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Abstract: In this paper, an atmospheric structure constant C2
n model is proposed for evaluating the

channel turbulence degree of atmospheric laser communication. First, we derive a mathematical
model for the correlation between the atmospheric coherence length r0, the isoplanatic angle θ0 and
C2

n using the Hufnagel–Valley (HV) turbulence model. Then, we calculate the seven parameters of
the HV model with the actual measured r0 and θ0 data as input quantities, so as to draw the C2

n
profile and the θ0 profile. The experimental results show that the fitted average C2

n contours and
single-day C2

n contours have superior fitting performance compared with our historical data, and
the daily correlation coefficient between the single-day computed θ0 contours and the measured
θ0 contours is up to 87%. This result verifies the feasibility of the proposed method. The results
validate the feasibility of the proposed method and provide a new technical tool for the inversion of
turbulence C2

n profiles.

Keywords: atmospheric laser communication; atmospheric structure constant; atmospheric
coherence length

1. Introduction

Free space optical communication (FSOC) is one of the main communication technolo-
gies for future 6G, with high speed, no electromagnetic interference, high bandwidth, etc.
However, turbulence effects in the atmosphere cause wavefront distortion of optical waves,
which increases the communication BER. Since the atmosphere is changing in real time,
how to better detect changes in atmospheric turbulence is the focus of our research and
the basis for our adaptive correction of communication using the nature of atmospheric
turbulence [1,2].

The current measurement methods of atmospheric turbulence intensity are mainly
divided into two categories: direct measurement and indirect measurement. The most
common method of direct measurement is to release a sounding balloon at the measure-
ment site and measure the atmospheric turbulence profile through the sensors mounted
on it. However, due to the influence of wind and other factors, its movement direction
is uncontrollable and the real-time performance is poor. In addition, the use of optical
methods to directly measure turbulence profiles mainly includes radar [3], SCIDAR [4]
(SCIntillation Detection and Ranging), MASS [5] (Multi-Aperture Scintillation Sensor), etc.
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Lucie Rottner et al. [6] proposed a wind reconstruction method applied to a five-beam
wind Doppler lidar (i.e., Leosphere’s WindCube model) that relies on particle filtering to
associate lidar data with numerical particles to obtain turbulence estimates available for
each new observation. Indirect measurement is made mainly through measuring mete-
orological parameters and turbulence parameters such as atmospheric coherence length,
isoplanatic angle, etc., to invert, predict [7,8] and estimate the atmospheric turbulence pro-
file. Rafalimanana A et al. [9] proposed a forecasting study based on the Weather Research
and Forecasting (WRF) model. It can predict and describe a set of useful meteorological
parameters related to atmospheric physics (pressure, temperature, relative humidity, wind
speed, direction, etc.), and then inject the predicted parameters into the optical turbulence
model to calculate the refractive index structure constant. Santasri R. Bose-Pillai et al. [10,11]
proposed a method for estimating turbulent parameters through deriving a weighting
function that relates the turbulence intensity along the path to the shifts measured and
then estimates the turbulent parameters. Wang Yao [12] et al. took five conventional
meteorological parameters as input and used an artificial neural network to predict the
profile of the sea surface near Mauna Loa, Hawaii, for one month. Zhang et al. [13] based
their study on the artificial neural network algorithm and established an artificial neural
network model based on the data to predict the upper atmospheric turbulence profile.
The predicted value simulated using the neural network algorithm is in good agreement
with the actual turbulence profile in the Maoming area, which proves the feasibility and
reliability of using a neural network to simulate the atmospheric turbulence profile. Based
on the Hufnagel–Valley (HV) model, Robert K. Tyson et al. [14] obtained the C2

n profile
through inverting the upper wind speed parameters of the turbulence parameters and
the surface atmospheric refractive index structure constant using real-time measured r0
and θ0 data. From the above-mentioned research, it could be seen that when inverting the
C2

n profile, the input includes not only meteorological parameters such as pressure and
temperature, but also turbulence parameters such as atmospheric coherence length and
isoplanatic angle. There are many types of initial input parameters, and the overall amount
of data is huge, resulting in a large amount of calculation in the inversion process, which is
complicated and cannot obtain useful information for the inversion C2

n profile from a single
type of parameter.

In this paper, we propose a new method to invert the atmospheric turbulence pro-
file based on the generalized HV mode, taking the atmospheric coherence length and
atmospheric isoplanatic angle as inputs. Based on the generalized Hufnagel–Valley tur-
bulence model, the method deduces the theoretical relationship between the atmospheric
coherence length and the isoplanatic angle, solves the seven parameters of the generalized
Hufnagel–Valley turbulence model through the inversion algorithm, and then obtains the
C2

n profile. This research method simplifies the inversion method of the C2
n profile. It not

only provides a new idea for the inversion of the turbulence profile, but also develops a
method to determine the parameters of the HV model turbulence profile mode using the
coherence length and isoplanatic angle of the whole atmosphere layer, which can ensure
high accuracy and require fewer input data. This work can provide a theoretical reference
for evaluating the profile performance of atmospheric turbulence structure parameter C2

n in
satellite-to-ground laser communication, in order to better evaluate communication error
rate and design laser emission systems.

2. Correlation Model Establishment and Inversion

Both the atmospheric isoplanatic angle and the atmospheric coherence length can
represent the variation of the intensity of atmospheric turbulence in the transmission path,
and the atmospheric coherence length represents the diffraction limit of light waves propa-
gating through atmospheric turbulence. The atmospheric isoplanatic angle indicates the
angular correlation of the wavefront after the beacon light propagates through atmospheric
turbulence, and the measurement diagram is shown in Figure 1.
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Figure 1. Working diagram of measuring instrument. The beacon light emitted by the star is received
by the measuring instrument through the transmission of atmospheric turbulence, and then the
required physical quantity is calculated.

Both of them contain the path integral term of C2
n. The generalized HV model and the

theoretical formulas of the whole atmosphere coherence length and the whole atmosphere
isoplanatic angle [15,16] are as follows:

r0 =

[
0.423k2

∫ ∞

0
C2

n(z)dz
]−3/5

, (1)

θ0 =

[
2.91k2

∫ ∞

0
C2

n(z)z
5/3dz

]−3/5
, (2)

where k = 2π/λ, k is the wave number, λ represents the wavelength and z denotes
transmission path. Both Equations (1) and (2) contain the path integral term of C2

n, which
can be represented using the generalized HV [17,18] model as follows:

C2
n(h) = a1hce−h/b1 + a2e−h/b2 + a3e−h/b3 , (3)

where h = z cos Θ indicates the height and Θ is zenith angle. a1, b1 and c jointly characterize
the variation of turbulence intensity in the region at and above the top of the troposphere; a2
and b2 together characterize the variation of turbulence intensity in the tropospheric range;
a3 and b3 are combined to characterize the turbulence intensity change in the boundary
layer. a2 indicates the intensity of turbulence at the beginning of the troposphere, while a3
represents the variation of near-surface turbulence. b1, b2 and b3 represent the attenuation
speed of each turbulent layer with the increase of height.

Substituting Equation (3) into Equations (1) and (2), we can get

r0 =
(

0.423× (2π)2λ−2
[

a1b(c+1)
1 Γ(c + 1) + a2b2 + a3b3

])−3/5
, (4)

θ0 =
(

2.91× (2π)2λ−2
[

a1b(c+8/3)
1 Γ(c + 8/3) + a2b8/3

2 Γ(8/3) + a3b8/3
3 Γ(8/3)

])−3/5
, (5)

where the Γ(z) function is the Gamma function [19]. Through considering Equations (4) and (5)
in the case of vertical channels, we have

θ0

r0
=

2.91×
[

a1b(c+8/3)
1 Γ(c + 8/3) + a2b8/3

2 Γ(8/3) + a3b8/3
3 Γ(8/3)

]
0.423×

[
a1b(c+1)

1 Γ(c + 1) + a2b2 + a3b3

]
−3/5

. (6)
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From the above-mentioned Equation (6), it can be known that there is a certain relation-
ship between the coherence length r0 and the isoplanatic angle θ0 of the whole atmosphere
layer. Therefore, Equation (6) can be written as

θ0 = Mr0, (7)

M =

2.91×
[

a1b(c+8/3)
1 Γ(c + 8/3) + a2b8/3

2 Γ(8/3) + a3b8/3
3 Γ(8/3)

]
0.423×

[
a1b(c+1)

1 Γ(c + 1) + a2b2 + a3b3

]

−3/5

. (8)

From Equations (7) and (8), we can know that as long as the values of the seven
parameters (a1, c, b1, a2, b2, a3, b3) are determined, θ0 can be obtained via solving r0. With
such consideration, we propose a method to solve for the seven parameters, which can be
expressed as

Ri =
{

0.423× k2
[

a1b(c+1)
1 Γ(c + 1) + a2b2 + a3b3

]}−3/5
, (9)

θi =
{

2.91× k2
[

a1b(c+8/3)
1 Γ(c + 8/3) + a2b8/3

2 Γ(8/3) + a3b8/3
3 Γ(8/3)

]}−3/5
, (10)

where θi ∈ [MminRi, MmaxRi], |Ri − R| ≤ G, R Represents the average value of the mea-
sured data r0. When R = r0, the variance value of the measured r0 data is the smallest.
Ri is the i-th R value obtained via simulation calculation. R and Ri should be as close as
possible, and the degree of closeness is controlled by the accuracy G. θi is the calculated
representative value of the i-th θ0 data at the same period as the measured r0 data, and
the relationship between this value and Ri satisfies Equation (6), which can be used as a
boundary condition. The scale factor M is determined according to the ratio of the average
value of the measured area r0 and θ0 data, i.e., M = θ0/r0. However, as for the simulation
calculation, sometimes the calculated value and the result are close but not equal, which
will lead to errors in the calculation results. The problem can be avoided through con-
trolling the scaling factor M within a reasonable range for filtering the calculated results.
Therefore, the upper and lower limits Mmax and Mmin of the scale factor M should be
selected according to the actual situation and fluctuate around the scale factor M. Once the
value range of the scale factor M and the accuracy G are determined, and the range of seven
parameters (a1, c, b1, a2, b2, a3, b3) is input, the seven parameter values can be simulated
using Equations (9) and (10), which greatly reduces the number of initial data required for
inversion of turbulence profile parameters. Therefore, large amounts of meteorological data
input are no longer necessary, avoiding the tediousness of data collection and processing,
and having wider applicability in practical engineering applications. The entire process is
shown in Figure 2.
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Figure 2. Specific calculation method. First, the measured data of r0 and θ0 are taken as inputs,
determining the average of the r0 and θ0 and thereby determining the range of values of the scale
factor M, the range of values and the accuracy G of the seven parameters (a1, c, b1, a2, b2, a3, b3) of
the generalized HV model. Finally, the data input and qualification conditions are imported into the
calculation program. Seven parameter values are determined and substituted into Equation (3) to
obtain the C2

n profile, substituting Equation (10) to solve the value of θ0 from r0.

3. Experimental Analysis and Discussion

In order to verify the feasibility of the above theoretical method, in December 2020,
a whole-layer atmospheric coherence length differential image motion monitor (DIMM)
and isoplanatic angle meter were tested in the Nanshan area of Xinjiang. Both the DIMM
and the isoplanatic angle measuring instrument use the stars in the air as beacons and use
the differential image motion method and the starlight scintillation method to measure,
respectively. That is, the plane wave emitted by a star propagates through the turbulent
atmosphere and its wavefront distorts, and the wavefront distortion changes the propaga-
tion direction and energy of the light wave. On the imaging target surface, the position and
light intensity of the star image change with the influence of atmospheric turbulence, and
the values of r0 and θ0 are obtained through measuring the statistics of the change of the
position and light intensity. The specific measurement method is shown in Figure 3:

The value of r0 is obtained through calculating the horizontal and vertical position vari-
ance of the stellar image imaged on the target surface of the CCD camera and substituting
it into Equation (11), utilizing DIMM [20,21].

r0 =

2λ2
(

0.358D−1/3 − 0.242d−1/3
)

σ2
l + σ2

t

3/5

, (11)

where λ = 500 nm is the detection wavelength, D = 100 mm represents the pupil diameter
of DIMM and d = 200 mm denotes the distance between the two pupils. σ2

l and σ2
t indicate

the vertical and horizontal position variance, respectively.
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Figure 3. Schematic diagram of measurement principle. After the plane wave emitted by a star
propagates through the turbulent atmosphere, its wavefront is distorted, and the wavefront distortion
changes the propagation direction and energy of the light wave. The DIMM calculates r0 via
measuring the position jitter variance of the starlight (σ2

l , σ2
t ). Through measuring the normalized

light intensity fluctuation variance of starlight (σ2
s (0)), the isoplanatic angle measuring instrument

calculates θ0.

When measuring θ0 with an isoplanatic angle meter, the key technology is to fit the
weighting function W(z) = Cz5/3 using a three-ring apodizing mirror. The aperture of
the three-ring apodizing mirror is circularly symmetrical, and its physical diagram and
structure diagram are shown in Figure 4.
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where ρ   is the radius, 0J   represents the zero-order Bessel function and z   denotes 
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Figure 4. Physical drawing (a) and structural drawing (b) of three-ring apodizing mirror. In (a,b), the
three rings connected by solid blue dots are opaque (the black ring corresponds to the bright silver
ring) and the three rings connected by the orange hollow circle are transparent parts (the white ring
corresponds to the transparent ring). In (b), the inner and outer radii of the transparent rings, from
inside to outside, are as follows: for the innermost first bright ring, the inner ring radius is 37.389 mm
and the outer ring radius is 43.840 mm; for the middle second bright ring, the inner ring radius is
62.890 mm and the outer ring radius is 69.240 mm; for the outermost third bright ring, the inner ring
radius is 81.940 mm and the outer ring radius is 101.600 mm; finally, the outermost black ring is the
reserved installation allowance, and the size can be set according to the actual situation.
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The weighting function of the three-ring apodizing mirror is shown below [22–24]:

W(z) =
∫ κmax

κmin

|dρρJ0(κρ)P(κρ)|2κ−8/3 sin2
[

κ2z
2k

]
dκ, (12)

where ρ is the radius, J0 represents the zero-order Bessel function and z denotes trans-
mission path. k is the wave number, k = 2π/λ, λ is the wavelength, κ represents the
space wave number, κmax = 2π/l0 and κmin = 2π/L0. l0 and L0 indicate the inner and
outer scales of atmospheric turbulence, respectively. P(κρ) is the transmittance function, as
shown in Equation (13):

P(κρ) =

{
1, R1 ≤ ρ ≤ R2, R3 ≤ ρ ≤ R4, R5 ≤ ρ ≤ R6
0, 0 ≤ ρ ≤ R1, R2 ≤ ρ ≤ R3, R4 ≤ ρ ≤ R5

, (13)

where R1, R2, R3, R4, R5 and R6 are the ring radii of the three-ring apodizing mirror
from inside to outside. When the zenith angle is set to 0◦, with λ = 500 nm, l0 = 0.005 m
and L0 = 10 m, the result of fitting calculation C is C = 8.847× 10−17 m4. Combining the
weighting function W(z) = Cz5/3 obtained through fitting with the normalized variance
σ2

s (0) of the light intensity fluctuation, we have

σ2
s (0) = 4(2π)40.033k2 A−2

∫ ∞
0 C2

n(z)W(z)dz,
W(z) = Cz5/3,

(14)

where A represents the light transmission area of the three-ring apodizing mirror, A = 0.0156 m2,
and C denotes the fitting coefficient of the three-ring apodizing mirror. Considering
Equations (14) and (3), we can obtain θ0 as follows:

θ0 = 12.9A−6/5C3/5
[
σ2

s (0)
]−3/5

. (15)

Equation (15) indicates that the solution of the isoplanatic angle has nothing to do
with the wavelength. When the stellar light wave is transmitted through the turbulent
atmosphere, the distorted wavefront is modulated by the three-ring apodizing mirror,
received by the optical receiving system and finally converged on the target surface of
the charge coupled device (CCD) camera to form a star point image. Through measuring
the light intensity of the star point image and calculating its normalized light intensity
fluctuation variance σ2

s (0), the value of θ0 can be obtained, as shown in Equation (15). The
optical receiving system is shown in Figure 5.
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Figure 5. Structure diagram of optical receiving system. (a) is a general view of the optical receiving 
system; (b,c) are sectional views; the orange line points to the triple loop apodization mirror in (a,c); 
the receiving system is a Cassegrain-type system; the yellow line points to the secondary mirror in 
the receiving system in sections (b,c); the red line points to the primary mirror in the receiving sys-
tem in the sectional views (b,c); the path and direction of the light are marked in sections (b,c) with 
blue lines, respectively. 

Figure 5. Structure diagram of optical receiving system. (a) is a general view of the optical receiving
system; (b,c) are sectional views; the orange line points to the triple loop apodization mirror in (a,c);
the receiving system is a Cassegrain-type system; the yellow line points to the secondary mirror in
the receiving system in sections (b,c); the red line points to the primary mirror in the receiving system
in the sectional views (b,c); the path and direction of the light are marked in sections (b,c) with blue
lines, respectively.
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4. Model Analysis and Experimental Discussion

The average C2
n profile and single-day C2

n profile (e.g., data 1: 11 December 2020, data 2:
13 December 2020, data 3: 16 December 2020) in the Nanshan area during the measurement
period were calculated based on the proposed inversion profile method, after sorting out
the measurement data of r0 and θ0.

From the simulation, the selected parameter ranges are shown in Table 1. The selection
of the seven parameter ranges comprehensively considered the changes in the profile in
Xinjiang [25] and the C2

n profile in the Xianghe model. As the latitudes of Nanshan area
and Xianghe area in Xinjiang are relatively close, the value ranges of a1, c and b1 remain
consistent. According to Ref. [25], the near-surface turbulence intensity in the Altay and
Korla regions of Xinjiang is about 10−16 m−2/3, and it declines rapidly with height. The
turbulence intensity in the range of 5–30 km changes within [1 × 10−18, 1 × 10−16], and the
degree of turbulence intensity decline cannot be accurately estimated. In order to make
the simulation calculation range closer to the real situation, the range of a2 is expanded to
[1 × 10−18, 1× 10−15], the range of b2 is also expanded to [1500, 3000] and the range of a3 is
changed to [1× 10−17, 1× 10−14] while the range of b3 is reduced to [200, 800]. Based on the
above-mentioned method, R and M are determined according to the measured atmospheric
coherence length and isoplanatic angle on the day of measurement. The specific parameter
ranges are shown in Table 1.

Table 1. Relevant parameters of C2
n profile simulation.

Parameter Range Parameter Range/Value

a1 [10–53, 10–51] b2 [1500, 3000]
c [8, 12] a3 [10–17, 10–14]

b1 [800, 1200] b3 [200, 800]
a2 [10–18, 10–15] G 0.0001

M (Average) [0.41625, 0.41630] R/cm (Average) 6.3313
M (data1) [0.45440, 0.45450] R/cm (data1) 4.9984
M (data2) [0.45740, 0.45780] R/cm (data2) 6.5638
M (data3) [0.46970, 0.46980] R/cm (data3) 6.9843

Obtaining the seven parameter values of the average C2
n profile and the single-day C2

n
profile, the expression of the C2

n profile is as follows.

C2
n(h) = 7.10× 10−52h10 exp

(
−h

900.00

)
+ 2.61× 10−16 exp

(
−h

2500.00

)
+

1.10× 10−15 exp
(
−h

250.00

)
(Average),

(16)

C2
n(h) = 6.73× 10−52h10 exp

(
−h

933.33

)
+ 3.74× 10−16 exp

(
−h

2200.00

)
+

1.64× 10−15 exp
(
−h

350.00

)
(data1),

(17)

C2
n(h) = 4.68× 10−52h10 exp

(
−h

943.51

)
+ 1.83× 10−16 exp

(
−h

2131.10

)
+

1.02× 10−15 exp
(
−h

414.14

)
(data2),

(18)

C2
n(h) = 1.30× 10−52h10 exp

(
−h

1000.00

)
+ 1.41× 10−16 exp

(
−h

2700.00

)
+

1.21× 10−15 exp
(
−h

340.00

)
(data3).

(19)

To further analyze the turbulence change, we plotted the daily C2
n profile of the

Nanshan area, the average C2
n profile and the turbulence profile of the Beijing Xianghe

Model. The expression of the Xianghe model is
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C2
n(h) = 2.3× 10−52h10 exp

(
−h

1000

)
+ 4.1× 10−16 exp

(
−h

2300

)
+ 1.0× 10−17 exp

(
−h
520

)
. (20)

Observing Figure 6, we can know that the overall trend of the turbulence simulation
model in the Nanshan area is similar to that in the Xianghe area. At heights of 5 km and
10 km, the “trough” and “peak” of the turbulence intensity with height are reflected, which
is consistent with the variation pattern of the HV turbulence model. In general, the average
turbulence profile in the Nanshan area is more in line with the Xianghe model, because
the data is averaged after multiple measurements, and the simulated turbulence profile
from the averaged data is more consistent with the long-term turbulence intensity variation
in the Nanshan region. The Nanshan area is closer to the Xianghe area in dimension, but
Nanshan is at a high altitude (around 2000 m), resulting in both similarities and differences
in the details of turbulence intensity variation between the two areas. It can be seen from
Figure 6 that the intensity of near-surface turbulence in the Nanshan area is greater than
that in the Xianghe area, and the variation of near-surface turbulence intensity mainly
depends on the a3 parameter, which is greatly influenced by the near-surface wind speed,
ground temperature, humidity and other climatic conditions. Therefore, the intensity of
near-surface turbulence varies with changing climatic conditions in different regions.
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Moreover, the single-day C2
n profiles in Figure 6a–c can well reflect the turbulence

variation in the Nanshan area. As shown in the figure, the overall trend of the single-day
turbulence profile is in accordance with the law of turbulence change, the variability is
mainly reflected at 5 km and 10 km and there is no significant change in the altitude
region above 15 km, which indicates that the intensity of atmospheric turbulence changes
drastically in the range of 15 km.

It is worth noting that the cause of the “trough” at 5 km is mainly caused by pa-
rameter a2 when other parameters are constant. The decrease in a2 makes the “trough
of the wave” sink even further, i.e., the intensity of turbulence at the beginning of the
troposphere changes. Similarly, the “crest” at 10 km is the result of the action of a1 when
other parameters are unchanged, and an increase in the value of a1 causes the profile to
shift to the right above 10 km. However, the trend is not highlighted in the figure because
the parameters a1, c and b1 have different degrees of variation and their combined effect
causes this phenomenon.

To further explore the rationality of this theoretical formula, the single daily profile
parameter values in Table 1 were substituted into Equation (10), and then θ0 was derived
from the measured r0 data. The calculated θ0 values on a single day were compared with
the actual measured θ0 values, as shown in Figure 7.
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As shown in Figure 7, the trend of the theoretically calculated values of the whole-
atmosphere isoplanatic angle throughout the day is essentially consistent with the actual
measured values, showing alternating up and down in the local time range, (i.e., the
theoretical value of the isoplanatic angle in Figure 7a is slightly larger than the measured
value in the period of 11:15∼13:30, and the theoretical values of the isoplanatic angle are
smaller than the measured values in the period of 15:00–18:00 in Figure 7b,c).

The above-mentioned situation may be caused by the difference in the measurement
principle between DIMM and the isoplanatic angle meter. DIMM inverts the atmospheric
coherence length value based on the position variance caused by the jitter of the measured
star image, and the isoplanatic angle meter inverts the isoplanatic angle value on the basis
of the variance of the measured star image’s light intensity fluctuation, which causes the
difference in the details of the result. However, on the other hand, the consistency of the
overall trend also reflects the accuracy of the overall measurement of the two approaches.

The theoretical data of the whole-atmosphere isoplanatic angle were calculated based
on 16 sets of measurements, and the correlation coefficient between the measured isopla-
natic angle Rxy was obtained from the following Equation (21). The variation trend is
shown in Figure 8.

Rxy =

n
∑

i=1

(
xi − X

)(
yi −Y

)
√[

n
∑

i=1

(
xi − X

)2
][

n
∑

i=1

(
yi −Y

)2
] , (21)

where xi and yi represent the actual measurements and calculated value of θ0, respec-
tively. n represents the quantity value of the data. X and Y denote the average of actual
measurements and calculated θ0 value, respectively.
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Figure 8. Trend change of Rxy. The relationship between the measured value and the calculated
value profile of 16 group θ0 data with good measurement results in the time interval of 11 December
2020 to 7 January 2021 are listed, Orange dots and lines represent the trend of data.

Observing Figure 8, we can know that the correlation coefficients between the calcu-
lated and measured values of the atmospheric isoplanatic angle are above 80%, with an
average value of 0.8195 and the maximum value reaching 0.8708. Consequently, the iso-
planatic angle data obtained from the theoretical equation have a fine correlation between
the overall trend and the measured values, which further proves the correctness of the
theoretical equation and the inversion method.
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5. Conclusions

In this paper, based on the generalized HV model, a theoretical relationship equa-
tion between r0 and θ0 is derived, which establishes a certain connection between them
numerically and provides a reference for related studies involving r0 and θ0. First, a new
method is proposed to solve the seven parameters of the generalized HV model using the
whole-atmosphere coherence length and isoplanatic angle to invert the C2

n profile. The
average C2

n profile and single-day C2
n profile of the Nanshan area are obtained using the

proposed method’s inversion with the measured r0 and θ0 data as inputs, and the trend
is in good agreement with that of the Xianghe model, which is in accordance with the
turbulence variation law. Moreover, there is a high correlation between the calculated daily
variation profile of the whole-atmosphere isoplanatic angle and the measured θ0 profile,
and the correlation coefficient’s average value of 16 sets of data has reached 87%. The
analytical results of the inverse C2

n profile and the calculated θ0 profile better support the
feasibility and correctness of the proposed inversion method, which could provide a new
reference for the better study of the C2

n profile inversion method.
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