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Abstract: Scientific computing heavily relies on data shared by the community, especially in dis-
tributed data-intensive applications. This research focuses on predicting slow connections that create
bottlenecks in distributed workflows. In this study, we analyze network traffic logs collected between
January 2021 and August 2022 at the National Energy Research Scientific Computing Center (NERSC).
Based on the observed patterns, we define a set of features primarily based on history for identifying
low-performing data transfers. Typically, there are far fewer slow connections on well-maintained
networks, which creates difficulty in learning to identify these abnormally slow connections from
the normal ones. We devise several stratified sampling techniques to address the class-imbalance
challenge and study how they affect the machine learning approaches. Our tests show that a relatively
simple technique that undersamples the normal cases to balance the number of samples in two classes
(normal and slow) is very effective for model training. This model predicts slow connections with an
F1 score of 0.926.

Keywords: network transfer; slow connection; prediction; machine learning; scientific computing

1. Introduction

Scientific applications for climate modeling [1], bioinformatics [2], particle physics [3],
and so on often require a large amount of data from geographically dispersed sites. For
instance, a Large Hadron Collider (LHC) experiment produces petabyte-scale data and
distributes them to 160 computing facilities around the world [4]. There are thousands of
physicists making use of some portions of this data collection to conduct their research.
Such distributed scientific workflows rely heavily on the networking infrastructure for
moving their data. Scientists could usually receive their data files promptly with the
currently deployed software and hardware [3–7]. However, occasionally, some of these
data movements are much slower than expected. This work aims to investigate whether
such slow data transfers could be predicted before the start of the data request. Having such
information would allow the data management system to make alternative arrangements
and improve the overall effectiveness of the data infrastructure.

There has been a considerable amount of work on monitoring and analyzing network
performance [8–10]; however, much less attention has been given to the understanding
and prediction of low-performing communications. However, such slow data transfers
could easily become the bottlenecks of a large distributed workflow [4,11,12]. In this
study, we explore various properties of slow connections using a set of network traffic
logs from a scientific computing facility (NERSC (https://www.nersc.gov/ (accessed on 5
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June 2023))) and develop a prediction mechanism to identify unexpectedly low-performing
data transfers.

We start with nearly two-year’s worth of network traffic monitoring data produced
by tstat [13]. The traffic logs are from dedicated data transfer nodes (DTNs) for moving
the large amounts of data needed for mission-critical scientific applications [14]. This
study expands on the workshop report [12] as follows: (1) The previous work only used
data records from one of the DTNs at NERSC (dtn01) and only covered five months,
from January–May 2021, while this study is based on an extensive dataset collected from
all four public DTNs covering nearly two-year’s time (from January 2021 to August 2022).
(2) This work systematically addresses the issue of far fewer slow transfers than normal
ones by defining a set of sampling strategies for mitigating the class-imbalance concern.
(3) This work also explores advanced ways of defining what should be considered slow
transfers, which includes a non-static threshold defined as a function of transfer size,
to consider the correlation between the size and network throughput.

By exploring features from the network monitoring data, we are able to devise effective
decision tree-based classification techniques to identify slow transfers before the start of
the transfer. Overall, the key contributions of this work include the following:

• We present a set of stratified sampling techniques to address the challenge introduced by
the fact that are far fewer slow transfers than normal ones. The best sampling approach
allows us to achieve an F1 score of 0.926 for predicting under-performing transfers.

• We devise a strategy to capture the network state by utilizing information from recently
completed file transfers. (Even though this was a key technique used previously
in [12], we feel it is still worthwhile to draw attention to it because it is an effective
approach that could be effectively used in many application scenarios.) We define a
set of features engineered from the most recent transfer from the same subnet as the
transfers from a similar location, and the host may show similar behaviors.

• This study utilizes extensive network monitoring data from an active scientific com-
puting facility. This larger data collection allows us to explore different sampling
strategies and definitions of slow traffic and show the relative importance of the
individual features.

This paper is organized as follows. Section 2 describes this study’s data (tstat) and
introduces our exploratory data analysis that provides an understanding of the nature of
data transfers in scientific facilities. In Section 3, we present our prediction methodology
with feature engineering, learning algorithms employed, and sampling strategies used
for optimizing models, and we report the experimental results and observations with the
experimental setting in Section 4. Finally, a summary of the previous work closely related to
our study is provided in Section 5, and we conclude our presentation with future directions
in Section 6.

2. Data Description and Exploration

This section provides key observations from our exploratory data analysis performed
to better understand the characteristics of data transfers measured in the tstat format.

2.1. Description of tstat Data

Simply, tstat (http://tstat.tlc.polito.it/measure.shtml (accessed on 5 June 2023)) is a
logging tool for network traffic flows. This tool is deployed on NERSC data transfer nodes
(DTN). Since the DTNs are dedicated to moving data files among the different computing
facilities, each of the tstat flows corresponds to a file transfer.

Viewed as a data table, the tstat dataset has 116 columns, each corresponding to
some feature about the TCP flow, and each row is about a network flow. The features
recorded include communication activities with the address information, such as source IP
address, destination IP address, the number of bytes transmitted in payload, the number of
retransmissions, start time, flow duration, minimum/maximum/average round trip time
(RTT), etc. This is the basic information we would use for our predictions. However, it is

http://tstat.tlc.polito.it/measure.shtml
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essential to note that most of these values should only be available after the start of the
transfer. In fact, we only know about the IP addresses and the number of bytes in the file in
the prediction time. With limited known information, a significant challenge of this study
is to define new features to predict network performance for individual transfers.

When analyzing the tstat data, the second challenge is that what we assume as
unusually slow is a tiny fraction of the total number of observed network flows. This
challenge is common to many two-class classification problems with a significant difference
between the majority class and the minority class in the notion of their quantity [15,16].
Machine learning models generally have a hard time learning about the minority class
when a significant imbalance exists in the dataset.

We perform a train–test split to ensure that our model can generalize well to new data.
For this study, we use all the data collected in 2021 as the training set and all the data from
2022 as the testing set. Note that the tstat data used for our study is from the operational
log of a large computing facility, which contains scientific data transfer measurements
over high-speed backbone communication links. Given the large number of data transfers
recorded (as shown in Table 1), we use subsets of data records from training and testing
data to keep the time needed for training and testing reasonably modest.

Table 1. Number of file transfers to be studied: “large transfers” for transfers with size > 106 bytes
and “total transfers” for the number of network flows recorded by tstat. The column of “ratio”
contains the ratio between large transfers and total transfers.

DTN Large Transfers Total Transfers Ratio

DTN01 737,498 172,657,723 0.43%
DTN02 39,917,258 163,310,125 24.43%
DTN03 137,272 86,034,525 0.16%
DTN04 101,119 72,204,065 0.14%

Total 40,893,147 494,206,438 8.3%

2.2. High-Level Observations about Data Transfers

In our previous study [12], we only had access to tstat records during the first five
months of 2021 on DTN01. For this study, we have access to a much larger dataset covering
a period from January 2021 through August 2022. Furthermore, the data collected include
tstat logs on all four DTNs. Therefore, the data collection used for this study not only has
many more data records but also has a greater variety of file transfers.

For scientific workflows, the relatively large file transfers experiencing low network
performance create long delays. Thus, our work focuses on network flows that are relatively
large in size. Specifically, we consider the performance of file transfers, where the file sizes
are larger than 1 × 106 bytes (denoted as 1 MB), which is also helpful for eliminating control
channels used for exchanging file exchange commands. Figure 1a shows the distribution of
transfer size in a log scale, while Figure 1b provides the distribution of throughput. Table 1
has the counts of these large transfers vs. the total number of transfers. From these total
counts, we see that the total number of transfers is within a factor of two among four DTNs,
while the number of large transfers differs considerably.

In detail, DTN02 carries about 40 million large transfers, while the total number of
large transfers by all four DTNs is less than 41 million. That is, DTN02 carried about 97.6%
of the large transfers. This is because many large physics projects have set up automated
data management tools to use this particular DTN. Because these automated data transfers
are between large computing facilities that carefully monitor their storage and network
performance, these file transfers also enjoy good transfer throughput as shown in the
next section.

In our previous study with data transfer involving DTN01, we found most of the
slow transfers are from IP addresses that are infrequently used, often appearing only once
or a small number of times [12]. These occasional uses might involve a personal laptop
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in a work-from-home scenario or a user in an internet cafe. It is unlikely that such use
cases would become the dominant mode of operation for large scientific collaborations.
Instead, we focus on eight Class C network addresses that transfer data to NERSC most
frequently, such as those involved in the automated transfers at DNT02. These eight
Class C IPv4 networks are from four institutions, ‘Imperial College’, ‘SLAC’, ‘Fermi Lab’,
and ‘CERN’, from three countries, England, Switzerland, and United States. (The eight
Class C IPv4 addresses are 146.179.234, 146.179.232, 146.179.233, 134.79.138, 131.225.69,
128.142.209, 128.142.33, and 128.142.52, where the first three are from Imperial College and
the last three are from CERN.) Note that these frequently used sites are well managed,
and thus, the data transfers suffer from low performance less frequently, which increases
the imbalance between normal and slow transfers, which signals the necessity of tackling
the class-imbalance concern in our prediction study.

Another observation from Table 1 is that the number of records to be studied is
quite large, which imposes high computational costs in the analysis process. We keep the
computation cost for learning and testing down by performing these tasks on a sample of
the training and testing data.

(a) Transfer size (bytes) (b) Transfer throughput (bps)

Figure 1. Histograms of file sizes and transfer throughput of data transfers to NERSC (size > 1 MB).

2.3. Data Cleaning and Statistics about tstat Data

To prepare the data for our prediction effort, we first filter the data records to keep
only those with file sizes larger than 106 bytes (1MB). Additionally, we filter by the min-
imum round trip time (RTT) and only keep those with a minimum RTT greater than
1 ms in the data clean-up process based on the assumption that those transfers are local
communications or inadequately recorded.

We then extract several crucial features not present in the recording produced by tstat.
The first feature extracted is the transfer throughput computed as the ratio of transfer size
and transfer duration. By convention, we report this as bits per second (bps). Another
useful feature is the country code. Since we analyze the tstat data measured at NERSC,
one end of every data transfer is always NERSC. We look up the country where the other
end of the transfer is. This is done through a lookup on the GeoIP2 database.

Intuitively, the size of the transfer would impact the data access performance. Figure 2a
shows how throughput distributes across different file sizes. Broadly, the throughput
appears to be positively correlated with the file size. In the figure, we colored the data
points by countries, where only the top three countries are shown to avoid cluttering. We
can see that the fastest transfers (≥1 Gbps) are primarily from the United States, which is
intuitive because of the closer physical distance (to NERSC) and higher bandwidth offered
by the Energy Science Network (ESnet (https://www.es.net/ (accessed on 5 June 2023)))
backbone. Figure 2b closely focuses on slow transfers with less than 106 bps throughput. In
this case, we see that the slowest transfers are nearly six orders of magnitude slower than
the hardware limit (>10 Gbps). Therefore, it is worthwhile to study these slow transfers
and to find alternative options to avoid such extremely poor performance.

https://www.es.net/
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(a) Whole transfers (b) Slow transfers only

Figure 2. Scatter plot of throughput against transfer size (colored by country): (a) larger transfers
typically achieve higher throughput; (b) slowest transfers achieve only a few kilobits per second
(103 bps), although the networking hardware is capable of servicing greater than 10 Gbps (1010 bps).

Another important feature that affects data transfer throughput is round-trip time
(RTT). Figure 3a shows a scatter plot of throughput again the minimum RTT. This plot
shows distinctive vertical stripes due to many transfers from the same computer sites (with
the same minimum RTT) but having very different throughput ranges. Within the United
States, there are two clear stripes, one around 10 ms RTT, which is within the San Francisco
Bay Area, and the other around 60 ms, which is the RTT for communicating with sites on
the East Coast of the United States. The minimum RTT from NERSC to European countries
is between 130 and 200 ms. Overall, we expect higher RTT to lead to lower throughput,
which is true; however, many other factors could impact the actual throughput, which
explains the wide throughput range. The tstat measurement records four features related
to RTT, minimum, maximum, mean, and standard deviation. Among these four, our
observation shows that the minimum RTT has the highest correlation with throughput,
with a coefficient of −0.18.

(a) Throughput vs. minimum RTT (b) Throughput vs. retx

Figure 3. Throughput plotted against the minimum RTT and the retransmission rate (retx). Only
shows three countries with the most transfers. Note that Figure 3b only shows transfers with
retransmission rate greater than 0.01. Larger retransmission rates have noticeable impact on the
throughput.
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When a network packet is determined to be lost, the data transfer system will retrans-
mit the packet. A high retransmission rate indicates that the networking system is not
functioning correctly. We define the retransmission rate as the ratio between retransmitted
bytes and the total bytes transferred in the tstat record. Our data collection shows no clear
correction between the throughput and retransmission rate when the retransmission rate
is less than 0.01. Figure 3b shows a scatter plot of throughput against the retransmission
rate, where we can see a visible trend. The correlation coefficient between the throughput
and retransmission rate in the log–log scale is −0.412. The trend line shown in the figure
suggests that, on average, the throughput is proportional to retx−0.52.

The details of individual features defined in this study are described in Section 3.3.
After data cleaning and filtering based on different features, we obtained a dataset size of
over 24 million instances, which are transfers from major transfer sites with relatively large
transfer sizes and round-trip times.

3. Prediction Methodology

Once a data transfer is completed, we can compute the throughput, which tells us
whether the transfer was slow or not. We aim to make this prediction at the start of
the transfer. If we could make this prediction reliably, we could use the prediction to
make alternative arranges when a data transfer is expected to be slow. As indicated earlier,
however, we face at least two challenges in this prediction task. There is a significant
class imbalance since slow transfers are rare events. In this work, we explore several
different stratified sampling techniques to address this class-imbalance problem. The
second challenge is the lack of information at the start of the file transfer. To address this
challenge, we look into the recently completed file transfers from the same site.

3.1. Defining “Slow” Transfers

In our work, we need to come up with a definition of “slow” transfers. We define
slow transfers based on the throughput information (bps). A simple choice might be to
define a firm threshold. For example, we can declare all transfers whose throughput is less
than 1 × 106 bps as slow and all other transfers as non-slow (“normal”). This is the choice
used in our initial work [12]. We will continue to use this choice but also attempt to explore
alternative options as described next. There are about 9000 transfers slower than 106 bps,
which is 0.037% of all transfers used in modeling.

In addition to the static threshold (e.g., 1 Mbps), we consider an alternative threshold
defined as a function of file size. In fact, TCP throughput has a high correlation with the
file size transferred [17]. From Figure 2a, we see a clear positive correlation between the
throughput and file size. In later tests, we observe a wide gap between normal transfers
and slow transfers (after stratified sampling), which suggests that we might be able to draw
a power–law line in Figure 2a to better separate“slow” and “normal” transfers. From our
empirical study, we observe that the following boundary line appears to be the simplest
(where tput is throughput):

tput = 103 × size1/2 (1)

3.2. Sampling Strategies

Given fewer than four slow transfers out of one thousand non-slow ones, it is hard
for learning methods to extract a model for the slow transfers [15,16]. One classic strategy
to deal with the class-imbalance issue is the reliance on stratified sampling that produces
a balanced dataset among different classes. In our case, we need to identify two classes
of events: slow vs. normal (non-slow). A straightforward approach would be to define
two strata, one for slow transfers and the other for normal transfers. Within each stratum,
we may choose a different sampling method. Since there are a large number of normal
transfers, we may further divide them into more strata, for example, dividing them into a
set of bins across the throughput space.
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Additionally, applying a sampling technique is beneficial for managing the computa-
tional cost. To make training complete in a reasonable amount of computing time, we use a
fraction of the training data (from 2021) and the testing data (from 2022). We experimented
with a number of different sampling techniques. We next introduce four of them that are
representative of different considerations (also summarized in Table 2):

Table 2. Sampling strategies for organizing training and testing sets.

Feature Collection Description

train1 2021 uniform random sample from population (non-stratified)

train2 2021 keep the entire slow transfers and randomly sample the same number of
normal transfers

train3 2021 keep the entire slow transfers and sample normal transfers progressively
for each bin (so as to have more samples near the decision boundary)

train4 2021 keep the entire slow transfers and sample normal transfers with a fixed
number for each bin

test1 2022 uniform random sample from population (non-stratified)

test2 2022 keep the entire slow transfers and randomly sample the same number of
normal transfers

test3 2022 keep the entire slow transfers and sample normal transfers progressively
for each bin (having more samples near the decision boundary)

• Baseline (train1/test1): The baseline method is a uniform random sampling of the
41 million transfers with large files. Following this sampling method, we sampled
10,000 transfers from each training and testing period and named the two subsets
as train1 and test1. Figure 4a shows a histogram of train1 subset. Note that this
subsample does not address the class-imbalance problem. In particular, the test1
contains only three instances of slow transfers with throughput less than 106 bps.

• Stratified 2 (train2/test2): To address the class-imbalance problem, all of our strati-
fied samplings keep all slow transfers and select different samples from the normal
transfers. Since there are 8986 slow transfers, the total number of normal transfers
selected is also 8986. The simplest method to select the normal transfers is to sample
them uniformly. This approach of selecting data records from the training data (from
the year 2021) is named train2, and the similarly selected subset from the year 2022
is named test2. The distribution of train2 is shown in Figure 4b. This figure shows
a clear gap between 106 and 107 bps. Training with this dataset might not be able to
learn that the actual decision boundary is at 106 bps. On the other hand, test results
on test2 might be very good since there are fewer data samples near the decision
boundary to challenge the classifier.

• Stratified 3 (train3/test3): To put more data samples near the decision boundary of
106 bps, we employ another stratified sampling on the normal transfers. Specifically,
we divide the normal transfers into bins based on the logarithm of their throughput.
This binning choice was selected after experimenting with a number of different
approaches. Since the concern with train2 is that there might not be a sufficient
number of samples near the decision boundary, our choice here is to place more
samples near the decision boundary. To choose from the normal transfers, we select a
number of samples from a bin that is inversely proportional to its lower bin boundary,
which samples significantly more normal transfers with lower throughput than those
with higher throughput. The subset of data thus selected from the training data (from
the year 2021) is named train3; similarly, we also created test3 from the testing data
from the year 2022. The histogram of the train3 is shown in Figure 4c. With this
distribution, we anticipate that the training task will lead to a more precise model
because there are more points near the decision boundary. This fact would also make
testing on test3 have lower performance because the test case near the decision
boundary would be challenging for the classifier.
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• Stratified 4 (train4): Another stratified sampling strategy we examine selects the same
number of records from each logarithmic bin for normal transfers while keeping all
slow transfers, producing a training sample named train4. The resulting distribution
is shown in Figure 4d.

(a) Distribution of train1 (b) Distribution of train2

(c) Distribution of train3 (d) Distribution of train4

Figure 4. Distribution of throughput with different sampling strategies (Threshold = 1 Mbps): train1
is based on the uniform random sample, while the other three training sets are resulted from different
stratified methods that keep the slow vs. normal classes in a balanced manner.

3.3. Extracting Network States from Recently Completed Transfers

Among the features tstat collects, only the transfer size and IP addresses are known at
the start of a file transfer. From our earlier exploration, we found that these two features are
insufficient to accurately predict the transfer throughput. To make effective predictions, we
created features derived from recently completed transfers. The previous exploration of the
tstat data shows that such features as file size, transfer duration, RTT, and retransmission
rate highly influence the final transfer throughput. These features from the most recently
completed transfer involving the same source–destination pair could be used as a proxy to
represent the network state for the current transfer.

For such information, freshness would be critical for its usefulness. To make it easier
to find past information for our prediction task, we relax the matching of the source and
destination as long as the first three octets of the IPv4 address, i.e., the two IP addresses, are
in the same Class C network. For example, the four SNDs have IPv4 addresses in the same
Class C network. Thus, they are regarded as equivalent to locating a recently completed
transfer. Similarly, if we are looking at recently completed transfers for a remote host with
IPv4 address A.B.C.D1, we look for all completed transfers from remote hosts whose IPv4
address starts with ABC and then select the one that was completed most recently. Among
the large scientific data centers, their DTNs generally are on the same Class C network
and have typically uniform hardware configuration as well as the same accesses to the
same storage system at the backend. Therefore, it is reasonable to regard the hosts on the
same Class C network as identical (at least in scientific facilities). This assumption may
not always be satisfied but it appears to provide somewhat useful information for our
prediction task.
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We also include the ratio between the current transfer size and the previous transfer
size as a feature, which can be helpful in measuring the difference between the current
and previous transfers. Additionally, we record the time difference between the recently
completed transfer and the current transfer as a feature. The intuition here is that the larger
the time difference, the less similar the two transfers might be. Table 3 shows a summary of
all features we extract from the recently completed transfers.

Table 3. Features extracted from recently completed transfers to represent the network state for our
prediction model.

Feature Description

prev_tput Latest throughput measured between the same src/dst networks (“a.b.c.0”)
prev_size Latest transfer size (in bytes) between the same src/dst networks (“a.b.c.0”)
size_ratio Ratio between the latest transfer size (prev_size) vs. current transfer size
prev_durat Latest transfer duration (in msec) between the same src/dst networks (“a.b.c.0”)
prev_min_rtt Latest minimum RTT between the same src/dst networks (“a.b.c.0”)
prev_rtt Latest average RTT between the same src/dst networks (“a.b.c.0”)
prev_max_rtt Latest maximum RTT between the same src/dst networks (“a.b.c.0”)
prev_retx_rate Latest retransmission rate between the same src/dst networks (“a.b.c.0”)
time_gap Time gap between latest vs. current transfers between the same src/dst networks (“a.b.c.0”)

Before actually using the data records for training and testing, we apply a normal-
ization that translates all numerical values to be between 0 and 1 (for learning purposes).
Additionally, tstat captures the source and destination address in IPv4. Since one side of
the communication is always a NERSC DTN (because the transfer log comes from NERSC),
we only keep some information about the remote host. In fact, the only information we
keep about the remote host is which country the IP address is registered in the GeoIP2
database. In the final data table used for training and testing, only the three most frequently
occurring countries are kept (United States, Switzerland, and the United Kingdom), which
includes the eight computing sites mentioned in Section 2.2.

3.4. Prediction Algorithms

After setting up all the features and labels, we built binary classification models to
predict the low-performance transfers. The training and testing data include features size,
country, and those computed from recently completed transfers given in Table 3.

We explored several classification models, including decision trees, random forests,
and extreme gradient boosting (XGBoost). Tree-based models were particularly effective
because we have a relatively small number of features in the data, and we allow the decision
tree algorithm to explore all possible combinations of features by shrinking the training set
size using sampling described in Section 3.2. We began with the decision tree model and
found that it performed the best. Details of the evaluation are discussed in Section 4.

The random forests method combines multiple decision trees by bagging and training
each tree on a different sample of the dataset. The final prediction is the majority vote of all
the trees. We used all the features we created and grid search to find the best hyperparame-
ters. We expected that XGBoost would outperform the decision tree model, as it is one of
the most effective supervised learning methods [18]. It builds trees on the residual of the
previously fitted tree. We tried XGBoost trained with all the features available, the feature
combination that works best for the decision tree, and the top important features based on
the try-all decision tree method. The hyperparameter choice for XGBoost is based on the
best-performing XGBoost models from our previous study. We did not try further hyper-
parameter options, as the performance is not close to that of the decision tree models. We
observed that our approach with a decision tree with a well-crafted set of chosen features
outperforms the ensemble-based methods (random forests and XGBoost) as discussed in
the next section.
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4. Evaluation

In this section, we share the evaluation results with the experimental setting and our
observations and findings made from the extensive experiments.

4.1. Experimental Setting

To build our classification model, we used a dataset from all DTNs, which consists
of over 40 million network streams (file transfers with file size > 1 MB) and 10 features.
Recall that we used transfers in 2021 for training and transfers in 2022 for testing (more in
Section 2.1).

To measure the prediction performance, we basically refer to the conventional con-
fusion matrix for binary classification, consisting of TP (true positive), FP (false positive),
FN (false negative), and TN (true negative). Intuitively, the fraction of slow connections
is small, while the majority of connections would perform normally. Hence, reporting
the simple accuracy measure may misguide the audience. We measure the prediction
performance using the F1 score, a harmonic mean of precision = TP

TP+FP and recall = TP
TP+FN .

The metric of the F1 score is defined as F1 score = 2 × Precision×Recall
Precision+Recall . A greater F1 score

indicates better performance in prediction.

4.2. Best Model Performance

To address the class-imbalance problem in our attempt to predict slow file transfers,
we designed four different stratified sampling techniques in Section 3.2. To evaluate their
effectiveness, we trained with all combinations of training and testing sets shown in Table 2.
We primarily utilized the try-all decision tree method, which previously demonstrated the
best performance during the first phase of our research [12].

In Table 4, we present the results sorted by F1 score, the primary performance metric
used throughout our study. Even though it is not meaningful to compare the F1 scores of
different testing sets directly, the results from Table 4 suggest that test2 might be a better
test set than test3, which is, in turn, better than test1. Overall, the best performance
training and testing combination achieved an F1 score of 0.926, which is a considerably
higher value than the naive combination of train1-test1. This indicates that the stratified
samples are effective in addressing the class-imbalance problem.

Table 4. Testing results for all 12 train–test combinations ordered by F1 scores.

Train–Test Pair F1 Score Accuracy Precision Recall

train2-test2 0.926 0.925 0.921 0.931
train4-test2 0.907 0.907 0.905 0.908
train3-test2 0.885 0.888 0.914 0.857
train1-test2 0.875 0.888 0.988 0.785
train2-test3 0.709 0.590 0.550 0.996
train3-test3 0.682 0.533 0.518 0.998
train4-test3 0.682 0.533 0.518 0.998
train1-test1 0.566 0.999 0.778 0.444
train4-test1 0.415 0.998 0.303 0.659
train3-test1 0.340 0.998 0.285 0.421
train1-test3 0.252 0.559 0.845 0.148
train2-test1 0.234 0.995 0.145 0.603

The test set test1 is a uniform random sample of the whole dataset. It has low F1
scores because of a lack of slow events—recall that there are only three slow transfers out of
10,000 data records in test1, see Section 3.2. In this case, simply predicting every test case
as normal would lead to a prediction accuracy of 99.97% but 0 true positive cases. Even
though the precision and recall values shown in Table 4 are not 0, they are quite low. The
more complex stratified sampling techniques were designed to address this class-imbalance
problem and improve prediction performance.
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We include test3 in our analysis because it presents a challenging test for our model,
as most of the data records fall close to the classification threshold, where most misclas-
sifications occur. With test3, all recall values are nearly 100%, while all precision values
are about 50%, which suggests that the trained models are effectively declaring all testing
samples to be “Positive” (i.e., slow transfers). We speculate that the normal cases in test3
are too close to the slow cases for the decision tree models to differentiate.

The four top-performing combinations in Table 4 are with test2, which suggests test2
to be more well balanced. Since test2 has the same distribution as train2 in Figure 4,
we see a significant gap in the histogram between 106 and 107 bps. This gap allows a
classifier to make mistakes, while still classifying most of the test set correctly, therefore
achieving a good F1 score. By construction, test2 and train2 follow the same relatively
straightforward stratified sampling, using only two strata: one for slow transfers and one
for normal transfers. They both keep all records from the minority class (i.e., slow transfers)
and select a matching number of samples from the majority class through random uniform
sampling. This approach minimizes the changes to the distribution of the majority class.
For the remainder of this study, we chose to use test2 for further analyses.

Next, we examine the top-performance training samples in more detail. The best-
performing model is trained with train2, and a scatter plot of the testing results is shown
in Figure 5a. Each dot in this figure represents a transfer in test2, with slow transfers
in orange and normal transfers in blue. The solid green line indicates the true threshold
(106 bps). Misclassifications occur when an orange dot is placed above the line or a blue
dot is below the line. The overall prediction accuracy is high, especially for slow transfers.
However, many false positives are far above the threshold indicated by the green line.
Figure 5b shows two histograms using the same colors as in Figure 5a, with a density plot
providing a clearer view of where the misclassifications occur. It is surprising to see the
orange curve having a peak below the blue peak that is far from the decision boundary of
106 bps.

(a) scatter plot (b) Histogram
Figure 5. Prediction results of the train2-test2 pair. The misclassificiation appears primarily as
counting some normal transfers as slow ones (orange color showing in the middle of blue).

Figure 6 shows the prediction results of the train4-test2 pair. The scatter plot
(Figure 6a) shows that misclassified cases are primarily near the green line (represent-
ing 106 bps decision boundary). Almost all normal transfers smaller than 107 bytes are
misclassified, while larger file transfers are predicted correctly. This observation is also
verified by the histograms of the two predicted classes in Figure 6b. Normally, we expect
the misclassification to happen near the decision boundary, and we designed train3 and
train4 to have more training cases near the decision boundary. Since the test results in
Figure 6 match this expectation, we say that these stratified sampling strategies behave well.
Overall, we say that train4 has more training cases far away from the decision boundary
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than train3. The fact that training with train4 achieves a higher F1 score than training
with train3 suggests that having those training cases far away from the decision boundary
is important.

(a) scatter plot (b) histogram

Figure 6. Prediction results of the train4-test2 pair. More misclassification cases are near the
106 bps decision boundary than training with train2 shown in Figure 5.

4.3. Impact of Features

As mentioned in the previous section, the testing using the most simple stratified
sampling performs the best. We next conduct a feature importance study in ways similar to
our previous study. We count the number of occurrences of features in the top-performing
decision tree models. This time, we decide to include the top three combinations from the
train–test pairs that use test2 as the testing set (shown in Table 4).

The top five features and their counts are shown in Table 5. It is unsurprising that
prev_tput occurs in all 12 top models. Surprisingly, the feature size does not appear on
this list, while it is shown to be the more important one based on traffic from DTN01 [12].
The size information does show up in size_ratio as the third most influential feature in
Table 5. We believe this change in feature importance to be due to differences among the
types of file transfers on different DTNs. Furthermore, this analysis focuses on data trans-
fers from popular sites that are more likely to be well tuned; in the earlier study [12], we
observed many slow transfers associated with large RTT values and infrequently used IP ad-
dresses, which points to uncommon workflows on not-so-well-tuned network connections.

Table 5. The features that appear most frequently in the top three best-performing decision trees
trained from all four training datasets and tested with test2.

Feature Number of Occurrence

prev_tput 12
country 10
size_ratio 9
prev_retx_rate 7
pre_rtt_min 6
prev_rtt_max 6

In addition to the decision trees, we also trained our sampled data on a random forest
model. Due to the relatively small number of features used, the decision tree training
process can meet all possible feature combinations for the decision tree. Thus, we do
not expect the random forest models to achieve higher performance. The random forest
model with all features available achieves an F1 score of 0.82, which is indeed lower than
the 0.926 achieved with the decision tree model. However, a random forest has a useful



Sensors 2023, 23, 5485 13 of 17

function of feature importance that automatically calculates the rank of individual features
by the random forest model itself. The bar chart in Figure 7 displays the importance of each
feature in sorted order. As we encoded the country feature using one-hot encoding, it is
displayed as the United Kingdom, Switzerland, and the United States. The top features
are consistent with what we obtained from the decision tree model, with prev_tput and
country being the two most important features in both lists. The size-related feature and
RTT-related features also have high importance.

Figure 7. Top features from random forests.

We used the top features we derived from training an XGBoost model. Similar to
the previous study, it has performance closer to the decision tree but is less efficient and
accurate. It has an F1 score of 0.879.

4.4. Alternative Threshold Setting

Thus far, the training cases are created with a simple static threshold of 106 bps,
while the typical transfer throughput grows with the transfer size. After examining
Figures 5a and 6a, we propose to test a new decision boundary defined by Equation (1).

For files of 1 MB, these decision criteria still classify those transfers less than 1 Mbps as
slow. However, as the file sizes grow, a slow transfer’s maximum speed would gradually
increase. For a file size of 10 GB, those transfers that are slower than 100 Mbps would be
classified as slow. From our data collection, this creates more slow transfer events. There
are nearly 93 thousand slow transfers, 10 times more than under the 1 Mbps threshold
setting. In our stratified sampling, we correspondingly increase the number of samples
we take from the normal transfers. This increased training sample size might increase the
effectiveness of the classification model. We created a training and testing set using basic
stratified sampling with slow and normal as the only two strata. We kept all the data points
from slow transfers and sampled 93 thousand transfers from normal transfers. The best F1
score we achieved with this threshold so far is 0.88, but we have yet to fully explore the
best way to predict transfer performance based on this threshold.

Figure 8 shows that this threshold significantly improves our ability to control false
positives, but more false negatives occur. This model may be the best choice if minimizing
false positives is the main concern, but we can still improve its performance by addressing
the clear patterns observed in the false negatives.
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Figure 8. Scatter plot of throughput vs. transfer size: blue dots are classified as normal transfers,
orange dots are classified as slow transfers, and the green line given by Equation (1) is the actual
decision boundary used in training. Note that both axes are log-scaled.

5. Related Work

Monitoring network traffic is one of the essential tasks in network operations and
management for detecting anomalous events and estimating network performance. In
scientific computing, traffic monitoring is also significantly crucial for supporting ever-
increasing data-intensive scientific exploration and computing. In particular, identifying
elephant flows is a critical problem, as the flows consume significant amounts of network
capacity. A study in [19] introduced an algorithm estimating the traffic volume of individual
flows, which is used to detect the elephant flows’ total byte count. The authors defined two
hash tables recording a counter representing the volume of the flow with the associated flow
ID from the packet trace, which is then used to detect elephant flows showing a pre-defined
threshold. In [20], the authors tackled the problem of the classification between elephant
(large transfer) flows and mice (small) flows. This previous study takes an unsupervised
learning approach, and the presented clustering scheme (based on the Gaussian mixture
model) produces two clusters (one for elephant flows and the other for mice flows) from
the NetFlow data. While highly important to identify elephant flows, our study focuses on
predicting slow connections that significantly impact data-intensive scientific applications.

There have been several studies analyzing tstat data. In [21], the authors presented a
classification mechanism to detect the low throughput time intervals. The classification
mechanism consists of two phases: assigning binary classification labels for each time win-
dow (anomalous or not) and performing actual classification by constructing a supervised
learning model using the assigned label information. Another study in [22] evaluated deep
learning models, including multilayer perceptron (MLP), convolutional neural network
(CNN), gated recurrent unit (GRU), and long short-term memory (LSTM), in order to
predict network performance (aggregated throughput) for each time interval. While these
studies focused on analyzing tstat data based on time windows, our study focuses on
connection-level prediction.

Sampling is widely considered for dealing with the concerns of class imbalance and
scalable analysis in machine learning [15]. Sampling strategies may have significant im-
pacts on the performance given the fact that not all samples are equally important [23,24].
Previous studies in [15,25–28] considered utilizing sampling strategies (including stratified
sampling) for mitigating the impact of the imbalance between malicious traffic (minority)
vs. normal traffic (majority) in network intrusion/anomaly detection. Sampling has also
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been considered in the Internet of Things (IoT) setting for class imbalance in anomaly
detection [29] and data fusion, reducing data redundancy in the sensed data [30]. In
this study, we investigated a set of sampling strategies for improving classification perfor-
mance, including bell-shaped sampling and bin-based sampling for the problem of network
performance prediction.

There are several other related areas to this study. Feature extraction and selection are
crucial for applying learning schemes for prediction tasks [31]. As discussed, we primarily
rely on past transfer information for extracting features. Log analysis can be performed
through unsupervised techniques [32], while we simply utilize the raw data provided in
a tabular format (tstat). Additionally, load balancing can be an option for facilitating
data transfers [33]. For simplicity, this study does not assume a load-balancing function
(e.g., transferring a file from multiple facilities). Lastly, our study is closely related to time
series analysis. This study utilizes decision trees, making the prediction based on the latest
transfer. Extending the history information to multiple previous transfers may need to
consider deep structures [34–36], which would be a future investigation of this study.

6. Conclusions and Future Directions

This study explores tstat logs collected on data transfer nodes at NERSC. A key
objective is to use such information to predict slow file transfers before the start of the
operation. Our exploration of the network measurement data reveals several features
correlated with transfer throughput. However, most of them are only available after the
transfer. To predict the start of the transfer, we defined a set of new features based on
the more recently completed transfer between the same source and destination networks.
The second challenge we need to overcome is the significant imbalance between normal
and abnormally slow transfers. To overcome this challenge, we devised several stratified
sampling techniques. Our tests showed that one of the stratified sampling techniques could
significantly outperform a naive approach without stratification. The best model trained
on a stratified sample was able to achieve an F1 score of 0.926, while without stratification,
the same F1 score was only 0.566. This best-performing stratified sampling consists of
only two strata: one for each class considered. It keeps all records from the minority class
and randomly selects the same number of cases from the majority class to create balanced
training and testing sets.

For future work, we are interested in further exploring options for stratified sampling,
more advanced learning techniques for model creation, and more feature engineering
approaches that better use the recently completed transfers.
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