
Citation: Efrosinin, D.; Vishnevsky,

V.; Stepanova, N. Optimal Scheduling

in General Multi-Queue System by

Combining Simulation and Neural

Network Techniques. Sensors 2023,

23, 5479. https://doi.org/10.3390/

s23125479

Academic Editor: Jose Manuel

Molina López

Received: 29 April 2023

Revised: 21 May 2023

Accepted: 8 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimal Scheduling in General Multi-Queue System by
Combining Simulation and Neural Network Techniques
Dmitry Efrosinin 1,2,* , Vladimir Vishnevsky 3 and Natalia Stepanova 4

1 Institute for Stochastics, Johannes Kepler University Linz, 4040 Linz, Austria
2 Department of Information Sciences, Peoples’ Friendship University of Russia (RUDN University),

Moscow 117198, Russia
3 V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow 117997, Russia;

vishn@inbox.ru
4 Scientific and Production Company “INSET”, Moscow 129085, Russia; natalia0410@rambler.ru
* Correspondence: dmitry.efrosinin@jku.at

Abstract: The problem of optimal scheduling in a system with parallel queues and a single server has
been extensively studied in queueing theory. However, such systems have mostly been analysed by
assuming homogeneous attributes of arrival and service processes, or Markov queueing models were
usually assumed in heterogeneous cases. The calculation of the optimal scheduling policy in such a
queueing system with switching costs and arbitrary inter-arrival and service time distributions is
not a trivial task. In this paper, we propose to combine simulation and neural network techniques
to solve this problem. The scheduling in this system is performed by means of a neural network
informing the controller at a service completion epoch on a queue index which has to be serviced
next. We adapt the simulated annealing algorithm to optimize the weights and the biases of the
multi-layer neural network initially trained on some arbitrary heuristic control policy with the aim to
minimize the average cost function which in turn can be calculated only via simulation. To verify the
quality of the obtained optimal solutions, the optimal scheduling policy was calculated by solving a
Markov decision problem formulated for the corresponding Markovian counterpart. The results of
numerical analysis show the effectiveness of this approach to find the optimal deterministic control
policy for the routing, scheduling or resource allocation in general queueing systems. Moreover, a
comparison of the results obtained for different distributions illustrates statistical insensitivity of the
optimal scheduling policy to the shape of inter-arrival and service time distributions for the same
first moments.

Keywords: optimal scheduling; heterogeneous queues; Markov decision problem; queue simulation;
simulated annealing; neural network

1. Introduction

Machine learning algorithms have been used over the last ten years in almost all
fields where problems associated with data classification, pattern recognition, non-linear
regression, etc., have to be solved. The application of such algorithms has also intensi-
fied in the field of queueing theory. While the first steps in the successful application
of machine learning to evaluate the performance characteristics of simple and complex
queueing systems have already been taken, the total number of works on this topic still
remains modest. As for reviews, we can only refer to a recent paper by Vishnevsky and
Gorbunova [1] which proposes a systematic introduction to the use of machine learning in
the study of queueing systems and networks. Before we formulate our specific problem we
would like also to make a small contribution to the popularisation of machine learning in
the queueing theory by describing briefly the latest works. In Stintzing and Norrman [2],
an artificial neural network was used for predicting the number of busy servers in the
M/M/s queueing system. The papers of Nii et al. [3] and Sherzer et al. [4] have answered

Sensors 2023, 23, 5479. https://doi.org/10.3390/s23125479 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125479
https://doi.org/10.3390/s23125479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0902-6640
https://orcid.org/0000-0001-7373-4847
https://orcid.org/0000-0001-5920-1358
https://doi.org/10.3390/s23125479
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125479?type=check_update&version=2

Sensors 2023, 23, 5479 2 of 25

positively the question regarding whether the machines could be useful for solving the
problems in general queueing systems. They employed a neural network approach to
estimate the mean performance measures of the multi-server queues GI/G/s based on the
first two moments of the inter-arrival and service time distributions. A machine learning
approach was used in the work of Kyritsis and Deriaz [5] to predict the waiting time in
queueing scenarios. The combination of a simulation and machine learning techniques
for assessing the performance characteristics was illustrated in Vishnevsky et al. [6] on
a queueing system MMAP/PH/M/N with K priority classes. Markovian queues were
simulated using artificial neural networks in Sivakami et al. [7]. Neural networks were used
also in research by Efrosinin and Stepanova [8] to estimate the optimal threshold policy
in a heterogeneous M/M/K queueing system. The combination of the Markov decision
problem and neural networks for the heterogeneous queueing model with process sharing
was studied by Efrosinin et al. [9]. The performance parameters of the closed queueing
network by means of a neural network were evaluated in Gorbunova and Vishnevsky [10].
In addition to the presented results of using neural networks in hypothetical queueing
theory models, academic studies in this area with real-world applications have gradually
been proposed. For example, the problem regarding the choice of an optimum charging–
discharging schedule for electric vehicles with the usage of a neural network is proposed
by Aljafari et al. [11]. The main conclusion to be drawn from the previous results obtained
via the application of machine learning to models of the queueing theory is that the neural
networks cannot be treated as a replacement for classical methods in system performance
analysis, but rather as a complement to the capabilities of such an analysis.

The systems with parallel queues and one server are known also as polling systems
which have found wide application in various fields such as computer networks, telecom-
munications systems, control in manufacturing and road traffic. For analytic and numerical
results in various types of polling systems with applications to broadband wireless Wi-Fi
and Wi-MAX networks, we refer interested readers to the textbook by Vishnevsky and Se-
menova [12] and the references therein. The same authors in [13] developed their research
on polling systems to systems with correlated arrival flows such as MAP, BMAP, and the
group Poisson arrivals. In Vishnevskiy et al. [14], it was shown that the results obtained by
a neural network are close enough to the results of analytical or simulation calculations
for the M/M/1 and MAP/M/1-type polling systems with cyclic polling. Markovian
versions of a single-server model with parallel queues have been investigated by a number
of authors. The two-queue homogeneous model with equal service rates and holding costs
was studied in Horfi and Ross [15], where it was shown that the queues must be serviced
exhaustively according to the optimal policy. In research by Liu et al. [16], it was shown
that the scheduling policy that routes the server with respect to the LQF (Longest Queue
First) policy is optimal when all queue lengths are known and that the cyclic scheduling
policy is optimal in cases where the only information available is the previous decisions.
The systems with multiple heterogeneous queues in different settings, also known as asym-
metric polling systems, have been studied intensively in cases where there are no switching
costs by Buyukkoc et al. [17], Cox and Smith [18], where the optimality of the static cµ-rule
was proved. This policy schedules a server first to the queue i with a maximum weight
ciµi consisting of the holding cost and service rate. In Koole [19], the problem of optimal
control in a two-queue system was analysed by means of the continuous-time Markov
decision process and dynamic programming approach. The author found numerically
that the optimal policy which minimizes the average cost per unit of time can be quite
complex if there are both holding and switching costs. The threshold-based policy for such
a queueing system was applied by Avram and Gómez-Corral [20], where the expressions
for the long-run expected average cost of holding units and switching actions of the server
were given. The queueing system with general service times and set-up costs which have an
effect on the instantaneous switch from one queue to another was studied in Duenyas and
Van Oyen [21]. The authors proposed a simple heuristic scheduling policy for the system
with multiple queues. A rather similar model is described in Matsumoto [22], where the

Sensors 2023, 23, 5479 3 of 25

optimal scheduling problem is solved in a system with arbitrary time distributions. Here,
instead of switching costs, the corresponding set-up time intervals required for switching
are used. The system is controlled by the Learning Vector Quantization (LVQ) network, see
Kohonen [23] for details, which classifies the system state by the closest codebook vector
of a certain class in terms of the Euclidean metric. The problem with this approach is the
large number of parameters associated with the codebook vectors, where it is normally
required that several vectors per class must be estimated for a given control policy using
computationally expensive recurrent algorithms.

This paper proposes a fairly universal method for solving the problem of optimal
dynamic scheduling or allocation in queueing systems of the general type, i.e., where the
times between events are arbitrarily distributed, and in queueing systems with correlated
inter-arrival and service times. Furthermore, it can provide a performance analysis of
complex controlled systems described by multidimensional random processes, for which
finding analytical, approximate or heuristic solutions is a difficult task. The main idea of
the paper is to use a multi-layer neural network for server scheduling. The parameters of
this neural network trained first on some arbitrary control policy are optimized then with
the aim to minimize a specified average cost function. Moreover, such a cost function for
systems with arbitrary inter-arrival and service time distributions can only be computed via
simulation. We consider this approach, which combines neural networks with simulation
technique, to be quite universal to obtain an optimal deterministic control policy in compli-
cated queueing systems. The method is exemplified by some version of a single-server
system with parallel queues equipped with a controller for scheduling a server. The system
under study is assumed to have heterogeneous arrival and service attributes, i.e., unequal
arrival and service rates, as well as holding and switching costs. Systems with arbitrary
distributions and switching costs have not yet been considered by other authors. It is
assumed in our model that the queue currently being served by the server is serviced
exhaustively. The next queue to be served by the server is selected according to a dynamic
scheduling policy based on the queue state information, i.e., on the number of customers
waiting in each of parallel queues. It is expected that the changing of the serviced queue
involves the switching costs. The holding of a customer in the system is also linked to the
corresponding cost. Clearly, even with some fixed scheduling control policy, calculating
any characteristics of the proposed queueing system with arbitrary inter-arrival and service
time distributions in explicit form is not a trivial task. It is also difficult to fix the dynamic
control policy defining the scheduling in large systems in a standard way, e.g., through a
control matrix that would contain the corresponding control action for all possible states of
the system. Therefore, in such a case we consider it justified to solve the problem of finding
the optimal scheduling policy with the aim to minimize the average cost per unit of time
by combining the simulation as a tool to calculate the performance characteristics of the
system with a machine learning technique, where the neural network will be responsible
for dynamic control. By training a neural network for some initial control policy, we obtain
characteristics of the network in the form of a matrix of weights and a vector of biases. The
process of solving the optimal scheduling problem is then reduced to a discrete parametric
optimization. The parameters of the neural network must be optimized in such a way that
this network can guarantee the minimal values of the average cost functional by generating
control actions at decision epochs. For this purpose, we have chosen one of the random
search methods, such as simulated annealing, see, e.g., in Aarts and Korst [24], Ahmed [25].
It is a heuristic method based on a concept of heating and controlled cooling in metallurgy
and is normally used for global optimization problems in a large search space without any
assumption on the form of the objective function. This algorithm was implemented by
Gallo and Capozzi [26] specifically for the probabilistic scheduling problem. The algorithm
will be adapted for a non-explicitly defined parametric function with a large number of
variables defined on a discrete domain.

To verify the quality of the calculated optimal parameters of the neural network, the
values of the average cost functional for the markovian version of the queueing system are

Sensors 2023, 23, 5479 4 of 25

compared with the results obtained by solving the Markov decision problem (MDP). The
general theory on MDP models is discussed in Puterman [27] and Tijms [28]. The details
on application of MDP to controlled queueing systems with heterogeneous servers can be
found in Efrosinin [29]. The optimal control policy and the corresponding objective function
are calculated in the paper via a policy-iteration algorithm proposed in Howard [30] for
an arbitrary finite-state Markov decision process. According to the MDP, the router in
our system has to find an optimal control action in the state visited at a decision epoch
with the aim to minimize the long-run average cost. Note that for our queueing model
under general assumptions the semi-Markov decision problem (SMDP) can be formulated.
The SMDP is a more powerful model than the MDP since the time spent by the system
in each state before a transition is taken into account by calculating the objective function.
The objective function must be calculated here also by means of a simulation. In this
case, the reinforcement learning algorithm, e.g., Q-P-Learning, can be applied. The main
problem of this approach consists of the fact that many pairs of state and action can remain
non-observable for deterministic control policy and as a result the control actions in such
states can not be optimized. However, in our opinion, neural networks can also be used to
solve this problem which presents a potential task for further research. The SMDP topic
is outside the scope of this article but we refer readers to work by Gosavi [31], where
one can find a very interesting overview on reinforcement learning and a well-designed
classification of simulated-based optimization algorithms.

Summarising our research in this paper we can highlight the following main con-
tributions: (a) We propose a new controlled single-server system with parallel queues
where the router uses a trained multi-level neural network to perform a scheduling control:
(b) A simulated annealing method is adapted to optimize the weights and biases of the
neural network with the aim to minimize the average cost function which can be calculated
only via simulation; (c) The quality of the resulting optimal scheduling policy is verified
solving a Markov decision problem for the Markovian analog of the queueing system;
(d) We provide detailed numerical analysis of the optimal scheduling policy and discuss its
sensitivity to the shape of the inter-arrival and service time distributions; (e) The distinctive
feature of our paper is the presence of algorithms employed in the form of pseudocodes
with detailed descriptions of relevant steps.

The rest of the paper is organized as follows. Section 2 presents a formal description
of the queueing system and optimization problem. Section 3 describes the Markov decision
problem and the policy-iteration algorithm used to calculate optimal scheduling policy.
In Section 4, the event-based simulation procedure of the proposed queueing system is
discussed. The neural network architecture, parametrization and training algorithm are
summarized in Section 5. Section 6 presents simulated annealing optimization algorithm.
The numerical analysis is shown in Section 7 and concluding remarks are provided in
Section 8.

The following notations are introduced for use in sequel. Let ej denote the vector
of appropriate dimension with 1 in the jth position beginning from 0th and 0 elsewhere,
1{A} denote the indicator function which takes the value 1 if the event A occurs and 0
otherwise. The notations min

i
{ai} and max

i
{ai} mean the minimum and maximum of

the values that a can assume, and arg min
i
{ai}, arg max

i
{ai} denote the element index

associated, respectively, with the minimum and maximum value.

2. Single-Server System with Parallel Queues

Consider a single-server system with N parallel heterogeneous queues of the type
GI/G/1 and router for scheduling the server across the queues. Heterogeneity here refers
to unequal distributions associated with inter-arrival and service times of customers in
different queues, as well as unequal holding and switching costs. The queue that is currently
being serviced is exhaustively serviced. Denote I = {1, 2, . . . , N} as a queue index set. The
proposed queueing system is shown schematically in Figure 1.

Sensors 2023, 23, 5479 5 of 25

Figure 1. Controlled single-server queueing system with parallel queues.

Denote τn,i, n ≥ 1 as the time instants of arrivals to queue i and νi := νn,i = τn,i −
τn−1,i, n ≥ 1 as the sequence of mutually independent and identically distributed inter-
arrival times with a CDF Ai(t), i ∈ I. Further denote by ζi := ζn,i, n ≥ 1, the service time of
the nth customer in the ith queue. These random variables are also assumed to be mutually
independent and generally distributed with CDF Bi(t), i ∈ I. We assume that the random
variables νi and ζi have at least two first finite moments

ak,i = k
∫ ∞

0
xk−1(1− Ai(t))dt, bk,i = k

∫ ∞

0
xk−1(1− Bi(t))dt, k = 1, 2.

The squared coefficients of variation are defined then, respectively, as

CV2
νi
=

a2,i

a2
1,i
− 1, CV2

ζi
=

b2,i

b2
1,i
− 1.

This characteristic will be required to provide a comparison analysis of the optimal schedul-
ing policy for different types of inter-arrival and service time distributions. From now
it is assumed that the ergodicity condition is fulfilled, i.e., the traffic load ρ = ∑N

i=1 ρi =

∑N
i=1

b1,i
a1,i

< 1.
Let D(t) indicate the sequence number of the queue currently being serviced by the

server at time t, and Qi(t) denote the number of customers in the ith queue at time t, where
i ∈ I. The states of the system at time t are then given by a multidimensional random process

{X(t)}t≥0 = {D(t), Q1(t), . . . , QN(t)}t≥0 (1)

with a state space

E = {x = (d, q1, . . . , qN) : d ∈ I, qi ∈ N0, i ∈ I}. (2)

Further in this section, the notations d(x) and qi(x) will be used to identify the correspond-
ing components of the vector state x ∈ E. The cost structure consists of the holding cost
ci per unit of time the customer spends in queue i and the switching cost ci,j to switch the
server from queue i to queue j.

It is assumed that the system states X(t) are constantly monitored by the router which
defines the queue index to be serviced next after a current queue becomes empty. In initial
state, when the total system is empty, a server is randomly scheduled to some queue. If
the ith queue to be served becomes empty, such a moment we call a decision epoch, the
router makes a decision by means of the trained neural network whether it must leave the
server at the current queue or dispatch it to another queue. The routing to an idle queue is
also possible. We remind that the server allocated by the router to a certain queue serves it
exhaustively, i.e., it is only possible to change the queue if it becomes empty. Denote by
A = I an action space with elements a ∈ A, where a indicates the queue index to be served
next after the current queue has been emptied. The subsets A(x) of control actions in state
x ∈ Ê ⊂ E with

Ê = {x = E : qd(x) = 0}

Sensors 2023, 23, 5479 6 of 25

coincide with the action space A. In all other states x from E \ Ê the subsets A(x) = {0}
includes only a fictitious control action 0 which has no influence on the system’s behavior.

The router can operate according to some heuristic control policies. It could be for
example a Longest Queue First (LQF) policy which is a dynamic one and it prescribes at
decision epochs to serve the next queue with the highest number of customers. If there are
more than one queue with the same maximal number of customers, the queue number is
selected randomly. Alternatively, the static cµ-rule, which needs only the information if a
certain queue in non-empty, can be used for scheduling. According to this control policy
the queue i with the highest factor ciµi which is the product of the holding cost and the
service intensity, must be serviced next. In the system with totally symmetric queues the
former policy is according to [16] optimal. The latter control policy is optimal due to [17]
if there is no switching costs, i.e., ci,j = 0. Otherwise, in case of positive switching costs
and asymmetric or heterogeneous queues such policies are not optimal with respect to
minimization of the average cost per unit of time.

The main idea of an optimal scheduling in our general model is as follows. We
will equip the router with a trained neural network which will inform it on the index
number of the next queue to which the server should be routed with the aim to reach
formulated optimization aims. Obviously, we can only train the neural network on available
data sets, i.e., on some heuristic control policy, and then we will need to optimize the
network parameters such as the weights and the biases to solve the problem of finding the
optimal scheduling policy. In the average cost criterion the limit of the expected average
cost over finite time intervals is minimized in a set of admissible policies. The control
policy f : Ê → A(x) is a stationary policy which prescribes the usage of a control action
f (x) ∈ A(x) whenever at a decision epoch the system state is x ∈ E. The decision epochs
arise whenever after serving any queue that queue becomes empty. For studied controllable
queueing system operating under a control policy f , the average cost per unit of time for
the ergodic system is of the form

g f = lim
t→∞

1
t
E f
[∫ t

0

N

∑
i=1

ciQi(u)du +
N

∑
i=1

N

∑
j=1

ci,jSi,j(t)
∣∣∣X(0) = (d, 0, . . . , 0)

]
, (3)

where Si,j(t) is the random number of switches from queue i to queue j in time interval
[0, t]. Expectation E f must be calculated with respect to the control policy f . The policy f ∗

is said to be optimal when for any admissible policy f ,

g∗ := g f ∗ = min
f

g f . (4)

Our purpose focuses on a combination of simulation and neural network techniques.
To verify the quality of results obtained by solving the optimization problem (4) we for-
mulate an appropriate Markov decision problem. Then we compute the optimal control
policy together with the corresponding average cost g∗ using a policy iteration algorithm,
see, e.g., in Howard [30], Puterman [27], Tijms [28], which will be discussed in detail in a
subsequent section.

3. Markov Decision Problem Formulation

Assume that the inter-arrival and service times are exponentially distributed, i.e.,
νi ∼ E(λi) and ζi ∼ E(µi), i ∈ I. Under Markovian assumption the process (1) is a
continuous-time Markov chain with a state space E. The MDP associated with this Markov
process is represented as a five-tuple:

(E, A, {A(x), x ∈ E}, λxy(a), c(x, a)), (5)

where state space E, action spaces A and A(x) have been already defined in the previous section.

Sensors 2023, 23, 5479 7 of 25

– λxy is a transition rate to go from state x to state y by choosing a control action a is
defined as

λxy(a) =


λi y = x + ei,
µi y = x− ei, d(x) = i, qi(x) > 1,
µi y = x− ei + (a− i)e0, d(x) = i, qi(x) = 1, a ∈ A(x− ei),
0 otherwise for y 6= x,

(6)

where λxx := λxx(a) = −∑y 6=x λxy(a).
– c(x, a) is an immediate cost in state x ∈ E by selecting an action a,

c(x, a) =
N

∑
i=1

ciqi(x) + µjcj,a1{d(x)=j,qj(x)=1}.

Here the first summand denotes the total holding cost of customers in all parallel
queues in state x which is independent of a control action. Let c(x) = ∑N

i=1 ciqi(x)
and if ci = 1, i ∈ I, we get the number of customers in state x. The second summand
includes the fixed cost cj,a for switching the server from the current queue j to the
next queue with an index a.

The optimal control policy f ∗ and the corresponding average cost g f ∗ are the solutions
of the system of Bellman optimality equations,

Bv(x) = −λxxv(x) + g =
[N

∑
i=1

λi + µj1{d(x)=j,qj(x)≥1}

]
v(x) + g, x ∈ E, (7)

where B is a dynamic programming operator acting on value function v : E→ R.

Proposition 1. The dynamic programming operator B is defined as

Bv(x) = c(x) +
N

∑
i=1

λiv(x + ei) + µjv(x− ej)1{d(x)=j,qj(x)>1} (8)

+ µj min
a∈A(x−ej)

{v(x− ej + (a− j)e0) + cj,a}1{d(x)=j,qj(x)=1}, x ∈ E.

Proof. From the Markov decision theory, e.g., [27,28], it is known that for continuous time

Markov chain the operator B can be defined as Bv(x) = min
a

[
c(x, a) + ∑y 6=x λxyv(y)

]
. This

equality for the proposed system can be obviously rewritten in form (8). In this equation, the
first term c(x) represents the immediate holding cost of customers in state x. The second term
by λi describes the changes in value function due to new arrivals to the system. The third
term by µj for qj(x) > 1 stands for the value function by service completion in the queue j
where there are customers waiting for service. The last term by µj for qj(x) = 1 describes also
a service completion which leads now to the state with an empty queue when a control action
must be performed. Hence only the last term occurs with a min operator.

Note that the state space of the Markov decision model is countable infinite and the
immediate costs c(x, a) are unbounded. The existence of the optimal stationary policy and
convergence of the policy iteration algorithm can be verified for the system under study in
a similar way as in Özkan and Kharoufeh [32], where first, the convergence of the value
iteration algorithm for the equivalent discounted model is proved, and then, using the
criteria proposed in Sennott [33], this result is extended to the policy iteration algorithm for
the average cost criterion.

To solve Equation (8) in the policy iteration algorithm required to calculate the optimal
control policy, we convert the multidimensional state space into a one-dimensional space by

Sensors 2023, 23, 5479 8 of 25

mapping ∆ : E→ N0. The buffer sizes of the queues must be obviously truncated, namely
Bi < ∞. Thereby the state x = (d, q1, . . . , qN) can be rewritten in the following form:

s := ∆(x) = d(x)β1,N +
N

∑
i=1

qi(x)βi,N−1, (9)

where βi,j = ∏
j
k=i(Bk + 1) with βN,N−1 = 1. The notation ∆−1(s) will be used for the

inverse function. In one-dimensional case the state transitions can be expressed as

∆(x± ei) = ∆(x)± βi,N−1,

∆(x + (a− j)e0) = ∆(x) + (a− j)β1,N .

The set of states E in truncated model is finite with a cardinality |E| = Nβ1,N . The
policy iteration Algorithm 1 consists of two main steps: Policy evaluation and policy
improvement. In first step for the given initial control policy, it can be for example the
LQF policy, the system of linear equations with constant coefficients must be solved. To
make the system solvable the value function v(s) for one of the states can be assumed to
be an arbitrary constant, e.g., v(0) = 0 in the first state with d = 1 and qi = 0. In this
case we obtain from the optimality Equation (7) the equality g = ∑N

i=1 λiv(βi,N−1). The
remaining equations can be solved numerically. As a solution we get the |E| values v(s)
and the current value of the average cost g. In the policy improvement step, a control action
a that minimizes the test value in the right-hand side of Equation (7) must be evaluated.
The algorithm generates a sequence of control policies that converges to the optimum
one. The convergence of the algorithm requires that the control actions in two adjacent
iterations coincide in each state. To avoid policy improvement bouncing between equally
good control actions in a given state, one can simply keep the previous control action
unchanged if the corresponding test function is at least as large as for any other policy in
determining the new policy. As an alternative to the proposed convergence criterion, one
can use the values of average costs the variation of which should be for example less than a
given some small value.

Example 1. Consider the queueing system with N = 4 queues. The buffer sizes are equal
to Bi = 10, i ∈ I. At these settings the number of states already reaches large values,
|E| = 58, 564, which confirms one of significant restrictions on application of dynamic
programming for this type of control problems. The switching costs can be defined for
example as ci,j = j− i + 4 mod 4. The holding costs ci for simplicity are assumed to be
equal. The values of system parameters λi, µi, ci and ci,j are summarized in Table 1 and
reflect heterogeneity of the system parameters, i.e., λi = 0.05i and µi =

3.750
i .

Table 1. The values of system parameters.

i 1 2 3 4

λi 0.05 0.10 0.15 0.20

µi 3.750 1.875 1.250 0.938

ci 1 1 1 1

ci,1 0 1 2 3

ci,2 3 0 1 2

ci,3 2 3 0 1

ci,4 1 2 3 0

Sensors 2023, 23, 5479 9 of 25

Algorithm 1 Policy iteration algorithm

1: procedure PIA(N, Bi, λi, µi, ci, ci,j, i, j ∈ I)
2: . Initial policy

f (0)(s) =

Random{arg max
j∈I

{qj(∆−1(s))}} if d(∆−1(s)) = i ∈ I, qi(∆−1(s)) = 0

0 otherwise

3: n← 0

4: g(n) ← ∑N
i=1 λiv(n)(βi,N−1) . Policy evaluation

5: for s = 1 to |E| do
6:

v(n)(s)← 1

∑N
i=1 λi + µj1{qj(∆−1(s))>0}

[
c(∆−1(s)) + µjcj,a1{d(∆−1(s))=j,qj(∆−1(s))=1} − g(n)

+
N

∑
i=1

λi[v(n)(s + βi,N−1)1{qi(∆−1(s))<Bi} + v(s)1{qi(∆−1(s))=Bi}]

+ µjv(n)(s− β j,N−1)1{d(∆−1(s))=j,qj(∆−1(s))>1}

+ µjv(n)(s− β j,N−1 + (a− j)β1,N)1{d(∆−1(s))=j,qj(∆−1(s))=1}

]
,

a← f (n)(s− β j,N−1)

7: end for
8: . Policy improvement

f (n+1)(s)← arg min
a∈A(s−β j,N−1)

{cj,a + v(n)(s− β j,N−1 + (a− j)β1,N)}1{d(∆−1(s))=j,qj(∆−1(s))=1}

9: if f (n+1)(s)← f (n)(s), s ∈ {0, 1, . . . , |E|} then return f (n+1)(s), v(n)(s), g(n)

10: else n← n + 1, go to step 4

11: end if

12: end procedure

These values correspond to the system load ρ = ∑N
i=1 ρi = 0.4, that is the system is

stable. This value is enough small to ensure on the one hand that the system is sufficiently
loaded so that states appear where all queues are not empty, and on the other hand to
minimize the probability of losing an arriving customer for given rather small buffer sizes.
The solution of the large system of optimality equations is carried out numerically. The
optimized average cost is g∗ = 2.5632.

Using Algorithm 1, we calculate the optimal scheduling policy. For some of states
with fixed number of customers in the third and the fourth queues and varied number of
customers in the first two queues the control actions are listed in Table 2. The first row of
the table contains the values of the number of customers q2 and q1 in the second or first
queue when a decision is made, respectively, when the first or second queue is emptied.
The first column contains some selected states of the system for the fixed levels q3 and q4 of
the third and fourth queues. As we can see, the optimal scheduling policy has a complex
structure with a large number of thresholds, making it difficult to obtain any acceptable
heuristic solution explicitly. To better visualise the complexity in structure of the optimal
control policy, the background of the table cells changes in grey colour from darker to
lighter backgrounds as the queue index decreases. The cµ-rule as expected is not optimal
here, gcµ = 6.7237 that is almost two and a half times more than the value of the average

Sensors 2023, 23, 5479 10 of 25

cost under the optimal policy. When the values q1 and q2 are small, the router schedules
the server to serve the queues with low service rates. In this case the switching costs are
low as well. According to the optimal scheduling policy the initiative to route a server to
the queue with a higher service rate and switching costs increases as the length of the first
two queues increases.

Table 2. The optimal scheduling policy for selected states.

(d, q1, q2, q3, q4) 0 1 2 3 4 5 6 7 8 9 10

(1, 0, q2, 1, 1) 4 4 4 4 4 4 4 4 4 4 4

(1, 0, q2, 3, 3) 4 4 4 4 4 3 3 3 3 3 3

(1, 0, q2, 5, 5) 4 3 3 3 3 3 3 2 2 2 2

(1, 0, q2, 8, 8) 3 3 3 3 2 2 2 2 2 2 2

(1, 0, q2, 9, 9) 3 3 2 2 2 2 2 2 2 2 2

(2, q1, 0, 1, 1) 4 4 4 4 4 4 4 4 4 4 4

(2, q1, 0, 3, 3) 4 4 4 4 4 4 3 3 3 3 3

(2, q1, 0, 5, 5) 3 3 3 3 3 3 3 3 3 3 3

(2, q1, 0, 8, 8) 3 3 3 3 3 3 3 3 3 3 3

(2, q1, 0, 9, 9) 3 3 3 3 3 3 3 3 1 1 1

Example 2. In this example we increase the arrival rates λi as given in Table 3. The other
parameters are fixed at the same values as in the previous example. The load factor now is
ρ = 0.64, and the corresponding optimized average cost is g∗ = 3.8201 and gcµ = 7.0420.

Table 3. The values of arrival rates.

i 1 2 3 4

λi 0.08 0.16 0.24 0.32

The Table 4 of scheduling policy shows that as the system load increases the router
switches the server to queue 2 or to queue 1 with a higher service rates at almost all queue
lengths q1 and q2, respectively.

Table 4. The optimal scheduling policy for selected states.

(d, q1, q2, q3, q4) 0 1 2 3 4 5 6 7 8 9 10
(1, 0, q2, 1, 1) 3 2 2 2 2 2 2 2 2 2 2
(1, 0, q2, 3, 3) 3 2 2 2 2 2 2 2 2 2 2
(1, 0, q2, 5, 5) 3 2 2 2 2 2 2 2 2 2 2
(1, 0, q2, 8, 8) 3 2 2 2 2 2 2 2 2 2 2
(1, 0, q2, 9, 9) 3 2 2 2 2 2 2 2 2 2 2
(2, q1, 0, 1, 1) 3 3 1 1 1 1 1 1 1 1 1
(2, q1, 0, 3, 3) 3 3 1 1 1 1 1 1 1 1 1
(2, q1, 0, 5, 5) 3 1 1 1 1 1 1 1 1 1 1
(2, q1, 0, 8, 8) 3 1 1 1 1 1 1 1 1 1 1
(2, q1, 0, 9, 9) 3 1 1 1 1 1 1 1 1 1 1

4. Event-Based Simulation for General Model

We use an event-based simulation to simulate the proposed queueing system. This
technique is suitable for random process evaluation where it is sufficient to have the
information about the time instants when changes in states occur. Such changes will be
referred to as events. Note that although simulation modelling is extensively used in
queueing theory, many papers lack explicitly described algorithms that readers can use
for independent research. For more information on simulation methods with applications
to single- and multi-server queueing systems, we can recommend Ebert et al. [34] and

Sensors 2023, 23, 5479 11 of 25

Franzl [35]. In this regard, it will certainly not be superfluous if we present and discuss
here an algorithm for the system simulation which is not difficult to adapt for other
similar systems.

In our case, the events are the arrivals to one of N parallel queues and the departures
of customers from the queue d currently being served by the server. The present time is
selected as a global time reference.

In Figure 2, on the time axis we mark the moments of arrival of new customers
and the moments of their service in a fixed queue with index d by means of arrows
above and below the axis, respectively. The dotted arrows indicate the arrival of new
customers in other queues. The successive events are denoted by εi and the correspond-
ing time moments by t(εi). In the proposed queue simulation Algorithm 2 all the times
are referred to the present time. Suppose that at the present moment of time there is
a new arrival to the queue with the number d, which is serviced by the server, i.e.,
t(εi) = 0. Denote by Tx(εi) the holding time of the system in state x up to the occur-
rence of the event εi. According to the time schema the holding time in a previous
state is defined as ti = min{Tx(εi), Tb(d) − Tx(εi−1), . . . } = Tx(εi), where Tx(εi) is a
remaining inter-arrival time to the queue d, Tb(d) stands for the generated service time
after the event εi−2 of the previously occurred departure and the dots replace the time
intervals associated with arrivals of customers in other queues. The next event is de-
termined then by subtracting the holding time ti from the all event time intervals. In
this case the current event is a new arrival. Thus, the holding time ti+1 in state up
to the event εi+1 of an arrival to some other queue which not equal to d is calculated
by ti+1 = min{Ta(d), Tb(d) − ∑i

j=i−1 Tx(ε j), . . . } = Tx(εi+1). The subsequent holding

times are calculated as follows, ti+2 = min{Ta(d)− Tx(εi+1), Tb(d)−∑i+1
j=i−1 Tx(ε j), . . . } =

Tx(εi+2) = Tb(d) − ∑i+1
j=i−1 Tx(ε j), i.e., the event εi+2 is then the next departure from

queue d, ti+3 = min{Ta(d)−∑i+2
j=i+1 Tx(ε j), Tb+1(d), . . . } = Tx(εi+3), where Tb+1(d) is the

next generated service time, ti+4 = min{Ta(d)−∑i+3
j=i+1 Tx(ε j), Tb+1(d)− Tx(εi+3), . . . } =

Tx(εi+4) = Tb+1(d)− Tx(εi+3) and ti+5 = min{Ta(d)−∑i+4
j=i+1 Tx(ε j), Tb+2, . . . } = Tx(εi +

5) = Ta(d) − ∑i+4
j=i+1 Tx(ε j) is a remaining inter-arrival time for the next arrival to the

queue d. Continuing the process in a similar manner, all holding times of the system in
the corresponding states are evaluated. By summing up the times ti we obtain the total
simulation running time of the system simT. The average cost per unit of time is then
obtained by division of the accumulated cost by the time symT.

Figure 2. The time assignment for the present time based simulation.

The time instants of arrival events to the queue q ∈ I are stored in vector variable Ta
and the departure events in the queue with a number q in Tb[q]. The Algorithm 2 contains
pseudo-code of the main elements of the event based simulation procedure.

Sensors 2023, 23, 5479 12 of 25

Algorithm 2 Queue simulation algorithm
1: procedure QSIM(N, Bi , Ai , Bi , ci , ci,j , i, j ∈ I, θ, nmax,nmin) . Initialization

2: Ta = (0, . . . , 0), |Ta | = N, Tb = ((∞), . . . , (∞)), |Tb | = N, xT = 0, i = 0, sc = 0

3: d = Random[{1, . . . , N}], x = (d, 0, . . . , 0), |x| = N + 1

4: while i < nmax do . State recording

5: ti ← min(Ta , min(Tb [1]), . . . , min(Tb [N]))

6: Ta ← Ta − ti

7: for q = 1 to N do

8: Tb [q](2 : |Tb [q]|)← Tb [q](2 : |Tb [q]|)− ti

9: end for

10: if i > nmin then

11: simT ← simT + ti . Simulation time

12: xT ← xT + ti ∑N
j=1 cj x[j + 1] + sc . Sum up the cost

13: end if

14: cs← 0

15: for q = 1 to N do

16: if (q = d & Ta [q] ≤ ε) then return

17: Ta [q]← RandomVariate[Aq(t)] . Generate interarrival time

18: x ← x + eq+1(N + 1), i← i + 1

19: if |Tb [q]| ≤ 1 then return

20: Tb [q]← (Tb [q], RandomVariate[Bq(t)]) . Generate service time

21: end if

22: end if

23: if (q = d & Ta [q] > ε & |Tb [q] ≤ ε| > 0) then return

24: index← Tb [q] ≤ ε . Index of the current departure

25: Tb [q]← (Tb [q] \ Tb [q][index]) . Remove current departure

26: x ← x− eq+1(N + 1)

27: if x[q + 1] ≥ 1 then return

28: Tb [q]← (Tb [q], RandomVariate[Bq(t)])

29: end if

30: if x[q + 1] = 0 then return

31: a← f (x, θ), d← a . New server scheduling

32: x ← x + (a− q)e1(N + 1)

33: sc = cq,a

34: if x[a + 1] > 0 then return

35: Tb [a]← (Tb [a], RandomVariate[Ba(t)]) . Generate service time

36: end if

37: end if

38: end if

39: if (q 6= d & Ta [q] ≤ ε) then return

40: Ta [q]← RandomVariate[Aq(t)] . Generate inter-arrival time

41: x ← x + eq+1(N + 1), i← i + 1

42: end if

43: end for

44: end while

45: g← xT/simT

46: end procedure

Sensors 2023, 23, 5479 13 of 25

5. Neural Network Architecture

In our model, we propose to equip the router with a trained neural network. This
network will determine an index of the queue that the server will serve next based on the
information about the system state at a decision epoch when the server finishes service of
the current queue. We have chosen a simple architecture for the neural network consisting
of only two layers in such a way that, on the one hand, it would have a small number
of parameters for further optimization and, on the other hand, that the quality of correct
classification of some fixed initial control policy would be equal to at least 95%. The
proposed neural network has one linear layer which represents an affine transformation
and softmax normalization layer as illustrated in Figure 3.

Figure 3. Neural network architecture.

The input includes N + 1 neurons according to the system state x = (d, q1, . . . , qN),
where qd(x) = 0. The neuron 0 gets the information on d(x), the ith neuron for i ∈ I gets
the information on the state of ith queue. When the server finishes service at queue d, then
the neural network classifies this state to one of N classes which defines a current control
action a ∈ A in state x. The hidden linear layer consists of N neurons y = (y1, . . . , yN)

′

which are connected with an input neurons via the system of linear equations

y1 = w1,0x0 + w1,1x1 + · · ·+ w1,N xN + b1

y2 = w2,0x0 + w2,1x1 + · · ·+ w2,N xN + b2

. . .

yN = wN,0x0 + wN,1x1 + · · ·+ wN,N xN + bN ,

or in matrix form y = Wx + B with W ∈ RN×(N+1) and B ∈ RN , where

W =


w1,0 w1,1 . . . w1,N
w2,0 w2,1 . . . w2,N

...
...

. . .
...

wN,0 wN,1 . . . wN,N

 =


w1
w2
...

wN

 and B = (b1, b2, . . . , bN)
′ (10)

with wi = (wi,0, wi,1, . . . , wi,N) are, respectively, the matrix of weights and the vector of
biases of the given neural network which must be estimated by means of the training
set. The softmax layer z = softmax(y) is a final layer of the multiclass classification. The
softmax layer generates as an output the vector of N estimated probabilities of the input

Sensors 2023, 23, 5479 14 of 25

sample yi, where the ith entry is the likelihood that x belongs to class i. The vector y is
normalized by the transformation

z =


z1
z2
...

zN

 =
1

∑N
i=1 eyi


ey1

ey2

...
eyN

.

The class number is then defined as â = arg max zi. Hence, the output z is a mapping of the
form z = ϕ(x, θ), where θ ∈ RN(N+2) is the parameter vector of the neural network which
includes all entries of the weight matrix W ∈ RN×(N+1) and the bias vector B ∈ RN , i.e.,

θ = (w1, w2, . . . , wN , B′). (11)

The values of the parameter vector θ of the initial control policy, which in the next section
will be used as a starting solution for optimization procedure, are obtained by training the
neural network on some known heuristic control policy. In our case this policy is the LQF.
In the training phase the following optimization problem must be solved given the training
set {x(k)}m

k=1 → {a
(k)}m

k=1,

θ∗ = arg min
θ

1
m

m

∑
k=1

lk(θ), (12)

where a non-negative loss function

lk(θ) = −
N

∑
i=1

1{a(k)=i} ln z(k)i

with z(k)i = P[a(k) = i|x(k), θ] takes the value 0 only if the class of the kth element of a sample
is i, i.e., â = a(k). The problem (12) can be solved in a usual way by the stochastic gradient
descent method, where a single learning rate η to update all parameters is maintained. The
corresponding iterative expression is given below,

θ(n) = θ(n−1) − η∇θ

(1
m

m

∑
k=1

lk(θ(n−1))
)

,

where∇θ is a Nabla-operator defining the gradient of the function relative to the parameter
vector θ. In our calculations we use the adaptive moment estimation algorithm (ADAM) to
solve the problem (12). It updates iteratively the parameters of the neural network based on
training data. The ADAM calculates independent adaptive learning rates for the elements
of θ by evaluating the first-moment and second moment estimation of the gradient. The
method is simple to implement, computationally efficient, requires little memory and is
invariant to diagonal changes in gradients. The further detailed information regarding
ADAM algorithm can be found in Kingma and Ba [36]. Despite the fact that the ADAM
algorithm can be found across various sources, we have also chosen to cite it in this article.
The main steps required for the iterative updating the parameter vector θ are summarized
in the Algorithm 3.

The parameters of the Algorithm 3 are fixed to η = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8

and δ = 0.001. The classification accuracy of the proposed neural network trained on the
LQF policy is over 97%. The test phases of the trained network were conducted on system
states with a queue length of up to 100 customers per queue. Thus, this starting network can
be used to generate control actions of the initial control policy for subsequent parameters’
optimization of this neural network.

Sensors 2023, 23, 5479 15 of 25

Algorithm 3 Adaptive moment estimation algorithm

1: procedure ADAM(η,β1,β2,ε,δ)

2: M(0)
1 ← (0, . . . , 0) . Initialisation of the moment 1

3: M(0)
2 ← (0, . . . , 0) . Initialisation of the moment 2

4: CI ← 0 . Convergence index

5: n← 0

6: while CI = 0 do

7: n← n + 1

8: G(n) ← ∇θ

(
1
m ∑m

k=1 lk(θ(n−1))
)

. Calculate the gradient at step n

9: M(n)
1 ← β1M(n−1)

1 + (1− β1)G(n) . Update the biased first moment

10: M(n)
2 ← β2M(n−1)

2 + (1− β2)(G(n))2 . Update the biased second moment

11: M̂(n)
1 ← M(n)

1
1−βn

1
. The bias-corrected first moment

12: M̂(n)
2 ← M(n)

2
1−βn

2
. The bias-corrected second moment

13: θ(n) = θ(n−1) − η
M̂(n)

1√
M̂(n)

2 +ε
. Update the parameter vector

14: if |θ(n) − θ(n−1)| < δ then return θ(n)

15: CI ← 1 . Check the convergence

16: end if

17: end while

18: end procedure

6. Optimization of the Neural-Network-Based Scheduling Policy

Denote by θ the known parameter vector of the trained neural network as was defined
in (11). The function g(θ) means the average cost for the queueing system where the router
chooses an action obtained from the trained neural network with the parameter vector
θ. We adapt further a simulated annealing method described in Algorithm 4 for discrete
stochastic optimization of the average cost function

g∗ = min
θ

g(θ), θ∗ = arg min
θ

g(θ) (13)

with a multidimensional parameter vector θ. This algorithm is quite straightforward. It
needs some starting solution and in each iteration the algorithm evaluates for the randomly
selected neighbor values of the function parameters the corresponding function value.
If the neighbor occurs to be better than the current solution with respect to value of the
objective function, algorithms replaces the current solution with a new one. If the neighbor
value is worse, the algorithm keeps the current solution with a high probability and chooses
a new value with a specified low probability.

The simulated annealing requires the finite discrete space for the parameters of the opti-
mized function. It is assumed that all weights and biases of the neural network summarized
in the vector θ take values in the interval [θmin, θmax] with a low bound θmin and an upper
bound θmax. Moreover, this interval is quantized in such a way that θi, i = 1, . . . , N(N + 2),
takes only discrete values θmin + k∆, k = 0, 1, . . . , Q, where Q = θmax−θmin

∆ is a quantization

Sensors 2023, 23, 5479 16 of 25

level. Note that the domains for the elements of the parameter vector θ can be specified
separately, and the values of the vector obtained by training the neural network based
on the optimal policy of the Markov model will be suitable for determining the possible
maximum and minimum bounds. In this case it is possible to achieve faster convergence of
Algorithm 4 to the optimal value.

Algorithm 4 Simulated annealing algorithm

1: procedure SA(T(n),∆,m,η,τ,ν,θmin,θmax) . Initialisation

2: θ(0) ← (w1,LQF, w2,LQF, . . . , wN,LQF, B′LQF)

3: n← 0

4: ḡ(θ(n))← 1
m ∑m

k=1 QSIM(. . . , θ(n))

5: g∗ ← ḡ(θ(n)), θ∗ ← θ(n)

6: while T(n) > τ||n < ν do

7: n← n + 1 . Perturbation

8: i← Random[{1, . . . , N(N + 2)}]

9: ξ ← Random[{max{−η∆, θmin − θ
(n−1)
i }, . . . , min{η∆, θmax − θ

(n−1)
i }}]

10: θ(n) ← θ(n−1) + ξe′i

11: ḡ(θn)← 1
m ∑m

k=1 QSIM(. . . , θ(n)) . Acceptance

12: if ḡ(θ(n))− g∗ − Sg(θ(n)),g(θ(n−1))t2m−2;1−α > 0 then return

13: p← e−
ḡ(θ(n))−g∗−S

g(θ(n)),g(θ(n−1))
t2m−2;1−α

T(n)

14: else p← 1

15: end if

16: u← Random[]

17: if p ≥ u then return g∗ ← ḡ(θ(n)), θ∗ ← θ(n)

18: else θ(n) ← θ(n−1), m← m + 1

19: end if

20: end while

21: end procedure

Since the average cost function g can not be calculated analytically, for this purpose
a simulation technique is used. As shown in Algorithm 4, at each iteration at the step
where the current solution can be accepted with a given probability we need to calculate
the difference between the object functions. Due to the fact that this function can only
be calculated numerically, it is necessary to check whether this difference is statistically
significant at each iteration of the algorithm. The algorithm is modified in such a way
that the t-test for two samples is used to compare the expected values of two normally
distributed samples with unknown but equal variances. Denote by θ1 and θ2, respectively,
the current and the modified parameter vector and by

ḡ(θ1) =
1
m

m

∑
k=1

g(k)(θ1), ḡ(θ2) =
1
m

m

∑
k=1

g(k)(θ2) (14)

Sensors 2023, 23, 5479 17 of 25

two corresponding first empirical moments of the objective function. According to the t-test
the null hypothesis which states that for the modified vector the average cost is statistically
smaller then the previous solution is rejected if

ḡ(θ2)− ḡ(θ1)− Sg(θ1),g(θ2)
t2m−2;1−α > 0, (15)

where tm;q stands for the q-quantile of the t-distribution and statistics Sg(θ1),g(θ2)
is defined as

Sg(θ1),g(θ2)
=

√√√√V(m)
g(θ1)

+ V(m)
g(θ2)

m
, (16)

with empirical variances V(m)
g(θ1)

and V(m)
g(θ2)

.
Below, we briefly describe the main steps of the Algorithm 4. At the initialisation

step of the algorithm, the neural network is trained based on the LQF control policy. The
parameter vector is then equal to the initial vector θ(0) to be optimized. The simulation
Algorithm 2 is then used to calculate the initial sample {g(k)(θ(0))}m

k=1 with g(k)(θ(0)) =
QSIM(. . .) of the average cost function for a given initial parameter vector θ(0) and the
corresponding first empirical moment ḡ(θ(0)). These values are set as the current solution
g∗ and θ∗ to the optimization problem (13). At the perturbation step, a randomly chosen
element of the previous parameter vector θ(n−1) must be randomly perturbed on the
specified set

L(i) = {max{θ(n−1)
i − η∆, θmin}, . . . , min{θ(n−1)

i + η∆, θmax}}

of admissible discrete domain. For a new parameter vector θ(n) next sample {g(k)(θ(n))}m
k=1

of average costs must be calculated together with the first empirical moment ḡ(θ(n)). At the
acceptance step, a new policy θ(n) can be accepted as a current solution with a probability
p defined as

p =


1 if ḡ(θ(n)) ≤ g∗

e−
ḡ(θ(n))−g∗−S

g(θ(n)),g(θ(n−1))
t2m−2;1−α

T(n) if ḡ(θ(n)) > g∗,

where T(n) is the temperature at the nth iteration. If a new policy θ(n) is accepted, then it is
defined together with a corresponding average cost ḡ(θ(n)) as a current solution. Otherwise,
the last change in the parameter vector θ(n−1) must be reversed, i.e., θ(n) = θ(n−1) and the
sample size m for calculating the first moments is updated. Then the perturbation step
must be repeated. For termination of the algorithm the stopping criteria T(n) < τ or n < ν
is used.

We note that the classical simulated annealing method generates for some function
g(θ) a sample θ(n) which for the constant temperature T(n) = T can be interpreted as a
realization of a homogeneous Markov chain {Θn}{n ∈ N0} with transition probabilities

pθi ,θj = P[Θn+1 = θj|Θn = θi] =
1
|L(i)|P

[
Un ≤ e−

g(θj)−g(θi)
T

]
, θj ∈ L(i), (17)

where Un is a uniformly distributed random variable on the interval [0, 1]. It is easy to
show that the modified transition probabilities, where the objective function is calculated
numerically, converges to the transition probabilities (17) which in turn can guarantee the
convergence to an optimal solution.

Sensors 2023, 23, 5479 18 of 25

Proposition 2. The acceptance probability p(n) satisfies the limit relation

lim
n→∞

p(n) = lim
n→∞

P
[
Un ≤ e−

ḡ(θj)−ḡ(θi)−Sg(θj),g(θi)
t2m−2;1−α

T

]
= P

[
Un ≤ e−

g(θj)−g(θi)
T

]
. (18)

Proof. The probability P[Un ≤ X] can be obviously rewritten as

P[Un ≤ X] =
∫ 1

0
P[u ≤ X] fUn(u)du = E[X],

where X = e−
ḡ(θj)−ḡ(θi)−Sg(θj),g(θi)

t2m−2;1−α

T . Then the following relation holds,

lim
n→∞

E
[
e−

ḡ(θj)−ḡ(θi)−Sg(θj),g(θi)
t2m−2;1−α

T

]
= E

[
e−

g(θj)−g(θi)
T

]
,

due to the strong law of large numbers and the fact that for n→ ∞ the sample size m→ ∞
and hence

lim
m→∞

Sg(θj),g(θi)
= lim

m→∞

√
σ2

j + σ2
i

m
= 0.

7. Numerical Analysis

Consider the queueing system with N = 4. We first analyse a Markov model, where
the parallel queues are of the type M/M/1 with νi ∼ E(λi) and ζi ∼ E(µi), i ∈ I, the
coefficient of variation CV2

νi
= CV2

ζi
= 1. The values of system parameters λi and µi

are fixed as in examples 1 and 2 which will refer to as Cases 1 and 2. We compare the
optimization results obtained by combining the simulation, neural network and simulated
annealing algorithm with the results evaluated by the policy iteration algorithm. In Cases 1
and 2, the weights and the biases of the neural network trained on the calculated by PIA
optimal scheduling policy take, respectively, the following values

WPIA =


0.4 3.2 0.3 0.1 0.2
−0.3 −3.8 0.8 0.2 0.2
0.1 −2.9 −3.6 0.4 0.3
0.4 −0.3 −1.6 −1.3 0.3

 BPIA = (−1.6, 1.0, 0.9, 0.4),

WPIA =


0.5 2.0 0.2 0.0 0.3
−0.3 −2.0 0.7 0.0 0.3
0.2 −1.3 −2.1 0.0 0.4
0.1 0.0 −1.0 0.0 0.3

 BPIA = (−1.1, 1.1, 0.6, 0.0).

On the basis of these values, we can estimate in the simulation annealing Algorithm 4
the domain or solution space for each element of the vector θ. For simplicity, in our
experiments we set common boundaries for all elements as θmin = −6 and θmax = 6. The
length of the increment ∆ = 0.1 implies the quantization level Q = 120. Next, we set
η = 6, ν = 200, and T(n) = 0.2

log(n) . As an initial vector θ(0) we take the parameter vector
obtained by training the neural network on the LQF policy. For the initial control policy,
one could also choose the policy WPIA, BPIA obtained by Algorithm 1. However, we would
like to check the convergence of the algorithm when choosing not the best initial solution,
since in general case one usually chooses either some heuristic policy or an arbitrary one.
The empiric average cost ḡ(θ(n)) for each iteration step is calculated based on sample with
a size m ≥ 20. The accumulation of sample data in QSIM Algorithm 2 is carried out
after 1000 customers have entered the system and is completed after 5000 customers have
entered the system.

Sensors 2023, 23, 5479 19 of 25

Application of the Algorithm 4 to a Markov model leads to the following optimal
solutions:

Case 1: Optimal solution is reached at n = 184, g∗ = g(θ∗) = 2.2436,

WLQF =


0.5 2.0 −1.0 0.7 −0.9
0.3 −0.7 1.6 −0.7 −0.9
0.4 −0.6 −1.3 2.0 −0.8
0.0 −0.6 −1.3 −1.8 1.9

⇒WSA =


0.7 5.3 −0.3 −0.8 0.9
0.4 −2.8 1.6 0.2 −0.1
0.4 −5.7 −5.9 1.6 0.9
1.0 −0.7 −2.3 −2.8 1.2


BLQF = (0.5,−0.1,−0.2,−0.2)′ ⇒ BSA = (−1.8,−0.2,−0.6,−0.3)′.

Case 2: Optimal solution is reached at n = 188, g∗ = g(θ∗) = 3.2279,

WLQF =


0.5 2.0 −1.0 0.7 −0.9
0.3 −0.7 1.6 −0.7 −0.9
0.4 −0.6 −1.3 2.0 −0.8
0.0 −0.6 −1.3 −1.8 1.9

⇒WSA =


0.4 5.3 −0.6 0.8 0.4
−0.2 −3.2 1.8 0.0 0.3
0.5 −3.1 −3.9 1.4 0.0
0.4 −1.0 −1.0 −3.5 1.3


BLQF = (0.5,−0.1,−0.2,−0.2)′ ⇒ BSA = (−2.5, 0.6, 0.0, 0.6)′.

We see that the elements of matrices WPIA and WSA are different, but they are markedly
similar in terms of the elements with dominant values. The optimization process of
the scheduling policy is illustrated in Figure 4. In addition to values of the average
cost function obtained at each iteration step of the simulated annealing algorithm, the
figures show horizontal dotted and dash-dotted lines, respectively, at level of the average
cost gLQF = 9.7093 and gcµ = 4.1984 in figure labelled by (a) and gLQF = 11.1740 and
gcµ = 5.2546 in figure labelled by (b) for the LQF and cµ heuristic policies. As expected,
a non-optimal control policy LQF implies too high average cost. The results look much
better for policy cµ, but still the presence of switching costs significantly worsens the
performance of this policy. The red horizontal line indicates the average cost gPIA = 2.5632
and gPIA = 3.5500 obtained by solving the Markov decision problem using the policy
iteration Algorithm 1. We can observe that the values are quite close to those obtained by
random search. However, some small difference may be due, firstly, to the fact that the
simulation is used for calculations and the results have a certain scattering, and, secondly,
we do not exclude the influence of boundary states in the Markov model, where a buffer
size truncation has been used. Testing the hypothesis for the difference between the optimal
average costs g∗ and gPIA at least for our model showed the values to be statistically
equivalent. In the figures, we have also marked with triangles those iteration steps with
accepted policy (AP) where the perturbed parameter vector has been accepted. The number
of accepted points in Case 1 and 2 is equal, respectively, to 98 and 110. From above results
in case of exponential time distributions we can make the following observations. If the
parameter vector θ(0) with elements WPIA and BPIA is used for the initial scheduling policy,
then one can expect the faster convergence of the simulated annealing algorithm to the
optimal solution which was confirmed numerically. If an optimal policy for a controlled
Markov process is not available, e.g., when the number of queues is too large, in this case it
is reasonable to use the static cµ-rule as an initial policy.

Sensors 2023, 23, 5479 20 of 25

▼▼▼▼

▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

0 50 100 150 200
0

2

4

6

8

10

12

n

g

▼ AP

gPIA

gcμ

gLQF

g ▼

▼▼▼▼▼▼▼▼▼▼▼▼

▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼ ▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼ ▼▼ ▼▼▼ ▼▼▼▼ ▼▼

0 50 100 150 200
0

2

4

6

8

10

12

n

g

▼ AP

gPIA

gcμ

gLQF

g

(a) (b)

Figure 4. Iteration steps for g with νi ∼ E(λi) and ζi ∼ E(µi) for Case 1 (a) and Case 2 (b).

Figure 5 displays experiments realized for the queues of the type D/D/1 with de-
terministic inter-arrival and service times which are equal to corresponding mean values
1
λi

and 1
µi

of the Markov model. Here the coefficient CV2
νi
= CV2

ζi
= 0. The SA algorithm

converges to the values g∗ = 1.6500 and g∗ = 2.0326, respectively, for Case 1 and 2 with
the following optimal policies,

Case 1:

WLQF =


0.5 2.0 −1.0 0.7 −0.9
0.3 −0.7 1.6 −0.7 −0.9
0.4 −0.6 −1.3 2.0 −0.8
0.0 −0.6 −1.3 −1.8 1.9

⇒WSA =


0.4 2.5 −0.7 −0.3 −0.2
0.4 −3.6 1.6 0.5 −0.5
0.5 −5.8 −1.2 1.2 0.0
0.9 −0.1 −3.5 −2.9 1.2


BLQF = (0.5,−0.1,−0.2,−0.2)′ ⇒ BSA = (0.1, 0.5, 0.8, 0.6)′.

Case 2:

WLQF =


0.5 2.0 −1.0 0.7 −0.9
0.3 −0.7 1.6 −0.7 −0.9
0.4 −0.6 −1.3 2.0 −0.8
0.0 −0.6 −1.3 −1.8 1.9

⇒WSA =


0.1 4.5 −1.2 0.7 0.9
−0.7 −2.6 1.8 0.0 0.5
0.0 −0.3 −3.8 0.6 0.6
0.5 −1.1 −3.4 −1.0 0.7


BLQF = (0.5,−0.1,−0.2,−0.2)′ ⇒ BSA = (−2.0,−0.3, 0.3,−1.0)′.

The average costs for heuristic policies take the values gLQF = 3.7333, gcµ = 2.8000,
gPIA = 1.6500 and gLQF = 5.0133, gcµ = 3.9866, gPIA = 2.7373.

▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼

0 50 100 150 200
0

2

4

6

8

10

12

n

g

▼ AP

gPIA

gcμ

gLQF

g

▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼

0 50 100 150 200
0

2

4

6

8

10

12

n

g

▼ AP

gPIA

gcμ

gLQF

g

(a) (b)

Figure 5. Iteration steps for g with νi =
1
λi

and ζi =
1
µi

for Case 1 (a) and Case 2 (b).

It is observed that the optimal policy obtained by the SA algorithm is quite close to
those obtained by the PIA. Nevertheless, from experiment to experiment certain deviations
in the value of the average costs may appear. Therefore it is of interest for us to check
whether such differences are statistically significant.

Sensors 2023, 23, 5479 21 of 25

Further we analyse how sensitive is the optimal policy obtained in exponential case
by the SA algorithm to the shape of arrival and service time distributions. The following
distributions will be used to calculate the optimal control policy in the non-exponential
case: gamma G(α, β), log-normal LN (µ, σ) and Pareto PR(α, k) distributions , where two
last options belong to a set of heavy tail distributions. The parameters of these distributions
are chosen so that their first and second moments coincide. Moreover, the first moments
are the same as for exponential distributions. The moments need to be represented as
functions depending on the corresponding sample moments as in the method of moments
used for parameter estimation. In the following experiments, the first moments of the
inter-arrival and service times are fixed at values of Case 2, and the squared coefficient
of variation is varied as CV2

νi
= CV2

ζi
= 0.5 and CV2

νi
= CV2

ζi
= 20. Denote by {Z(k)}m

k=1 a
sample random variable Z distributed according to the proposed distributions with two
first sample moments Z̄, Z̄2 and squared empirical coefficient of variation CV2

Z = Z̄2
Z̄ − 1.

Then for the gamma distribution Z ∼ G(α, β) with a PDF

fZ(z) =


β(βz)α−1e−βz

Γ(α) z ≥ 0,

0 z < 0

the parameters α > 0 and β > 0 satisfy the relations,

α =
1

CV2
Z

, β =
α

Z̄
.

In case of the lognormal distribution Z ∼ LN (µ, σ) with a PDF

fZ(z) =
1

σz
Φ
(ln(z)− µ

σ

)
, z > 0,

the parameters µ ∈ R and σ > 0 are calculated by

σ =
√

ln(1 + CV2
Z), µ = ln(Z̄)− σ2

2
.

In case of a Pareto distribution Z ∼ PR(k, α) with a PDF

fZ(z) =

{
αkα

xα+1 x ≥ k
0 x < k

the parameters k > 0 and α > 0 are calculated by relations

α = 1 +

√
1 + CV2

Z

CVZ
, k =

α− 1
α

Z̄.

Parameters of the proposed probability distributions are listed in Tables 5 and 6, respectively,
for inter-arrival and service time distributions.

Sensors 2023, 23, 5479 22 of 25

Table 5. Parameters for inter-arrival time distributions, CV2
νi
= 0.5 (a) and CV2

νi
= 20 (b).

(a)

i 1 2 3 4

G(αi, βi) (2.00, 0.16) (2.00, 0.32) (2.00, 0.48) (2.00, 0.64)

LN (mi, σi) (2.323, 0.637) (1.629, 0.637) (0.937, 0.637) (0.637, 0.637)

PR(ki, αi) (7.925, 2.732) (3.962, 2.732) (2.642, 2.732) (1.981, 2.732)

(b)

i 1 2 3 4

G(αi, βi) (0.05, 0.004) (0.05, 0.008) (0.05, 0.012) (0.05, 0.016)

LN (mi, σi) (1.003, 1.745) (0.310, 1.745) (−0.095, 1.745) (−0.383, 1.745)

PR(ki, αi) (6.326, 2.025) (3.163, 2.025) (2.109, 2.025) (1.582, 2.025)

Table 6. Parameters for service time distributions, CV2
ζi
= 0.5 (a) and CV2

ζi
= 20 (b).

(a)

i 1 2 3 4

G(αi, βi) (2.00, 7.500) (2.00, 3.750) (2.00, 2.500) (2.00, 1.875)

LN (mi, σi) (−1.524, 0.637) (−0.831, 0.637) (−0.426, 0.637) (−0.138, 0.637)

PR(ki, αi) (0.169, 2.732) (0.338, 2.732) (0.507, 2.732) (0.676, 2.732)

(b)

i 1 2 3 4

G(αi, βi) (0.05, 0.198) (0.05, 0.094) (0.05, 0.063) (0.05, 0.047)

LN (mi, σi) (−2.844, 1.745) (−2.151, 1.745) (−1.745, 1.745) (−1.458, 1.745)

PR(ki, αi) (0.135, 2.025) (0.269, 2.025) (0.405, 2.025) (0.539, 2.025)

The sensitivity of the optimal control policy to the shape of the distributions is tested
by means of a two-sided t-test for samples with unknown but equal variances. Let gexp
and gopt are the samples of the average cost values obtained for the optimal control policy
in case of exponentially distributed times and for the system with proposed distributions
for the inter-arrival and service times. These samples of size m are associated with the
normally distributed random variables Zexp ∼ N (µgexp , σgexp) and Zopt ∼ N (µgopt , σgopt),
where µgexp , µgopt ∈ R and σgexp = σgopt > 0. The test is defined then as

H0 : µgexp = µgopt H1 : µgexp 6= µgopt p = P
[|ḡexp − ḡopt|

Sgopt,gexp

> t2m−2;1− α
2

]
,

where statistics Sgopt,gexp is calculated by (16). The results of tests in form of the p-value,
the values of the average costs ḡexp and ḡopt together with their 95% confidence intervals
are summarized in Tables 7 and 8 for the systems with different inter-arrival and service
time distributions with smaller and greater levels of dispersion around the mean, d.h. for
CV2

νi
= CV2

ζi
= 0.5 in Table 7 and CV2

νi
= CV2

ζi
= 20 in Table 8. Table cell contains two rows

with the values for the average costs ḡexp and ḡopt together with confidence boundaries,
and the third row has the p-value.

Sensors 2023, 23, 5479 23 of 25

Table 7. Comparison of optimal policies for CV2
νi
= CV2

ζi
= 0.5.

hhhhhhhhhhhhhhhService
Arrival G LN PR

G
3.0836± 0.0286
3.0491± 0.0576
p = 0.2964

3.0556± 0.0196
3.0203± 0.0301
p = 0.0569

3.0096± 0.0437
3.0083± 0.0726
p = 0.9736

LN
3.0818± 0.0291
3.0445± 0.0233
p = 0.0527

3.0654± 0.0227
3.0282± 0.0364
p = 0.0931

3.0347± 0.0622
3.0351± 0.0877
p = 0.9881

PR
3.0904± 0.0485
3.0168± 0.0701
p = 0.0942

3.1142± 0.0539
3.0572± 0.0614
p = 0.1749

3.3081± 0.4249
3.1435± 0.1305
p = 0.4709

Table 8. Comparison of optimal policies for CV2
νi
= CV2

ζi
= 20.

hhhhhhhhhhhhhhhService
Arrival G LN PR

G
44.5518± 5.3662
40.8015± 4.0916
p = 0.2788

48.3524± 13.0935
38.6532± 15.3943
p = 0.3493

19.1573± 3.7810
16.3102± 1.6154
p = 0.1793

LN
44.0659± 4.6092
41.6925± 5.4512
p = 0.5162

26.7610± 6.0684
28.8180± 8.7892
p = 0.7067

9.6126± 1.9352
11.9165± 4.6811
p = 0.3759

PR
36.3436± 4.0311
34.1937± 2.4608
p = 0.3749

32.9247± 11.1232
24.4347± 4.1215
p = 0.1656

5.6667± 0.7101
6.4067± 1.5618
p = 0.4008

From the numerical examples, it is observed that the shape of distributions expressed
through a coefficient of variation has a high level of influence over the value of the average
cost functions ḡexp and ḡopt. In almost all cases, the average cost increases significantly when
the coefficient of variation increases. Only in the case of the Pareto distribution for the inter-
arrival and service times is the change in values not significant. However, an examination
of the entries in the last two tables reveals that in all experiments the p-value exceeds
the significance level of α = 0.05. Furthermore, it is worth noting that in most cases this
exceeding is sufficient large. In this regard, the statistical test fails to reject null hypothesis
at a given significance level, in other words, the average cost values are statistically equal
and the corresponding optimal control policies are equivalent. Therefore, at least within
the framework of the experiments conducted, we can state that the optimal scheduling
policy is insensitive to the shape of the inter-arrival and service time distributions given
that the first moments are equal. For practical purposes, in general queueing systems one
can either apply the proposed optimization method, or use the control policy optimized for
the equivalent exponential model as a suboptimal scheduling policy.

8. Conclusions

In this paper, we combined the queue simulation technique, neural network and
simulated annealing optimization to calculate the optimal scheduling policy and optimized
average cost function in a general single-server queueing system with multiple parallel
queues. The proposed combination of tools is sufficiently versatile to solve discrete op-
timization problems that occur during resource allocation in complex queueing systems
and networks. The numerical results subsequently demonstrate the effectiveness of the
proposed approach. The obtained optimal scheduling policy outperforms the best available
heuristic policy which is the cµ-rule by more than 45% on average. Nevertheless, a couple
of important points must be stressed that can be considered when using the proposed
method. In simulated annealing, the choice of initial control policy affects the speed of
convergence to the optimal solution. Furthermore, it is required that the finite domain be
defined for the solution. If the dimensionality of the state space allows, the initial control
policy and the corresponding finite solution space can be obtained by the policy iteration

Sensors 2023, 23, 5479 24 of 25

algorithm implemented for the Markov model. The obtained optimal solution seems to be
statistically insensitive to the form of inter-arrival and service time distributions where the
first two moments are the same. Moreover, the optimal policy in exponential case can be
treated as a suboptimal policy and the corresponding trained neural network can be used
by routers in queueing systems with arbitrary distributions. In terms of future research, we
see potential in developing and applying this method to other complex controlled queueing
systems where the search for optimal routing, scheduling and resource allocation policies
is required. The possibility to compose the reinforcement learning algorithms and neural
networks to solve optimization problems in general controlled queueing models could also
be considered as a further line of research.

Author Contributions: Conceptualization, V.V.; Methodology, D.E.; Validation, N.S.; Formal analysis,
D.E. and N.S.; Visualization, N.S.; Project administration, V.V.; Funding acquisition, V.V. All authors
have read and agreed to the published version of the manuscript.

Funding: Open Access Funding by the University of Linz. The reported study was funded by RSF,
project number 22-49-02023 (recipient V. Vishnevsky). This paper was supported by the RUDN
University Strategic Academic Leadership Program (recipient D. Efrosinin).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors can be contacted to obtain data used in the study.

Acknowledgments: The authors acknowledge, with gratitude, the useful and constructive comments
and remarks of an anonymous referee and the Editor.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vishnevsky, V.; Gorbunova, A.V. Application of machine learning methods to solving problems of queuing theory. In Information

Technologies and Mathematical Modelling. Queueing Theory and Applications: 20th International Conference, ITMM 2021, Named after
AF Terpugov, Tomsk, Russia, 1–5 December 2021; Communications in Computer and Information Science; Dudin, A., Nazarov, A.,
Moiseev, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 1605, pp. 304–316.

2. Stintzing, J.; Norrman, F. Prediction of Queuing Behaviour through the Use of Artificial Neural Networks. 2017. Available online:
http://www.diva-portal.se/smash/get/diva2:1111289/FULLTEXT01.pdf (accessed on 25 May 2023).

3. Nii, S.; Okuda, T.; Wakita, T. A performance evaluation of queueing systems by machine learning. In Proceedings of the IEEE
International Conference on Consumer Electronics (ICCE-Taiwan), Taoyuan, Taiwan, 28–30 September 2020.

4. Sherzer, E.; Senderovich, A.; Baron, O.; Krass, D. Can machines solve general queueing systems? arXiv 2022, arXiv:2202.01729.
5. Kyritsis, A.I.; Deriaz, M. A machine mearning approach to waiting time prediction in queueing scenarios. In Proceedings of the

2019 Second International Conference on Artificial Intelligence for Industries (AI4I), Laguna Hills, CA, USA, 25–27 September
2019; pp. 17–21.

6. Vishnevsky, V.; Klimenok, V.; Sokolov, A.; Larionov, A. Performance evaluation of the priority multi-server system
MMAP/PH/M/N using machine learning methods. Mathematics 2021, 9, 3236. [CrossRef]

7. Sivakami, S.M.; Senthil, K.K.; Yamini, S.; Palaniammal, S. Artificial neural network simulation for Markovian queueing models.
Indian J. Comput. Sci. Eng. 2020, 11, 127–134.

8. Efrosinin, D.; Stepanova, N. Estimation of the optimal threshold policy in a queue with heterogeneous servers using a heuristic
solution and artificial neural networks. Mathematics 2021, 9, 1267. [CrossRef]

9. Efrosinin, D.; Rykov, V.; Stepanova, N. Evaluation and prediction of an optimal control in a processor sharing queueing system
with heterogeneous servers. In Distributed Computer and Communication Networks: 23rd International Conference, DCCN 2020,
Moscow, Russia, 14–18 September 2020; Lecture Notes in Computer Science; Vishnevsky, V.M., Samouylov, K.E., Kozyrev, D.V., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; Volume 12563, pp. 450–462.

10. Gorbunova, A.V.; Vishnevsky, V. Evaluation of the Performance Parameters of a Closed Queuing Network Using Artificial Neural
Networks. In Distributed Computer and Communication Networks: Control, Computation, Communications: 24th International Conference,
DCCN 2021, Moscow, Russia, 20–24 September 2021; Lecture Notes in Computer Science; Vishnevskiy, V.M., Samouylov, K.E.,
Kozyrev, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 13144, pp. 265–278.

11. Aljafari, B.; Jeyaraj, P.R.; Kathiresan, A.C.; Thanikanti, S.B. Electric vehicle optimum charging-discharging scheduling with
dynamic pricing employing multi agent deep neural network. Comput. Electr. Eng. 2022, 105, 108555. [CrossRef]

12. Vishnevsky, V.; Semenova, O. Polling Systems Theory and Applications for Broadband Wireless Networks; LAP LAMBERT Academic
Publishing GmbH: London, UK, 2012.

http://www.diva-portal.se/smash/get/diva2:1111289/FULLTEXT01.pdf
http://doi.org/10.3390/math9243236
http://dx.doi.org/10.3390/math9111267
http://dx.doi.org/10.1016/j.compeleceng.2022.108555

Sensors 2023, 23, 5479 25 of 25

13. Vishnevsky, V.; Semenova, O. Polling systems and their application to telecommunication networks. Mathematics 2021, 9, 117.
[CrossRef]

14. Vishnevsky, V.; Semenova, O.; Bui, D.T. Using a machine learning approach for analysis of polling systems with correlated
arrivals. In Distributed Computer and Communication Networks: Control, Computation, Communications: 24th International Conference,
DCCN 2021, Moscow, Russia, 20–24 September 2021; Lecture Notes in Computer Science; Vishnevskiy, V.M., Samouylov, K.E.,
Kozyrev, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 13144, pp. 336–345.

15. Hofri, M.; Ross, K.W. On the optimal control of two queues with server setup times and its analysis. SIAM J. Comput. 1987, 16,
399–420. [CrossRef]

16. Liu, Z.; Nain, P.; Towsley, D. On optimal polling policies. Queueing Syst. Their Appl. 1992, 11, 59–83. [CrossRef]
17. Buyukkoc, C.; Varaiya, P.; Walrand, I. The cµ rule revisited. Adv. Appl. Probab. 1985, 17, 237–238. [CrossRef]
18. Cox, D.R.; Smith, W.L. Queues; Chapman & Hall: London, UK, 1991.
19. Koole, G. Assigning a single server to inhomogeneous queues with switching costs. In Theoretical Computer Science; CWI Report

BS-R9405; Elsevier: Amsterdam, The Netherlands, 1994.
20. Avram, F.; Gómez-Corral, A. On the optimal control of a two-queue polling model. Oper. Res. Lett. 2006, 34, 339–348. [CrossRef]
21. Duenyas, I.; Van Oyen, M.P. Stochastic scheduling of parallel queues with set-up costs. Queueing Syst. 1995, 19, 421–444.

[CrossRef]
22. Matsumoto, Y. On optimization of polling policy represented by neural network. Comput. Commun. Rev. 1994, 4, 181–190.

[CrossRef]
23. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [CrossRef]
24. Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines; John Wiley & Sons: Hoboken, NJ, USA, 1989.
25. Ahmed, M.A. A modification of the simulated annealing algorithm for discrete stochastic optimization. Eng. Optim. 2007, 39,

701–714. [CrossRef]
26. Gallo, C.; Capozzi, V. A simulated annealing algorithm for scheduling problem. Open J. Appl. Math. Phys. 2019, 7, 2579–2594.

[CrossRef]
27. Puterman, M.L. Markov Decision Process; Wiley series in Probability and Mathematcal Statistics; John Wiley & Sons: New York,

NY, USA, 1994.
28. Tijms, H.C. Stochastic Models. An Algorithmic Approach; John Wiley & Sons: Hoboken, NJ, USA, 1994.
29. Efrosinin, D. Controlled Queueing Systems with Heterogeneous Servers. Dynamic Optimization and Monotonicity Properties; VDM

Verlag: Saarbrücken, Germany, 2008.
30. Howard, R.A. Dynamic Programming and Markov Processes; John Wiley: Hoboken, NJ, USA, 1960.
31. Gosavi, A. Simulation-Based Optimization; Springer: New York, NY, USA, 2015.
32. Özkan, E.; Kharoufeh, J. Optimal control of a two-server queueing system with failures. Probab. Eng. Inf. Sci. 2014, 28, 489–527.

[CrossRef]
33. Sennott, L.I. Average cost optimal stationary policies in infinite state Markov decision processes with unbounded costs. Oper. Res.

1989, 37, 626–633. [CrossRef]
34. Ebert, A.; Wu, P.; Mengersen, K.; Ruggeri, F. Computationally efficient simulation of queues: The R package queuecomputer.

J. Stat. Softw. 2020, 95. [CrossRef]
35. Franzl, G. Queueing Models for Multi-Service Networks. Ph.D. Thesis, Technique University of Vienna, Vienna, Austria, 2015.
36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math9020117
http://dx.doi.org/10.1137/0216029
http://dx.doi.org/10.1007/BF01159287
http://dx.doi.org/10.2307/1427064
http://dx.doi.org/10.1016/j.orl.2005.05.005
http://dx.doi.org/10.1007/BF01151932
http://dx.doi.org/10.1145/190809.190331
http://dx.doi.org/10.1109/5.58325
http://dx.doi.org/10.1080/03052150701280533
http://dx.doi.org/10.4236/jamp.2019.711176
http://dx.doi.org/10.1017/S0269964814000114
http://dx.doi.org/10.1287/opre.37.4.626
http://dx.doi.org/10.18637/jss.v095.i05

	Introduction
	Single-Server System with Parallel Queues
	Markov Decision Problem Formulation
	Event-Based Simulation for General Model
	Neural Network Architecture
	Optimization of the Neural-Network-Based Scheduling Policy
	Numerical Analysis
	Conclusions
	References

