1000× 1000. Due to memory
limitations and efficiency, processing complete scans consisting of 1 billion voxels increases
the processing time and hardware requirements. As we are only interested in individual
memory and logic bumps, it is also not efficient to do so since the regions of interest are
limited. We introduce a multi-step framework that includes object detection to detect and
extract memory and logic bumps and image segmentation to identify the defects and core
components such as Copper Pads and Copper Pillars (Figure 1). In our slice-and-fuse
approach for object detection, we first process each slice individually rescaled to an input
size of 640× 640.

3.1. Object Detection

Object detection is the first step in our approach. The objective is extract each individ-
ual memory and logic bump for the 3D scans. As labeled data are scarce and difficult to
obtain, we use a semi-supervised learning approach to reduce the amount of labeled data
required and a contrastive learning method to select the most informative labeled data for
a better training. Figure 2 shows the overview of the method. We select Detectron2 [41]
as our backbone detector in our semi-supervised learning framework as it demonstrated
the best accuracy over other detectors [42,43]. The results have been published in [18] over
PASCAL VOC [44] and MS COCO [12] datasets.

Figure 3 presents the semi-supervised learning approach for detection. We selected
Unbiased Teacher [18] as our baseline semi-supervised learning framework and we apply
the simCLR [20] method for unsupervised feature extraction. We first define two sets of
labeled Dl and unlabeled Du data for memory and logic bumps. The splits between Dl and
Du range from 1% to 10% of our complete dataset. For each 3D sample of the dataset, we
select their slices Is,t

i=0,...,n from the sagittal and transversal views. The objective is to use
as little labeled data as possible for better efficiency and productivity. Unlike other semi-
supervised learning methods, we use contrastive learning to select the most informative
images in our dataset to reduce data distribution bias rather than using random sampling.
The simCLR model [20] is used for feature representation on 2D images Is,t

i . The method
does not use any prior information about the dataset. Different data augmentations are
applied to the images such as resizing, noising or blurring. Then, the images are passed in
a Resnet50 [43] to generate the feature representation of the images. During the training
phase, the feature vectors are passed to a projection head. This projection head includes
a MLP with a hidden layer and is used to further refine the feature representation of the
images. The objective of the training is to minimize the distance between images containing
the same object and maximize the distance between images that include different objects.
Once the training is complete, the projection head is discarded, and the feature vectors
h(i) are directly obtained as outputs of the encoder (Resnet50). After the feature vector
generation, we use a k-means clustering method to select the most appropriate images.
Given a set of k features {h(i)}, the goal is to partition them into n clusters C = C1, C2, ..., Cn,
where the intra-cluster variance is minimized. The objective is to find:

argmin
k

∑
j=1

∑
h(i)
‖ (i)− µj ‖2= argmin

k

∑
j−1
| Cj | Var(Cj) (1)

where µj is the mean of feature points in Cj.
Once the visual features are computed, we use the k-means clustering method where

each cluster represents a group of similar images. The number of clusters corresponds to
the number of images to be included in Dl as we select one image per cluster for annotation.
The remaining images will then be stored in Du. Figure 3 shows the training process with
the supervised learning framework with our data pre-selection.
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Figure 2. Three-dimensional (3D)-slice-and-fuse approach with the detection model. Both detectors
will run on transversal and sagittal views and output 3D bounding boxes corresponding to the bumps
in the scans.

Figure 3. Semi-supervised object detection training with contrastive learning selection. The most
informative images are first selected using a simCLR model with k-means clustering. Semi-supervised
learning object detection includes a first stage (burn-in) with labeled data and a second stage with
unlabeled data and a student–teacher mutual learning framework.

Once Dl and Du are defined, we train our semi-supervised object detection model. It
consists of two stages. The first stage, the burn-in stage, initialized the model with Dl . This
model is then duplicated to student and teacher models. The training process follows a
mutual-learning framework where the teacher outputs pseudo-labels on unlabeled images
and the student updates the teacher’s weights through the Exponential Moving Average
(EMA). We also integrate focal loss as it outperforms the original cross-entropy loss due
to biased data. The output of the object detection model is a set of 3D bounding boxes
defined by [x, y, z, w, h, d] corresponding to the location and dimensions of the bumps for
each scan. We previously introduced a slice-and-fuse approach for object detection [11].
The main idea is to run a 2D detector on each sagittal slice Is

i which outputs 2D bounding
boxes [x, y]n for each bump n and then concatenate the results into 3D bounding boxes
[x, y, z, w, h, d]n. In order to improve the robustness of the detector on defectives bumps, we
used a 3D slice-and-fuse approach where we process both sagittal and transversal views
instead of a single one. This limits the ambiguity that may arise when the 2D shape of
the bumps cannot be separated from each other due to the defects. When slices from two
views are used, the ambiguity can be resolved because it does not appear on the second
view. Therefore, the concatenation of the 2D slices into 3D is performed. The sagittal view
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contributes to the x, y directions of the 3D bounding, and the transversal view contributes
to the z direction.

3.2. Semantic Segmentation

After the extraction of individual die structures, semantic segmentation is applied
at the bump level to differentiate the volumetric structure and thus identify manufactur-
ing defects in the 3D metrology step. The normal structure of memory and logic bump
consists of four foreground components as regions of interest: Copper Pillar (Cu-Pillar),
Solder, Copper Pad (Cu-Pad), and Void. Each of the input bumps has a dimension of
100× 100× 100 approximately. This resolution corresponds to the size of each individual
bump after extraction by the object detection phase. It also affects the 3D scanning resolu-
tion and the actual size of the bumps (in nm). In ideal cases, each bump should have the
same size leading to the same 3D resolution on the scans. However, since our bumps are
affected differently by defects and selected fabrication parameters, their size is not identical.
By accurately depicting internal volumetric structures, we can facilitate further study on
3D metrology.

The Mean Teacher paradigm, first introduced by Tarvainen and Valpola [17], is a
consistency regularization method for semi-supervised learning. This approach involves
training two models in parallel: a student model and a teacher model. The student model
learns from the labeled dataset and generates predictions on the unlabeled dataset, which
can then be used as pseudo-labels for the teacher model in some tasks. We observe that
the model tends to overlook the topological relation of semantic components and ignore
the wider contextual information. Following our prior work [38–40], we adopt additional
prediction layers to supervise the quality of hierarchical hidden representations. Deep
supervision serves as a minimizer for multi-level segmentation loss, and it is a powerful
optimizer to regularize hierarchical consistency and maximize the knowledge learned from
unlabeled data.

In this work, we select 3D V-Net [27] as the backbone model. To exploit the hidden
representation, several auxiliary layers are included after each block of the decoding
stage to form a hierarchical feature group. Given that the V-Net structure consists of a
downsampling encoder and an upsampling decoder each having multiple stages which
preserve the feature information in latent space during the early stages of upsampling,
we can assemble the hidden features systematically. In particular, we derive the structure
from prior work [38]: each auxiliary layer consists of an upsampling layer, a single channel
convolution, and a softmax layer. For each labeled sample, we aggregate the loss between
predictions at all scales and ground truth for deeply supervised regularization. Figure 4
illustrates the architecture of our solution. By leveraging multi-scale predictions for deep
supervision and consistency regularization, we have stronger control during the training
process. Specifically, we encourage consistency between the outputs from different levels
of the teacher and student models for the given unlabeled data while also using supervised
losses at multiple scales for learning from labeled data. The approach has shown promising
results in experiments on various datasets and tasks [38–40].

3.3. Three-Dimensional (3D) Metrology

We develop a custom 3D metrology module to measure critical features that are
important for failure analysis of 3D HBM bumps. In particular, we measure the Bond
Line Thickness (BLT), solder-to-void-ratio, pad misalignment, and solder extrusion. These
features are shown in Figure 5.

Once we receive the predicted output from our multi-scale Mean Teacher 3D segmen-
tation model, we carry out a number of post-processing procedures. Firstly, we ensure
that the bumps are aligned vertically, ensuring that they are upright in a shared view.
Secondly, we utilize morphological functions such as dilation and erosion to confirm that
any pixels within the Solder, Copper Pillar, or Copper Pad components that were classified
as background are accurately labeled as the relevant component. Thirdly, we superimpose



Sensors 2023, 23, 5470 8 of 17

the predicted voids on top of the newly refined predictions. Finally, we maintain all the
forecasted voxels for each category that falls within a specific threshold to the center of
mass (CoM) of each category, thereby eliminating any remaining clusters or neighboring
component predictions that may be observed in the cropped individual 3D bumps.

Figure 4. Multi-scale Mean Teacher architecture.

(a) Memory bump (b) Logic Bump
Figure 5. Our 3D metrology features for HBM bumps. The features are computed in 3D using
cross-sectional results. We only show a 2D slice illustration for ease of understanding the metrology
approach. BLT for logic only includes the vertical height of the Solder and Copper Pillar components.

We establish the characteristics needed to conduct our metrology, mainly the CoM,
top, left, right, and bottom-most areas for each specific bump following the post-processing
stage. The characteristics, as demonstrated in Figure 5, are computed for every bump and
shared with domain experts to make crucial decisions regarding HBM failure analysis.

4. Experiments
4.1. Data Fabrication

Our dataset includes fabricated 2.5D test vehicles (TV) that resemble contemporary
High-Performance Computing packages, in particular, logic and memory bumps. Daisy-
chain silicon chips are produced to represent the DRAM and Logic dies which are assembled
on top of each other to form High Bandwidth Memory (HBM) cubes. To increase the
diversity of the data, we purposely use sub-optimal parameters during the packaging
phase to induce defects. For more details on memory and logic bumps fabrication, the
readers can refer to [45]. Figure 6 shows the fabrication of HBMs bumps.
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Figure 6. Fabrication steps for HBM bumps [1].

Following the fabrication process, we create our 3D scans utilizing a 3D X-ray mi-
croscopy (XRM) scanner [46]. The benefit of employing a 3D XRM lies in its ability to
facilitate Non-Destructive Techniques (NDTs) for inspecting the fabricated data in var-
ious quality assessments. Test vehicles are mounted on sample holders and placed on
the XRM autoloader. Subsequently, they are rotated incrementally from −3◦ to 183◦ to
acquire raw 2D X-ray scans. These 2D scans, combined with geometric information, are
processed by a proprietary algorithm to generate the 3D X-ray scans computationally. This
computed tomography procedure enables the visualization of chips in 3D, where hidden
structures can be imaged at high resolution. Each 3D scan’s resolution is approximately
1000× 1000× 1000 in size, i.e., 1 billion voxels. One 3D scan represent one TV with a
specific set of parameters. The different components of each memory and logic bumps are
then labeled manually as Copper Pillar, Copper Pad, Solder and Void. This labeling step
has been completed by our annotation team together with the semiconductors fabrication
experts. Their knowledge helped the annotation process as they set the fabrication param-
eters and knew what the desired output is. For ambiguous cases where the boundaries
between each class were not obvious, they helped to define and validate the annotations.

4.2. Object Detection

For object detection, 3D scans are then divided into 12,849, 4486, and 4593 slices is for
training, validation, and testing. As mentioned in the previous section, each 3D scan has
1000 slices. As shown in Figure 1, the logic and memory bumps are not present on all the
slices; therefore, slices only containing background have been discarded. Our workstation
for this work includes an Intel i9-10900X CPU processor with an NVIDIA TITAN RTX
24 GB GPU containing 4608 cuda cores.

We split our dataset into different amounts of labeled data from 1% to 10% for our
experiments. We trained two models for logic and memory, respectively. In our semi-
supervised approach Figure 3, we define the weak data augmentation method on the
student model as random horizontal flip and the strong augmentation methods on the
teacher model as adding color jittering, grayscale, Gaussian blur, and cutout patches.
Mean Average Precision (mAP) is used as our evaluation metric, which consists of an
Intersection-over-Union (IoU) calculation estimating the quality of the predicted bounding
boxes compared to the ground truth data [1] on different thresholds from 0.5 to 0.95. The
recall rates of the method are also reported to evaluate the escapes or False Negatives. We
first use the simCLR network with pre-trained weights on MS COCO [12] to select the most
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informative images according to each data split. Figure 7 shows the images per cluster
for a split of 1% which corresponds to a selection of four images for training. The training
parameters of the semi-supervised model are as follows. The learning rate is 0.01, the initial
number of steps (burn-in stage) is 2000, and the total number of steps is 10,000. The EMA
rate is 0.996.

Figure 7. Results of image pre-selection from the contrastive learning method. The first image on the
left shows the selection and the images in the same row show similar images assigned to the same
cluster. We notice that the selected images are all different and represent different data features in
the dataset.

As preliminary experiments, we compared the performance of a data selection strategy
on a dedicated object detection dataset [5] and against other generic methods and different
splits of labeled data. Results are shown in Table 1. We can notice that the best detection
results on the mAP metric are obtained with our simCLR approach.

Table 1. Comparison of data selection strategy using the Mean Teacher and our improved semi-
supervised approach.

Accuracy on Data Selection Strategies (mAP)

Labeled dataset 1% 5% 10%

LeastConfidence [47] 61.87 78.9 84.34
MarginSampling [48] 62.67 79.12 84.53
EntropySampling [49] 61.34 79.32 84.92

simCLR [20] 63.07 79.54 86.56

We evaluate the efficacy of the 2D semi-supervised object detection on the individual
slices on both sagittal and transversal views with contrastive learning selection. We compare
our approach with the baseline (Unbiased Teacher [18]) as well as the fully supervised
model (Detectron2 [41]). The baseline includes the first and second stages of the detection
approach with a random pre-selection of data. The first stage or “burn-in” stage uses the
labeled data to train a detector model. This model is then duplicated into student and
teacher models and further trained with the remaining unlabeled data. The fully supervised
model Detectron2 includes a first-stage training with labeled data.

Table 2 shows the results for the logic and memory bumps. We observe that our
proposed model outperforms the FSL model by up to 10% mAP for logic bumps and up to
16% for memory bumps. We also note that the performance improves for higher splits when
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more labeled data are used. Our data selection strategy is able to significantly improve
the overall detection accuracy. This shows that selected images are representative of the
overall dataset and the data distribution bias is limited. The model has received informative
images which led to better overall accuracy. On the other hand, the baseline model has a
lower accuracy due to fewer informative images used in the first stage. The selected images
do not reflect the overall dataset; therefore, the overall detection accuracy is lower.

Table 2. We report the object detection accuracy (Precision and Recall rates) for Logic and Memory
dies. Our SSL approach provides more accurate results than Detectron2 [41] (FSL) and Unbiased
Teacher [18] (SSL baseline) approaches on both sagittal and transversal views by up to 10% and 18%
mAP with IOU = 0.5:0.95 on logic and memory bumps, respectively.

1% 2% 5% 10%

IOU = 0.5:0.95 Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Memory

Sagittal
Det2 0.607 0.662 0.631 0.68 0.634 0.685 0.648 0.685
UBT 0.769 0.801 0.764 0.81 0.788 0.827 0.798 0.832
Ours 0.786 0.81 0.791 0.826 0.824 0.831 0.821 0.845

Transver.
Det2 0.723 0.784 0.76 0.79 0.784 0.824 0.803 0.846
UBT 0.764 0.812 0.781 0.81 0.798 0.834 0.824 0.853
Ours 0.843 0.873 0.854 0.879 0.874 0.892 0.886 0.916

Logic

Sagittal
Det2 0.776 0.806 0.781 0.814 0.782 0.817 0.809 0.848
UBT 0.795 0.836 0.801 0.841 0.81 0.845 0.814 0.846
Ours 0.848 0.873 0.889 0.917 0.906 0.927 0.917 0.943

Transver.
Det2 0.714 0.753 0.659 0.703 0.679 0.725 0.701 0.739
UBT 0.788 0.824 0.80 0.821 0.824 0.859 0.843 0.873
Ours 0.824 0.859 0.862 0.893 0.894 0.923 0.903 0.931

Given the specificity of the data and the low distribution, we notice that our SSL net-
work performs well even with a very small amount of labeled data (1%). This demonstrates
the reduced requirement for labeled data with our SSL framework. We also show the
detection results on some slices for both sagittal and transversal views to highlight these
differences in Figure 8. We observe more false detections on the FSL model compared to
ours. The full implementation of the method includes three phases: the first phase detects
the bumps on the individual slices, the second estimates the 3D bounding boxes in the scan,
and finally, the third phase extracts the bump into individual files. Given the structure of
the data and our processing scripts, all phases can be parallelized to reduce the processing
time. Furthermore, our method with 1% labeled data has a better detection accuracy than
other methods with 10% labeled data for both sagittal and transversal views for logic and
memory bumps except for the 10% transversal split for the unbiased teacher.

The results show that a semi-supervised learning approach with data selection is able
to provide better detection accuracy with less labeled data available. As semiconductor
data are difficult and expensive to obtain, our approach is able to leverage limited labeled
data and use unlabeled data to perform the bump extraction task. Our method was able to
outperform the baseline and fully supervised model on all splits from 1% to 10% of labeled
data. Our contrastive learning selection demonstrated an improvement of up to 9% on the
mAP accuracy over the baseline for both memory and logic bumps and up to 16% over
the fully supervised method. Given the structured data in HBMs, our method shows that
labeled data on the full dataset are now not required, and a semi-supervised method with a
fraction of labeled data is able to perform the extraction task. Our slice-and-fuse approach
shows that processing 2D slices with a concatenation can leverage on the good accuracy of
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2D detectors and reduce the memory requirement of high-resolution 3D scans. Figure 9
shows the detection and cropping of logic and memory bumps from the 3D scans in each
view and their 3D rendering.

Figure 8. Detection results with fully supervised (Detectron2) FSL (a,c) and semi-supervised UBT
(b,d) models on logic bumps (2% split). Our approach shows a better accuracy with significantly
lower spaces and false detections.

Figure 9. Examples of logic (left) and memory (right) bumps extracted from the 3D scans. Three
views (transversal, sagittal, coronal) are shown with the 3D representation.

4.3. Semantic Segmentation

For our segmentation experiment, we have in total {76, 36} bump-level training 3D
and {13, 7} testing scans for memory and logic data. Subsets of 2.5%, 5%, 10%, 50%, and
100% labeled data are employed for training. The hardware used is identical to that in
Section 4.2.

We establish our comparison between three different setups: fully supervised run
using V-Net backbone, naive Mean Teacher semi-supervised run using the same V-Net
structure, and the proposed semi-supervised multi-scale Mean Teacher method using V-Net
with auxiliary layers. By comparing each training mode under various data percentages,
we are able to concretely evaluate the effectiveness of the proposed method.

Similar to our object detection experiments, we adopt different optimization metrics
for supervised and unsupervised parts training. The supervised loss is computed using
the multi-class Dice loss function, which measures the similarity between the predicted
segmentation maps and the ground truth labels. The consistency loss is calculated as
the Mean Squared Error (MSE) between the student and teacher models’ predictions on
the unlabeled dataset. The overall loss function is defined as the weighted sum of the
supervised loss and the consistency loss. Both the supervised loss on the labeled dataset and
the consistency loss on the unlabeled dataset from the V-Net pyramid consist of multiple
auxiliary losses. We empirically assign scale-wise components with weights 0.5, 0.2, 0.2,
and 0.1 for memory runs and 0.6, 0.25, 0.1, and 0.05 for logic runs.
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The V-Net model with auxiliary layers is trained with an initial learning rate of 0.01
and step-down decay interval of every 5000 iterations at the scale of 0.1. We adopt a linear
learning rate warm-up of 300 iterations and train the backbone network from scratch.
The decay parameter of exponential moving average (EMA) update rate is α = 0.999,
and the consistency weight is set to γ = 0.01. When the training initiates, the model
experiences a linear consistency ramping-up stage sustained for 40 epochs until full scale.
For all modes of experiments in our work, the training lasts for 10,000 iterations using SGD
optimizer. Specifically for semi-supervised runs, we preserve the initial 2000 iterations
supervised, i.e., our semi-supervised runs consist of 2000 burn-in iterations and 8000
semi-supervised iterations.

We evaluate our model performance using multiple quantitative metrics: multi-class
Dice coefficient and Jaccard coefficient (IoU). Table 3 shows the Dice and IoU performance
between FSL training, Mean Teacher SSL training, and multi-scale Mean Teacher SSL
training under various percentages of selected labeled data. We observe that the overall per-
formance increases along with the addition of labeled data. Qualitatively, our method pro-
duces less misclassification and better conserves the overall shape of the material structure.
Specifically, we achieve nearly 8% improvement on logic bump data. Figures 10 and 11
visualize some inferred test samples through color-coded images. Although multi-scale
runs fail to provide better results on fewer training samples, the performance surpasses
its counterparts at a higher percentage of data. Empirically, we observe a similar trend in
experiments with too strong regularization, leading models to perform less effectively.

Table 3. We report the V-Net FSL and Mean Teacher SSL 3D semantic segmentation results for
Memory and Logic dies. The SSL approach is generally able to identify the segments more accurately.
Our proposed multi-scale Mean Teacher (MMT) is showing many advantages at higher percentage
data, especially for Logic die.

2.5% 5% 10% 50% 100%

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

Memory

V-Net 79.89 64.86 85.14 77.16 81.49 73.57 83.26 75.63 87.89 80.19

MT 80.63 72.38 85.50 70.25 86.69 71.75 86.10 82.03 88.67 82.81

Ours (MMT) 75.32 64.93 84.83 76.70 86.46 78.21 87.03 79.21 89.49 82.25

Logic

V-Net 81.82 75.07 84.51 78.74 84.51 78.85 85.26 79.85 84.34 78.55

MT 84.22 78.54 84.33 78.58 84.80 79.66 85.65 80.54 83.79 78.27

Ours (MMT) 57.27 48.18 91.13 84.86 92.29 86.86 92.58 87.41 91.59 86.06

4.4. Three-Dimensional (3D) Metrology

We perform 3D metrology measurements as described in Section 3.3. We also perform a
post-processing step to clean the inference using computer vision techniques as discussed in
the previous section. We report our 3D metrology findings in Table 4. The results reflected
in the table are averaged across all splits ranging from 1 to 100% labeled data and the
remaining data are used as unlabeled data in the supervised learning setting. We observe
that aligning, cleaning, and performing neighborhood clustering drastically improves
the results when the inference has some serious flaws such as situations when most of
the cropped predicted bumps include false positives for Copper Pillars, Copper Pads,
and Solders in addition to neighborhood components at the edges. Our final metrology
results show a mean error of less than 1.41 µm for Bond Line Thickness, 2.53 µm for
solder extrusion, and 0.91 µm for pad misalignment when compared to the ground truth
labeled data.
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Figure 10. We show one inferred test sample from ground truth annotations, V-Net, Mean Teacher
(MT), and our multi-scale Mean Teacher output. Our approach provides visually more consistent and
less erroneous results than our baseline.

Figure 11. A top–down perspective comparison between ground truth, baseline Mean Teacher and
multi-scale Mean Teacher inference results. Our regularized method provides a better control over
training process and suppresses overall misclassification.

Table 4. We display the mean error for metrology features such as Bond Line Thickness, solder
extrusion, and pad misalignment (in µm) between ground truth, MT, ours, and post-processed
predictions. We observe that our multi-scale Mean Teacher approach segments the die more accurately,
and our metrology package further improves the results significantly.

Metrology Error MT Ours Post-Processed

Memory Die

Bond Line Thickness 2.19 1.41 1.41

Solder Extrusion 3.30 3.27 2.53

Pad Misalignment 2.12 0.91 0.91

Void-to-Solder Ratio 0.046 0.046 0.045

Logic Die

Bond Line Thickness 3.57 1.63 1.45

Solder Extrusion 1.36 1.00 0.68

Void-to-Solder Ratio 1.20 0.0028 0.0029
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5. Conclusions

In this study, we have introduced an innovative framework for facilitating 3D metrol-
ogy by utilizing cutting-edge 3D Semi-Supervised Deep Learning techniques for object
detection and semantic segmentation. We detailed the process of detecting objects across
multiple views and merging the results to enhance bump detection performance. Sub-
sequently, we employed 3D semi-supervised semantic segmentation to identify various
components within individual structures, such as Copper Pillars, Copper Pads, Voids, and
Solder regions. Furthermore, we improve our semi-supervised semantic segmentation by
introducing deep supervision and hierarchical consistent regularization. When incorpo-
rated with 3D metrology, this approach holds significant promise for decreasing defect
analysis duration and consequently boosting measurement accuracy.

We demonstrated that multi-scaled Mean Teacher is able to provide a superior result
on HBMs segmentation. Going forward, we plan to explore suitable augmentations that en-
hance our semi-supervised segmentation method and incorporate balanced regularization.
For object detection, future work includes an integration of active and contrastive learning
methods for better data selection. The best features for object detection would then be
highlighted instead of informative visual features. Finally, the object detection framework
may be applied to other domains such as medical imaging or sensors that provide other 3D
voxelized scans.
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