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Abstract: This paper analyzes the electrical test items of the EOL testing line in automotive manufac-
turers. On this basis, this paper proposes and designs an integrated and automated testing strategy
to deal with the problems of slow testing speed, high dependence on manual labor and low efficiency.
This article mainly analyzes the various tests of the two main tests in battery EOL testing: Battery
Management System (BMS) testing and electrical testing. We propose an innovative integrated
solution based on various testing items, including the reception, transmission, and self-analysis of
different UDS protocol messages, a unique automated electrical performance measurement scheme,
and a requirement and logic design of an integrated software end based on Python. The experimental
results of actual testing show that the implementation of the integrated strategy greatly reduces
the complexity of the testing steps, improves the testing efficiency, and reduces errors caused by
human operation.
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1. Introduction

The environmental impact brought by global warming in recent years has gradually
aroused great attention around the world, and vigorously developing new energy vehicles
and controlling greenhouse gas emissions have become the widespread consensus among
various countries and regions around the world. The EU launched the “European Green
Deal” in 2019 to solemnly commit to the world to reduce emissions targets: that is, to reduce
greenhouse gas emissions by 50% by 2030 and strive to reach 55% (based on 1990) to ensure
that carbon neutrality is achieved by 2050. Last year, each of the EU countries reached a
new energy agreement again: to promote the development of new energy sources and to
ban the production of new fuel vehicles from 2035 onwards. The United States, for its part,
expects to reach a goal of 50% industry penetration of new energy vehicles by 2030. China
has also released the New Energy Vehicle Industry Development Plan (2021–2035), aiming
for new energy vehicle sales to reach about 20% of total new vehicle sales by 2025 [1].

Pure electric vehicles are the mainstream models of new energy vehicles, with good
market prospects and strong market competitiveness. As batteries are the energy source of
new energy vehicles, how to predict the battery’s state accurately under complex working
conditions has also become a global challenge that needs to be solved urgently [2,3]. At
present, during the production of pure electric vehicles, manufacturers generally conduct
EOL (End of Line) diagnostic tests on the power batteries of pure electric vehicles to ensure
product performance.

The earliest EOL testing relied entirely on manual labor. With the popularization
of general-purpose measuring instruments, EOL testing gradually began to change from
relying on manual experience to standard instrumentation, which has greatly improved a
range of aspects, from testing efficiency to testing accuracy. However, as the automotive
industry evolves, vehicle electronics are becoming increasingly complex. To address this,
the International Standard Organization (ISO) has developed corresponding power battery
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diagnostic standards, including ISO 14229 [4] and ISO 15765 [5]. With the electrical and
electronics industry continually improving, it is necessary to conduct an online integrated
study of the EOL testing shown in Figure 1. This will improve the testing process while
adhering to the international and national standards. Ultimately, this will promote the
implementation of relevant standards and improve the stability of pure electric vehicles.
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voltage charge and discharge control module, and the human–computer interaction 
module. A schematic diagram of the EOL system testing structure is shown in Figure 2 
below: 

 
Figure 2. Schematic diagram of EOL system testing structure. 
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is divided into two categories. The content and qualification standards of the EOL 
test are sorted out, and the integration strategy of the EOL test is separately studied. 

Figure 1. EOL testing process example.

Intelligent testing of new energy vehicle batteries is one of the most important steps
to ensure the safety of the entire vehicle. In order to conveniently, quickly and efficiently
test the performance of the battery pack, various performance indicators are dynamically
displayed in real-time. The entire system includes four main modules: the BMS communi-
cation module, the integrated control module in EOL test cabinet, the high voltage charge
and discharge control module, and the human–computer interaction module. A schematic
diagram of the EOL system testing structure is shown in Figure 2 below:
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In summary, the following contributions have been made by this article:

(1) By conducting a detailed investigation of the EOL test, the typical test content of EOL
is divided into two categories. The content and qualification standards of the EOL
test are sorted out, and the integration strategy of the EOL test is separately studied.

(2) A detailed interpretation of various message mechanisms of the Unified Diagnostic
Services (UDS) protocol in BMS testing, including single-frame message, multi-frame
message, NRC and DTC, and the possibility of automatic analysis and integration
are studied.
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(3) The concept of including the electrical performance detection in the integration re-
search is proposed. The working principle and control method of the power relay in
the power battery are studied. The specific content and method of electrical perfor-
mance detection are fully displayed, including some program control methods for the
electrical performance detection equipment.

(4) The applicability of LabVIEW and Python in this article is compared and the possibility
of using Python language and its rich library resources as an integrated strategy
development tool is analyzed.

2. EOL Testing Content and Criteria

The EOL testing for a single battery generally includes SOC (State of Charge), SOH
(State of Health) and safety performance. The accurate state parameter, including the
core factors such as SOC, SOH, state of power (SOP), and RUL, is the basis for ensuring
safety and effective control [6]. However, for power batteries consisting of hundreds
or thousands of cells, battery packaging theory and structural integration, management
system and methods, and safety control technology are key factors in pure electric vehicle
applications [7]. Therefore, EOL testing for power batteries is much more complex. Due to
the complexity of the automotive power battery, a BMS (Battery Management System) has
been derived, as shown in Figure 3.
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Figure 3. BMS function in a power battery.

The BMS reads the sensor parameters integrated inside the power battery to monitor
the core parameters inside the automotive power battery in real time, providing information
on remaining power, battery status, current, etc. This can prevent over-charging, over-
discharging, over-voltage, over-current and an overly high temperature of the battery.
The merits and drawbacks of the BMS directly affect the service life of the power battery
pack [8]; a suitable battery management system provides the best protection and ensures
optimal battery performance, lifespan, and lower operating costs for electric vehicles. Thus,
it is essential to test the BMS function in the EOL testing; ISO 14229 and ISO 15765 provide
detailed specifications for the communication protocol of the BMS, and Figure 4 illustrates
the OSI model of this protocol.
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Figure 4. OSI model of the UDS protocol [9].

The electrical performance of the power battery is also the focus of EOL testing, and
the requirements and testing methods for the electrical performance of automotive power
batteries are presented in GB 18384-2020 [10] and GB 38031-2020 [11]. Moreover, the power
system of the power battery usually uses relays to control its output voltage and charging
state, and the control module composed of various relays is an important safeguard for the
electrical safety of the power battery. Therefore, when testing the electrical performance of
the power battery, not only the electrical safety performance needs to be tested, but also the
relay performance of the power battery needs to be evaluated.

In summary, the typical test contents and passing criteria of power battery EOL testing
are shown in Table 1.

Table 1. Power battery EOL testing content.

Test Type Test Items Testing Equipment Qualification Criteria

BMS testing

Communication status detection

Diagnostic test equipment

Received message

SOC 100%

SOH 100%

Battery temperature Air temperature ±5 ◦C

DTC Reading DTC data is normal

Electrical performance testing

Battery relay detection Diagnostic test equipment Relay control is normal

Battery relay electrical function testing Diagnostic test equipment All electrical status of the battery
is normal

Battery voltage detection Digital Multimeter 60–1500 V

Withstand voltage test Insulation withstand
voltage tester

Leakage current shall not be
higher than 1 mA

Potential equalization test Equipotential Tester Impedance not greater than 0.1 Ω

Insulation performance test Insulation withstand
voltage tester Greater than or equal to 100 Ω/V

3. BMS Detection

The main function of the BMS is to protect the battery [12] and prevent various safety
accidents caused by battery failures. The BMS is crucial for the vast majority of electric
vehicles [13], so BMS testing must be performed when the power battery goes offline. Pure
electric vehicle manufacturers typically manually send measurement instructions for BMS
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testing. They then analyze the received instructions and calculate measurement results [14].
The contents of the BMS test items in Table 1 can be obtained through the BMS in the power
battery, so the main problem for the BMS test is to solve the problem of communication
with the BMS and to realize the automatic sending and receiving of BMS data and parsing.

3.1. BMS Data Reading Based on UDS Protocol

ISO 14229 proposes a unified solution UDS protocol (Unified Diagnostic Services)
for multiple control units inside the power battery, and ISO 15765 defines how the TP
network transport layer handles single and multiple frames for different CAN message
formats in the diagnostic model. CAN-based UDS is the preferred solution for BMS testing
because the test requires only one test tool compatible with ISO 14229 and ISO 15765 [15,16].
Therefore, the test method used in the actual test process is as shown in Figure 5.
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The UDS protocol specifies the specific way for external devices to communicate with
the car battery BMS and uses one byte to represent the diagnostic service, which is called
Service ID, or SID for short. The response format is “SID + 40 + specific data”; the negative
response format is a fixed format “7F + SID + one byte of NRC in the request message”.
When the test does not involve special functions, simply read the corresponding test SID in
the SID list to send and receive data according to the fixed target address, and identify the
response status of the test by judging whether the SID bits in the received data are equal to
the “SID + 40” of the sent data. If the response is positive, the test results of the test item
can be obtained by processing the data content of the other data bits in a specified format,
as shown in Figure 6.
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The NRC (Negative Response Code) is specified in Schedule A of ISO 15765, so when
the diagnostic equipment receives the NRC, it is necessary to parse the NRC feedback from
the BMS to record the cause and corresponding SID of the generated NRC. However, not
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all requests will receive the NRC; as a diagnostic device, it can communicate with all BMSs
together or specify a BMS alone. Therefore, both Functionally Addressed and Physically
Addressed are specified in the UDS. Functional Addressed broadcasts a diagnostic request
and waits for the BMS on the bus to respond. Physical Addressed sends a specific diagnostic
request and waits for a response from the specified BMS. In the case of physical addressing,
the negative response should be sent in the specified format. In the case of functional
addressing, when the NRC is 0 × 11 (service not supported), 0 × 12 (subfunction not
supported) and 0 × 31 (request out of range), the functional addressing will not send the
response. The BMS response rules are shown in Figure 7. Once the corresponding rules are
designed, the automatic detection and analysis of regular BMS test items is achievable.
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Figure 8 shows a set of test data for BMS; it includes parameters such as SOC, SOH
and some battery temperature parameters. Additionally, the measurement results for each
test item in the figure are all qualified. This set of data shows that data obtained from a
qualified battery BMS are still relatively stable, which is beneficial for the formulation and
implementation of power battery testing standards.

3.2. BMS Fault Code Reading and Processing

Trouble diagnosis is one of the important functions of the BMS. The DTC (Diagnostic
Trouble Code) is used in the BMS to record the detailed information of vehicle failure,
and will alert the user and help prevent accidents. The composition of a trouble code is
illustrated in Figure 9 below. In the vehicle EOL testing, the DTC requirement for the power
battery BMS is that certain specific DTCs will not appear in different off-line sessions, so
the most important thing for the DTC detection in the BMS test is how to read the DTC list
in the BMS.
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Figure 9. Explanation of the DTC composition.

In the previous subsection, we showed how to read single frame (SF) data from the
BMS, but for reading multi-frame data like the DTC list, detailed provisions are also made
in the UDS protocol. The multi-frame message generally starts by sending the first frame
(FF) to the Server side; after the Server side confirms that the first frame is sent successfully,
it sends the flow control frame (FC) to maintain the transmission state. After the Server
side receives the flow control frame, it will set the timer to maintain the state according to
the STmin (minimum interval of adjacent consecutive frames) in the flow control frame and
wait for the request of the Client side to send consecutive frames (CF); when the Server side
receives the consecutive frames within the time specified in STmin, it will write them to the
buffer and read them. Figures 10 and 11 show an example of multi-frame data reading. The
DTC array can be obtained from the BMS through multi-frame reading, and the complete
DTC list can be obtained by splitting the array with the specified data format.
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GB 18384-2020 specifies the voltage range of Class B power batteries as 60–1500 V, but
in practice, as the power source of pure electric vehicles, the voltage of power batteries is
commonly above 300 V [17]. The high-voltage electrical system of pure electric vehicles
is defined in the standard GB 39086-2020 as the high-voltage drive component system
connected to the DC bus of the power battery or driven by the power battery power source
above the B-class voltage inside the electric vehicle, mainly including but not limited to:
the power battery system and high-voltage power distribution system (high-voltage relays,
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The structure of the high-voltage electrical system of an electric vehicle is shown in Figure 12.
It is easy to see that the power battery is the core of the whole high-voltage electrical system,
and its electrical performance is crucial for reliability.
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As demonstrated in the analysis of the electrical test items of the power battery in
Table 1, it is easy to find that the first three test items are for the general testing of electrical
performance, while the last three are for the testing of the electrical safety performance of
the power battery.

4.1. General Electrical Performance Testing
4.1.1. Relay Function Detection of Power Battery

There are generally five relays in the pure electric vehicle power battery: main positive
relay (MainPosRelay), main negative relay (MainNegRelay), pre-charge relay (PreChrgRe-
lay), fast charge relay (DCChrgRelay) and slow charge relay (ACChrgRelay). The electrical
relationship of the power relays in the power battery is shown in Figure 13. The output
combinations of several relays realize different electrical functions of the power battery and
also ensure the safety of the power battery to a certain extent.
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After understanding the electrical relationships of the five relays mentioned above,
it can be found that the PreChrgRelay is a relatively special relay in terms of function.
Its equivalent circuit with the MainPosRelay is shown in Figure 14. The existence of the
PreChrgRelay effectively protects the battery, the MainPosRelay and the MainNegRelay,
because when the capacitor is connected in parallel at both ends of the power supply, the
moment the power is turned on, the voltage across the capacitor will not change suddenly,
but its current will change suddenly. At this time the load resistance is the resistance of the
wire and the relay contact, which is generally much less than 20 mΩ, and the battery voltage
is generally above 300 V. This is equivalent to an instantaneous short circuit, resulting in an
instantaneous current I = 300/0.02 = 15,000 A; the MainPosRelay and the MainNegRelay
are easily damaged by overcurrent and overheating.
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Relays for power batteries are high-voltage relays, for which there are often more
stringent control policies to ensure the security of their use. The higher security control
privileges required by the 27 service are provided in the UDS protocol, and the different
security levels of the service can be defined by each vehicle manufacturer. It stipulates
that when certain operations with higher security levels need to be implemented, further
security access levels need to be obtained before they can be performed. The acquisition
of the security access service seed for external diagnostic equipment and the resolution of
the corresponding key are the focus and difficulty of the service, and the specific program
control implementation process is shown in Figure 15. Once security access to the 27 service
is obtained, the power battery relays can be controlled.
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The electrical functions of the power battery are realized by different combinations
of battery high-voltage relays, which mainly include four common electrical functions:
power-on mode, power-off mode, slow-charge mode and fast-charge mode. The relay
function detection of the power battery can be completed by monitoring the relay timing of
the power battery in different modes and measuring the battery output voltage in different
modes through the BMS. Figures 16 and 17 are a set of relay timing diagrams measured in
the EOL testing process in the up and down modes. By using the program to capture and
analyze the key nodes of the timing diagrams and processing the voltage data measured
by the measuring instrument, we can determine the good functions of several relays in
the diagrams.

4.1.2. Power Battery Voltage Measurement

The voltage of the power battery is a high voltage, although the voltage level of
the power battery is not high in the voltage level of the power grid; therefore, many
manufacturers for power battery voltage measurement often directly use a desktop digital
voltmeter to measure. However, this measurement method often has a high risk and low
efficiency, because the high voltage from the terminal is released to the human body; a
safe voltage level takes a certain amount of time, for the integration of a challenge, and
often one has to set up multiple levels of protection because of the presence of high voltage,
which will greatly increase the cost of this type of integrated measurement equipment.
There are three DC high-voltage measurement methods commonly used in the power
grid: the voltage division method, the high-voltage electrostatic voltmeter, and the ball
gap method [19,20]. Table 2 shows the analysis and comparison of these three methods.
Through the understanding of these three measurement methods, the voltage of the power
battery is innovatively proposed to be measured by the voltage division method in our
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integration strategy; the measurement principle is shown in Figure 18. After dividing
the high voltage Ui at the input in the voltage divider, Ui can be calculated by simply
measuring the voltage Uo at the output according to the formula shown in Equation (1).
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Table 2. Comparison of three common high-voltage measurement methods.

High-Voltage Measurement Method Limitations

Partial pressure method Requires current limitation in the mA class

High-Voltage Static Voltmeter Small measurement range and high cost for high voltage

Ball gap method Low accuracy, susceptible to interference, large size
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circuit, and the high voltage relay used to measure different high voltages inside the 
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The equivalent resistance of R1 and C1 can be calculated from the above figure:

RR1C1 =
R1

1 + R1 jwC1
(1)

The equivalent resistance of R2 and C2 is:

RR2C2 =
R2

1 + R2 jwC2
(2)

Using the voltage division formula for series resistors:

Uo =
RR2C2

RR1C1 + RR2C2

Ui (3)

The Substituting Equations (1) and (2) into Equation (3) yields:

Uo

Ui
=

R2

R2 + R1
1+R2 jwC2
1+R1 jwC1

=
C1

C1 + C2
1+1/R2 jwC2
1+1/R1 jwC1

(4)

The high-voltage measurement equipment based on the voltage division method often
has a larger size. This is because the measurement upper limit of this type of equipment
is usually between several tens to several hundreds of kilovolts. Therefore, the voltage
division resistor R1 of this type of equipment not only requires a larger resistance value
but also needs a higher voltage withstand level, which leads to the larger size of the
voltage divider. However, the power battery voltage measured in this system usually only
has about 400 V, so the voltage division resistor R1 with a lower voltage withstand level
and resistance value can be used, greatly reducing the volume of the voltage divider. In
addition, by encapsulating the actual circuit and using high-voltage sealing glue to make
a high-voltage package, the high-voltage creeping distance can be further reduced, the
volume of the voltage divider can be reduced, and the cost of the integrated device can be
reduced. By using this method, only a current protection is needed at the front of the circuit,
and the high voltage relay used to measure different high voltages inside the integrated
device can be replaced by a low voltage relay, further reducing the cost of the integrated
device and ensuring safety. Table 3 shows the comparison of the data of the improved high-
voltage measurement device with the direct measurement scheme. Figure 19 calculates
the relative deviations of the six measurements from the different measurement methods.
The data analysis from the table and the graph indicates that although a small amount of
measurement accuracy is lost in the indirect measurement method, a large improvement is
achieved in all aspects of measurement safety and control of measurement costs.
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Table 3. Voltages measured by the three measurement methods.

Serial Number Direct Measurement Voltage/V Indirect Measurement Voltage/V Voltage Read by BMS

1 408.1 410.0 408.0

2 408.3 408.0 408.0

3 407.8 410.0 408.0

4 408.0 408.0 408.0

5 408.0 408.0 408.0

6 408.2 408.0 408.0

Average 408.1 408.7 408.0
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4.2. Electrical Safety Performance Testing

Any electrical products must undergo mandatory electrical safety testing, and this is
also true for automotive power batteries. In 2019, for new energy vehicle battery safety,
China formulated and published “GB 18384-2020 electric vehicle safety requirements”, “GB
38031-2020 electric vehicle with power battery safety requirements” and other mandatory
national standards [21]; at the same time, the European Union issued ECE R100 and ECE
R10, and stipulated that new energy vehicles using power batteries need to compulsorily
meet the above documents’ content requirements [22]. Subsequent North American UL
2580, India ALS 038 and other relevant standards [23] have been developed in their re-
spective countries and regions on the electrical safety requirements of new energy vehicle
power batteries. Most of the current electrical safety testing relies on testers to use general
electrical measuring instruments for item-by-item testing; safety testing of the electrical
level will generally be 1.5–3 times the object under test, so such testing still has a high
safety risk.

4.2.1. Electrical Safety Testing Content

Three general electrical safety tests are listed in Table 1: the withstand voltage test,
potential equalization test, and insulation performance test.

The withstand voltage test is mainly used to apply a voltage higher than the normal
working voltage between the output end of the tested power battery and the battery case
for a specified period of time; if the leakage current value is less than the standard leakage
current threshold of 1 mA, it can be judged to be qualified. The test voltage must gradually
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rise from zero to the required voltage value within a certain period of time. The purpose
of this test is to prove that the material can work safely at the rated voltage or due to
switching, arcing and other similar phenomena caused by the instantaneous overvoltage.

When there is no insulation fault, the high voltage wire harness of the power battery
is isolated by an insulating layer, and the insulation internal resistance value is in the order
of megabytes. If the insulation fault occurs, the insulation performance will be reduced,
resulting in safety hazards. Therefore, it is necessary to carry out insulation fault detection.
The occurrence of insulation fault means the decrease of insulation internal resistance,
and how to obtain the accurate insulation resistance is the key point of insulation fault
diagnosis [24]. As per GB 18384-2020 in the electric vehicle power battery, the insulation
resistance minimum value is 100 Ω/V; this provision is based on the power battery output
and any point between the ground short circuit. The worst-case leakage current will
not exceed 2 mA; that is, no harm to humans. In the previous passage, active detection,
passive detection, and estimation algorithms were mentioned for testing the insulation
performance. The national standard recommends using the pressure difference method
for direct measurement; that is, the use of two identical voltage detection tools (known
voltage detection tool internal resistance r). While detecting positive-to-shell, negative-to-
shell voltage, the reading is stable, and the higher is U1, the lower is U′1; then, the 1 MΩ
resistor R0 parallel connection in U1 side terminal and the shell between the two voltmeters
simultaneously detect the positive-to-shell, negative-to-shell voltage. After the reading is
stable, the higher is U2 and the lower one is U′2 insulation resistance Ri. The calculation
formula is shown in Equation (5). Although such a measurement method can be a more
accurate determination of the insulation resistance of the power battery, the method is more
dependent on the testers. In current industrial measurement, the insulation resistance value
between the positive and negative terminals of the power battery and the shell (ground) can
be directly measured through the measurement procedure set by the integrated withstand
voltage tester, which is safer and more reliable.

Ri =
1

1

R0

(
u′2
U2
−

u′1
U1

) − 1
r

(5)

Requirements for potential equalization testing include:
(a) The connection impedance between the exposed conductive part and the electric

platform should be no more than 0.1 Ω;
(b) For a potential equalization pathway, the distance is not more than 2.5 m between

the two conductive parts of the resistance and should not be greater than 0.2 Ω.
The significance of the above requirements is that when there is a base insulation

failure and the human body is touching any exposed conductive parts, given that the
potential balance is small enough, the potential difference can be negligible and the human
body will not be electrocuted.

The following Table 4 is a set of data obtained from our actual testing. To comprehen-
sively analyze the test results, a relative deviation is used as the evaluation basis, as shown
in Equation (6):

Rd =
d
X
× 100% (6)

In this equation, X represents the average value of all test data, and d represents the
absolute deviation of the test result, with d equal to xi-X, where xi is the result at the i time
trial. Figure 20 shows the absolute deviation of this set of data. Observation of these data
results indicates that although there are some deviations in these measurement data, all test
data are qualified and far exceed the qualified standards specified in national standards.
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Table 4. Electrical safety testing data.

Serial Number Withstand Voltage Test/mA Potential Equalization Test/mΩ Insulation Performance Test/(Ω/V)

1 0.18 2.2 14,311

2 0.22 2.4 14,350

3 0.211 2.3 14,089

4 0.21 2.6 13,931

5 0.19 2 14,450

6 0.22 2.2 14,266

Average 0.205 2.28 14,232.83
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4.2.2. Remote Control of Safety Testing Equipment

The development of power electronics has promoted the popularity of universal
measurement instruments, which has improved many test operations with high risk factors
in the test field. During the rapid rise of the pure electric vehicle field, some general-
purpose measuring instruments were gradually involved in the production testing of pure
electric vehicles, and the application of these general-purpose measuring instruments in
the EOL testing of vehicles is shown in Figure 1.

In the above, EOL testing items were used with several general measurement instru-
ments, such as the digital multimeter, insulation withstand voltage tester and equipotential
tester; in the actual system we choose, the measurement accuracy is higher than the mea-
surement standard measuring instruments to ensure the accuracy of the test. Their remote
control used SCPI (Standard Commands for Programmable Instruments) commands. SCPI
are a kind of existing standards based on IEEE488.1 and IEEE488.2, and follow the IEEE754
standard in the floating point rules, ISO646 information exchange 7-bit encoding symbols
(equivalent to ASCII programming) and other standards of standardized instrument pro-
gramming language [25]. The EOL testing integration process must solve the problem of
remote control of various types of general-purpose measurement instruments; although
various general-purpose measurement instrument manufacturers have provided their
own equipment remote control program, the collaboration of multiple general-purpose
measurement instruments is still a challenge faced in the integration study. At present,
the reference approach is directed communication between the embedded system and
the controlled instruments [26,27], but this approach often requires a customized embed-



Sensors 2023, 23, 5944 16 of 20

ded system designed according to the actual function and its scalability is poor. After
analyzing the information of such devices, we used a multi-devices control approach as
shown in Figure 21. By using a conversion port and a hub (HUB), these devices can be
easily connected to the same IPC; the COM side of the IPC is scanned, the SCPI’s device
information reading command is sent, and the keywords in the intercepted reply message
can identify each device of the general measurement information. The control logic is
shown in Figure 22.
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By using the innovative communication method described above, each general mea-
surement device connected to the computer can be quickly identified during software test-
ing, and its corresponding script can be called to control and read measurement data. This
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eliminates the need for a customized embedded system. To address the issue of multiple
devices alternatingly connecting to the battery output port, simply add a communication-
enabled embedded relay system.

5. Detection Software Design

The testing software is the most important part of the whole EOL integrated system,
and its functional requirements are shown in Figure 23. The testing software not only needs
to write scripts for the testing process according to the testing process of the aforementioned
measurement items, but also needs to perform operations such as confidentiality, storage,
calling and docking of data, etc. In addition, a simple and clear testing interface should be
designed for operators to display real-time test results and improve production efficiency.

Sensors 2023, 23, 5944 19 of 21 
 

 

EOL Testing 
System Software 

Requirements

Multi-Scripts 
Writing

Data Processing

Graphical 
Interface

Data Interface

BMS Communication Script

BMS parsing script

Multi-device control script

Testing flow script

Database structure design

Query tool design

Maintenance tool design

MES order data request

Test results upload

Measurement results show

Measurement results query
 

Figure 23. EOL testing software requirements. 

In the actual research and development process, the PyVisa library in Python can be 
used to control SCPI devices more conveniently, while the PyQT5 library in Python can 
make it easier to design a fully functional graphical user interface. This is because PyQt5 
successfully combines the Python language and the Qt library, making it compatible with 
all major operating systems. Due to the special nature of EOL testing, the display interface 
must be able to show the measurement results of each item in real time. Based on this 
limitation, a multi-threaded development mode was used in the software design stage; 
i.e., the main thread only receives and displays the test results, while the child threads 
make multi-device script calls and process the measurement data, which improves CPU 
utilization and program execution efficiency. The execution flow of the EOL testing 
software we wrote is illustrated in Figure 24 below. 

Login/Register

Account 
password 
correct?

Admin account?

Admin interface

Main interface

Choose a test 
plan?

Start measuring

Measurement results

N

Y

N

Y

N

Y

Start

End
 

Figure 24. PC software test flow chart. 

Considering the measurement pressure of the testers, we simplified the factors 
expressed in the test process, and the main interface of the software selected the test items, 

Figure 23. EOL testing software requirements.

Currently, most of the production of collaborative software in the industry that in-
volves an image manipulation interface is developed using LabVIEW language, a graphical
programming language built specifically for engineering applications in test, measurement
or control. However, with the rapid development of Python in the field of automated
testing, many complex development processes can be simplified by Python’s rich library re-
sources. Python’s rich resources and excellent performance in data processing and database
system are also suitable for the collection, processing and storage of a large amount of test
data during EOL testing, so we innovatively use Python and its rich extension resources to
develop an EOL testing software.

In the actual research and development process, the PyVisa library in Python can
be used to control SCPI devices more conveniently, while the PyQT5 library in Python
can make it easier to design a fully functional graphical user interface. This is because
PyQt5 successfully combines the Python language and the Qt library, making it compatible
with all major operating systems. Due to the special nature of EOL testing, the display
interface must be able to show the measurement results of each item in real time. Based
on this limitation, a multi-threaded development mode was used in the software design
stage; i.e., the main thread only receives and displays the test results, while the child
threads make multi-device script calls and process the measurement data, which improves
CPU utilization and program execution efficiency. The execution flow of the EOL testing
software we wrote is illustrated in Figure 24 below.
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Considering the measurement pressure of the testers, we simplified the factors ex-
pressed in the test process, and the main interface of the software selected the test items,
test content, three tests and test average value, test results and measurement equipment to
display the test items. Figure 25 is an example diagram of an actual test. In the actual test,
the color hints in the interface can distinguish the measured items and measurement results
briefly and clearly, and the testers can select the data display of the interface according to
the actual needs to improve the measurement efficiency.

Sensors 2023, 23, 5944 20 of 21 
 

 

test content, three tests and test average value, test results and measurement equipment 
to display the test items. Figure 25 is an example diagram of an actual test. In the actual 
test, the color hints in the interface can distinguish the measured items and measurement 
results briefly and clearly, and the testers can select the data display of the interface 
according to the actual needs to improve the measurement efficiency. 

 
Figure 25. Software actual test example diagram. 

6. Conclusions 
In this paper, we analyze the test requirements of the current EOL testing process, 

and reduce the professionalism of the testers in BMS testing by writing directed UDS 
automation analysis scripts for the test items; through the actual use of each measurement 
item and each measurement device in electrical testing, we use universal instrument 
control scripts and unique identification methods to connect all measurement devices to 
the same online PC. By using a Python solution, which is different from the traditional 
software solution, the measurement system can be built quickly by making full use of 
existing resources, and the scripted programming method is conducive to the expansion 
of measurement items afterwards. In summary, this paper presents an integrated strategy 
for power battery EOL testing that differs from existing manual measurement approaches. 
Through research on actual EOL test items, the strategy innovatively achieves automated 
data analysis of BMS, automated measurement of electrical performance, and an 
integrated software end based on Python, thereby increasing the safety and automation 
level of EOL testing while ensuring measurement accuracy. 

Author Contributions: Methodology, H.W.; Writing—original draft, H.Q.; Writing—review & 
editing, H.W.; Supervision, H.W.; Funding acquisition, H.W. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This work is supported by “the Fundamental Research Funds for the Central 
Universities”, Southwest Minzu University (Grant No. 2021101), This work is also supported by 
National Natural Science Foundation of China (Grant No. 72174172, 71774134). 

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is 
not applicable to this article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Hao, H. Design and Key Performance Study of High-Current Connectors for Electric Vehicles. Master’s Thesis, Chang’an 

University, Xi’an, China, 2020. 
2. Keqin, L.; Wenxing, L.; Changyong, L. Review and prospect of Chinese new energy vehicle power battery from management 

perspective. Sci. Technol. Manag. Res. 2020, 40, 173–177. 

Figure 25. Software actual test example diagram.

6. Conclusions

In this paper, we analyze the test requirements of the current EOL testing process, and
reduce the professionalism of the testers in BMS testing by writing directed UDS automation
analysis scripts for the test items; through the actual use of each measurement item and
each measurement device in electrical testing, we use universal instrument control scripts
and unique identification methods to connect all measurement devices to the same online
PC. By using a Python solution, which is different from the traditional software solution,
the measurement system can be built quickly by making full use of existing resources,
and the scripted programming method is conducive to the expansion of measurement
items afterwards. In summary, this paper presents an integrated strategy for power battery
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EOL testing that differs from existing manual measurement approaches. Through research
on actual EOL test items, the strategy innovatively achieves automated data analysis of
BMS, automated measurement of electrical performance, and an integrated software end
based on Python, thereby increasing the safety and automation level of EOL testing while
ensuring measurement accuracy.
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