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Abstract: The rise of artificial intelligence applications has led to a surge in Internet of Things (IoT)
research. Biometric recognition methods are extensively used in IoT access control due to their
convenience. To address the limitations of unimodal biometric recognition systems, we propose an
attention-based multimodal biometric recognition (AMBR) network that incorporates attention mech-
anisms to extract biometric features and fuse the modalities effectively. Additionally, to overcome
issues of data privacy and regulation associated with collecting training data in IoT systems, we
utilize Federated Learning (FL) to train our model This collaborative machine-learning approach
enables data parties to train models while preserving data privacy. Our proposed approach achieves
0.68%, 0.47%, and 0.80% Equal Error Rate (EER) on the three VoxCeleb1 official trial lists, performs
favorably against the current methods, and the experimental results in FL settings illustrate the
potential of AMBR with an FL approach in the multimodal biometric recognition scenario.

Keywords: federated learning; multimodal system; person recognition; attention mechanism; IoT

1. Introduction

The Internet of Things (IoT) has gained significant popularity lately, partly because of
the increasing prevalence of high-speed networks and smart devices. To ensure security,
authentication is the foremost requirement for each user in IoT systems. Although pass-
word or key-based identification methods have matured into effective means, biometric
features hold a unique position in the field. Unlike keys or ID cards, biometric features
cannot be lost, and unlike knowledge-based features such as PINs or security questions,
they cannot be forgotten. Therefore, biometric-based security systems can be applied in
many IoT fields, such as using biometric locks in smart lock systems for doors, requiring
biometric recognition for healthcare providers before prescribing medication in IoT medical
systems [1], implementing access control, and monitoring systems.

Current research on biometric recognition has primarily focused on unimodal ap-
proaches, which involve utilizing a range of biometric characteristics, including voice, face,
gait, and fingerprint [2]. However, unimodal biometric recognition often faces challenges
in obtaining accurate feature patterns, resulting in a decline in recognition performance and
leaving potential vulnerabilities for attacks. Even previously considered secure method
such as vein recognition, has shown weaknesses when subjected to attacks, as the structures
of the hand vein can be detected from several meters away under certain circumstances [3].
To address these issues, researchers have explored the benefits of combining multiple
modalities by embedding them into a deep feature space [4,5]. The combination of biomet-
ric features has shown a positive impact on biometric recognition tasks, an ideal multimodal
biometric recognition system can integrate diverse modalities and provide more emphasis
to the modality that has better distinguishing features. Moreover, the fusion weights can
withstand different factors, including audio-visual backgrounds, and account for incom-
plete or damaged modalities, leading to a more accurate and robust system. In this paper,
we choose the voice and face to achieve multimodal biometric recognition.
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The model performance is greatly influenced by the quantity of training data, the train-
ing of multimodal biometric recognition models necessitates access to copious amounts
of biometric data. In addition, traditional multimodal data fusion tasks face challenges
in acquiring significant amounts of data due to the sensitive and proprietary nature of
industrial data, as well as concerns regarding user privacy protection. The limited sharing
of data creates impediments to realizing the full potential of heterogeneous data in the
IoT. Additionally, centralized data processing presents risks of data leakage in practical
applications. To address these challenges, Google [6] first proposed the concept of Feder-
ated Learning (FL), which trains models separately on various edge devices using their
respective training samples, then subsequently aggregates model parameters, therefore
facilitating global information sharing without compromising user privacy. The research of
a privacy-preserving solution for multimodal biometric recognition can be highly beneficial.
FL is an effective mechanism that enables IoT devices to collaboratively train high-quality
models while preserving the confidentiality of the training data.

The major contributions of our work are listed as follows:

• We present a novel multimodal biometric recognition model, AMBR. By fusing the face
and voice features, our AMBR model collects and condenses the crucial inputs from
each modality and shares them with another modality, achieving better performance
for person recognition.

• Novel feature extraction approaches with attention mechanisms are developed for
each modality. It not only improves the unimodal recognition accuracy but also
effectively extracts features from different modalities for the multimodal fusion stage.

• Trained with FL, our model addresses the issue of data interoperability when collecting
biometric data from different edge devices, and promotes data communication and
collaboration while ensuring higher levels of privacy in the IoT.

The rest of this paper is organized as follows. Section 2 briefly discusses prior research
conducted on multimodal biometric recognition and the FL method. Section 3 explains our
proposed model. The experimental setup and results are presented in Section 4. Finally, the
conclusions of our research are provided in Section 5.

2. Related Works
2.1. Multimodal Person Recognition

Rapid advancements in artificial intelligence and IoT technologies have emphasized
the need for precise user identification methods. Although significant progress has been
made in unimodal biometric authentication, such as speaker recognition and face recogni-
tion, their performance degrades significantly under more challenging conditions. Record-
ing devices, distance, and background noise can affect the quality of sound information,
whereas illumination, pose, distance, and other factors can substantially impact face recog-
nition performance. To address the limitations of unimodal authentication methods, re-
searchers have proposed multimodal biometric recognition technology that expands the
application scope of biometric recognition by fusing different types of features, therefore
improving the accuracy and anti-attack capability of recognition systems.

Multimodal biometric fusion is a crucial research topic in biometric recognition studies,
when utilizing multimodal features for recognition, combining them can alleviate feature
overlap and enhance recognition accuracy. Generally, multimodal identity recognition
systems demonstrate notable advantages in terms of high reliability, robustness, and broad
applicability [7]. Table 1 provides a comparison of the available techniques. Merging data
from different modalities is a key issue to be addressed in modeling, after extracting features
from different modalities, we integrate the information extracted from various modalities
into a stable representation, and the quality of this representation often determines the effect
of the final fusion model. Simple concatenation fusion merges different modal data into the
same vector space and fuses all modality data through vector concatenation. Inspired by
Shons et al. [4], we employ attention-based fusion instead of simple concatenation fusion
to fully utilize information gain between modalities, compensate for the shortcomings
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of simple concatenation fusion, and extract significant features from voice and facial
information.

Table 1. The comparison of existing multimodal fusion methods.

Model Architecture Features Fusion Strategy

Luo et al. [8] CNN + RNN voice and text

Fuse the audio and
handcrafted low-level

descriptor through simple
vector concatenation.

Micucci et al. [9] CNN palmprint and hand-geometry
Score level fusion, sum the
weighted scores from each

modality.

Sell et al. [10] DNN + CNN face and voice

Converting the output scores
generated from unimodal
verification systems into

log-likelihood ratios.

PINS [11] VGG-M face and voice Establish a joint embedding
between faces and voices.

EmoRL-Net [12] ResNet-18 face and voice
Project the representation of

two full connection layers into
a spherical space.

2.2. Attention Mechanism

The attention mechanism plays a crucial role in determining where to focus and aids
in adaptive feature refinement. Originally employed in neural machine translation with
encouraging outcomes, the attention mechanism has now gained significant traction in var-
ious computer vision applications. Notably, it has been successfully implemented in tasks
such as natural scene text detection [13] and semantic segmentation [14], demonstrating its
wide applicability and effectiveness in various domains.

Liu et al. [15] incorporated channel attention into MobileFaceNet to enhance model
performance, and Tan et al. [16] proposed three distinct attention mechanisms for recogniz-
ing pedestrian attributes, each designed to approach the problem from a unique perspective
and access pertinent information. Fu et al. [17] append the attention module to enable the
adaptive integration of local features with their global dependencies, resulting in improved
segmentation performance on three challenging scene segmentation datasets. Most of
these approaches utilize single implementations of attention, which may not be adequate
in achieving optimal performance. Furthermore, few studies have investigated the ap-
plication of attention mechanisms for multimodal recognition tasks. To overcome these
limitations, our proposed approach combines multiple attention mechanisms to enhance
multimodal recognition performance. In addition, our attention-based fusion process can
acquire comprehensive and diverse features across multiple scales and levels.

2.3. Federated Learning

Centralized machine-learning techniques, in which the model is placed on a cloud
server or data center and requires large amounts of data to be uploaded from edge nodes,
are not scalable for the growing amount of data generated by the IoT [18]. This is particu-
larly problematic for multimodal biometric recognition, which relies on data from various
sources including sensors, machines, and other IoT devices. The transmission of raw data
also raises concerns around privacy and regulatory compliance, especially since the enacted
General Data Protection Regulation (GDPR) [19]. The regulation includes provisions with
strict regulations that aim to regulate the use of user data by enterprises.

The FL method of machine learning enables modeling with decentralized data sources
and eliminates the need for centralized data, therefore reducing the privacy risks typically
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associated with traditional centralized machine learning. FL involves creating a global
neural network model on a central server that is then downloaded onto the local devices
of participating parties. Each party trains the model with their local data and uploads
the updated version to the central server. To enhance the security of data transmission
and protect sensitive information, this approach adopts the “bringing the code to the data”
philosophy [20]. FL has been proposed as a promising technique for a wide range of IoT
services, including IoT privacy protection [21,22]. For instance, Zhao et al. [23] proposed a
hierarchical crowd-sourcing FL system for IoT data sharing, which collects data from home
appliances periodically and trains the machine-learning model, Li et al. [24] developed an
FL framework that enables multiple industrial cyber-physical systems to collaboratively
create a robust intrusion detection model while ensuring privacy protection. Additionally,
Wu et al. [25] demonstrated the effectiveness of FL in the context of IoT-based human
activity recognition. We trust that FL may offer significant advantages for IoT multimodal
biometric recognition.

3. Proposed Model
3.1. Feature Extraction Network

In our work, we adopt a strategy of unimodal processing in the early layers of the
network, followed by cross-modal fusion in the later layers. To facilitate cross-modal
fusion, we first transform the audio and facial features into feature matrices. The reason
for this is that lower layers of the network mainly handle low-level features, while higher
layers process higher-dimensional features. Low-level features, such as the background
noise in audio, do not contain valuable information, making the early fusion of multiple
modalities ineffective.

For image input, our feature extraction network is based on the ResNet-34 [26] architec-
ture, we integrated Convolutional Block Attention Module (CBAM) [27] into each residual
block of ResNet-34 to combine channel attention and spatial attention. The improved
structure is depicted in Figure 1. The CBAM model consists of two distinct sub-modules:
the channel attention module (CAM) and the spatial attention module (SAM). The CAM is
to identify essential areas in the image with a focus on filtering out irrelevant information.
Meanwhile, SAM complements CAM by locating the most significant information after the
processing by CAM.

Figure 1. The improved structure of ResNet.

For audio input, while Long Short-Term Memory (LSTM) models are effective in
extracting features from sequential data and converting variable-length speech into fixed-
length voice features, they may not be suitable for very long speech inputs due to the
problem of gradient vanishing [28]. ECAPA-TDNN model [29] introduces several structures
such as the Squeeze-and-Excitation (SE) module and Attention Statistics Pooling (ASP) for
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computing the weight of each frame’s corresponding feature in the speech signal. As a
result, the ECAPA-TDNN model has demonstrated remarkable performance in the speaker
verification domain.

We propose a modification to the SE module in ECAPA-TDNN that incorporates the
advantageous features of the simplified non-local module and the original module, within
the global context (GC) modeling [30] framework. This introduces a more effective method
for audio input.

Figure 2 illustrates the SE module and GC module, the proposed method enables the
network to capture both long-range dependencies and local interactions more effectively,
therefore increasing its robustness. The final speech feature is obtained using weighted
averaging, allowing us to capture speaker factors related to long-term changes with greater
accuracy and effectiveness. This is particularly useful in specific corpora where certain
frame-level features are more unique and critical in distinguishing speakers than others.

(a) (b)

Figure 2. The SE module (a) and modified module (b).

3.2. Biometric Modalities Fusion Network

Through the linear layer in the extraction network, the voice clips and face images
are transformed into audio embeddings ea and visual embeddings ev, we explored two
different strategies for the multimodal fusion: simple feature fusion (SFF) and attention-
based fusion (AF).

In SFF, we fuse ea, ev through vector concatenation, the content vectors from each
feature are fused with the same weights, and the fusion embedding is e f = [ea, ev]. To
increase the performance of multimodal biometric recognition, we implement a soft at-
tention mechanism to fuse features from different modalities, as shown in Figure 3. The
fusion network allows us to handle missing or corrupt data from either modality in a
natural manner.
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Figure 3. Model architecture of our network with attention-based fusion.

First, audio embeddings and face embeddings through attention layers, compute the
score as follows:

â{a,v} = fatt([ea, ev]) = WT [ea, ev] + b (1)

where weight matrix W and bias vector b are the learnable parameters of the attention layer.
Through full connection (FC) layers ea and ev are transformed to ẽa and ẽv, respectively:

ẽa = fFC_a(ea)

ẽv = fFC_v(ev)
(2)

where ẽa and ẽv are better suited for the subsequent fusion process. The fusion embedding
e f is then generated through a weighted sum operation:

e f = ∑
i∈{a,v}

αi ẽi, where αi =
exp(âi)

∑k∈{a,v} exp(âk)
, i ∈ {a, v} (3)

the notation ẽi represents the embeddings that have been projected onto a shared embed-
ding space that is consistent with the linear combination operation.

3.3. The Federated AMBR Method

Machine learning has been extensively utilized in IoT for extracting valuable insights
from IoT data, therefore facilitating the development of intelligent applications. In the
training process of a multimodal biometric recognition network, collecting sufficient and
diverse voice and face data is crucial, this task can be challenging due to various factors
such as privacy concerns and relevant privacy protection laws and regulations in different
countries and regions, such as the GDPR.

Rather than sharing raw IoT data, FL offers an additional approach to distributing
learning outcomes while maintaining data privacy. During model training, data owners
hailing from various regions possess the capability to leverage their complete set of private
data, as opposed to being constrained by the utilization of only partially sensitive data
due to privacy apprehensions. Consequently, FL fosters secure data exchange between



Sensors 2023, 23, 6006 7 of 14

data owners and data requesters, enhancing the security and reliability of data sharing and
ultimately enabling end users to acquire robust network models.

A multinational company with IoT data in different countries or regions might have
different privacy rules to handle data. As shown in Figure 4 we explored a federated
approach to train our AMBR network inspired by the Fedavg algorithm [6], enabling
collaborative learning between the server and clients from different countries. The detailed
process is shown in Algorithm 1, the server is tasked with initializing model parameters,
optionally distributing them to clients, collecting the model parameters trained by clients,
and performing a weighted average operation. Each client node trains the model using its
own local data and then uploads parameters to the server. Models that are trained with
different voice and face datasets are averaged by a central server.

Figure 4. The illustration of our approach.

In the federated AMBR method, we consider a scenario involving K clients, indexed
by k, and multiple rounds denoted by r. At first, the server initializes the global model by
requesting the initial parameters w0 from a randomly selected client. Within each round, a
random subset of M clients, referred to as K, is selected. The following steps are executed
in parallel for each client k ∈ K. The client k executes the client update function, which
takes the current model parameters wr as input and returns the updated parameters wk

r+1.
The global model is updated through a weighted averaging of local models generated by
the selected clients. The weight assigned to each client is determined by the proportion of
its sample size nk to the total data sample size n. This weight allocation strategy ensures
that clients with larger data volumes have a greater influence on the global model, therefore
better reflecting the overall data distribution and incorporating contributions from each
client proportionally.

The client update function performed on each client k consists of multiple steps. First,
the client retrieves the current model parameters w from the FL server. Then, for each local
epoch i ranging from 1 to E, the client performs batch-wise computations. Within each
batch b, the client extracts audio embeddings ea and visual embeddings ev from the local
dataset Dk. These embeddings are subsequently fused using a fusion network. Afterward,
the model parameters w are fine-tuned and updated using a specific loss function. This
results in the creation of a global model that is used for multimodal biometric recognition.
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Algorithm 1 The federated AMBR method. The K clients are indexed by k, rounds are
indexed by r, n is the number of samples, {Di} represents the individual dataset owned
by each client, E is the number of local epoch, B is the local batch size and w is the model
parameters

Server executes: initialize w0
for each round r = 1, 2, . . . do

K← (random subset of M clients)
for each client k ∈ K in parallel do

wk
r+1 ← ClientUpdate (k, wr)

end for
wr+1 ← ∑K

k=1
nk
n wk

t+1
end for

ClientUpdate (k, w) ://Run on client k
Get parameters w from FL server
for each local epoch i from 1 to E do

for batch b ∈ B do
Extract audio embeddings ea and visual embeddings ev from local dataset {Dk}
Fuse the ea, ev through the fusion network
Fine-tune and update w with loss function

end for
end for
return w to Server

4. Experiments
4.1. Datasets and Training Details

In our study, the VoxCeleb1 and VoxCeleb2 datasets [31,32] were utilized to train
and test our AMBR model, which includes large-scale audio-visual data comprising short
speech segments extracted from interview videos on YouTube. The training data consists
of 1,092,009 video clips extracted from 5994 celebrities in the Voxceleb2 dev sets. The
evaluation of the model was conducted using the official trial lists Vox1_O, Vox1_E, and
Vox1_H. To guarantee an unbiased evaluation, the validation data do not overlap with the
training data.

The original validation set, Vox1_O, contains 37,611 trials with 40 speakers. The
extended validation set, Vox1_E, contains 579,818 trials with 1251 speakers. In addition,
the hard validation set, Vox1_H, contains a list of 550,894 trials with 1190 speakers, where
all speakers are restricted to the same nationality and gender. Using these different sets
for evaluation, the performance and generalization of the model could be assessed under
varying conditions, including different speaker populations and characteristics.

For facial data, we extracted one image per second, then cropped and scaled them
to 224 × 224 pixels to ensure the face remains fully visible, then normalized each pixel
value. For audio data, voice clips were extracted from videos and converted into mono,
16-bit samples at a 16 kHz sampling rate, the shorter audio segments were concatenated
back-to-back to ensure consistency. To account for various scenarios including background
noise and other types of noise, three types of noise from the Musan [33] dataset were added
to augment the audio data.

The overall training process involved two stages. During the first stage, we centrally
trained the AMBR model and compared it with other biometric recognition systems, each
network was trained for 200 epochs with a batch size of 256. We employed the Adam
optimizer with an initial learning rate of 0.001. To facilitate the learning process, we applied
a learning rate decay of 0.95 every 10 epochs. We optimized the model parameters using
the additive angular margin (AAM) SoftMax [34], the AAM-SoftMax loss L is defined as:
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L = − 1
n

n

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + ∑N
j=1,j 6=yi

es(cos(θj))
(4)

where N represents the total number of classes, n is the batch size, θyi is the angle between
the feature embedding of the i-th sample and its corresponding class yi, hyper-parameter m
represents the margin, which is used to increase the separation between classes and prevent
samples from clustering too closely in the feature space, hyper-parameter s is the scaling
factor, which adjusts the scale of the angles. The AAM-SoftMax loss function demonstrates
unstable convergence when randomly initialized with larger values of m. Specifically, the
model trained with the widely used configuration, with m set to 0.3 and s set to 30, exhibits
better performance when compared to the vanilla triplet loss [35]. For our experimental
setup, the hyper-parameters were set to 0.3 for the m and 30 for the s. The second stage
simulated the FL scenario by partitioning the dataset among five clients under three distinct
settings, training data were distributed among all clients.

4.2. Unimodal Biometric Recognition

The Equal Error Rate (EER) is a critical indicator for evaluating the reliability of the
biometric recognition system, which is determined by the intersection point of the False
Acceptance Rate (FAR) and False Rejection Rate (FRR). The FAR and FRR can be calculated
as follows:

FAR =
FP

FP + TN
(5)

FRR =
FN

TP + FN
(6)

where FP stands for false positives, which represents the number of actual negatives
classified as positive. Similarly, TN refers to true negatives, TP means true positive, and FN
means false negatives. A lower EER value implies higher reliability and accuracy of the
biometric recognition system.

First, we trained two separate unimodal biometric recognition networks to test the
performance of our feature extraction network, the comparisons of EER with baseline
techniques and the proposed method are provided for Vox1_O, E, and H trails. Table 2
shows the results of the unimodal person recognition experiment on the trail sets.

After analyzing our results, we observed that although the inclusion of MUSAN
augmented audio features led to an enhancement in recognition accuracy, the performance
of the audio system was significantly inferior to that of the visual system. We also dis-
covered that the attention-based model surpassed the baseline model, with the superior
performance being attributed to the ability of attention mechanisms to model the global
features of faces and voices, making it more suitable for feature extraction.

Table 2. The comparison of unimodal recognition networks with the baseline.

EER(%)
Test Modality Method

Vox1_O Vox1_E Vox1_H

Audio ECAPA-TDNN 1.86 1.98 3.16
Audio ECAPA-TDNN * 1.82 1.93 3.02
Audio AMBR 1.72 1.76 2.80
Audio AMBR * 1.65 1.73 2.71

Visual ResNet-34 1.61 1.45 2.01
Visual AMBR 1.47 1.34 1.68

Method with * used MUSAN to augment audio.

We also compared our feature extraction network with several popular networks
including VGG-M [36], VGG-16 [37], ResNet-18, and ResNet-34. To ensure a fair compari-
son, we augmented audio clips with MUSAN in all networks. On the Vox1_E test set, the
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comparison of VGG-M shows that the EER of voice recognition improved by 15%, and
the EER of face recognition led to a relative improvement of 7.6% compared to ResNet-34.
Table 3 demonstrates that our proposed method is comparable to other unimodal systems
and the improved modules can help the network develop a better ability to capture relevant
information for recognition.

Table 3. Unimodal person recognition networks EER (%) comparison.

EER(%)
Test Modality Method

Vox1_O Vox1_E Vox1_H

Audio ResNet-18 2.35 2.42 3.67
Audio ResNet-34 2.01 2.10 3.24
Audio VGG-M 1.96 2.04 3.26
Audio AMBR 1.65 1.73 2.71

Visual ResNet-18 1.74 1.66 2.08
Visual VGG-16 1.80 1.71 2.15
Visual AMBR 1.47 1.34 1.68

4.3. Multimodal Biometric Recognition

The fusion network utilizes face and voice embeddings extracted from the feature
extraction networks described in Section 4.2. Table 4 presents a comparative analysis of
multimodal and unimodal biometric recognition. The results suggest that employing SFF
can enhance performance. Moreover, the AF method we proposed outperformed the SFF
method. The AF method achieved remarkable performance with 0.68%, 0.47%, and 0.80%
EER on trial Vox1_O, Vox1_E, and Vox1_H, respectively, these results indicated a significant
improvement over the SFF method, with improvements of 27%, 20%, and 23% for the
corresponding validation sets. SFF was found to be inadequate in effectively utilizing
multiple types of features, as the content vectors from each feature were fused using the
same weights. In contrast, the attention-based fusion model effectively modulated the
correlation between the face and voice features by calculating the fusion embedding using
a weighted sum. Compared with other multimodal recognition systems, the proposed
method exhibited EER improvements of 24%, 9.3%, and 13% over their respective method
on the trail lists Vox1_O. Therefore, our proposed system effectively extracts multimodal
biometric information to accurately determine identity.

Table 4. The EER (%) of multimodal biometric recognition methods.

EER(%)
Test Modality Method

Vox1_O Vox1_E Vox1_H

Audio AMBR 1.65 1.73 2.71
Visual AMBR 1.47 1.34 1.68

Visual + Audio Sari et al. [38] 0.90 - -
Visual + Audio MCB [39] 0.75 0.68 1.13
Visual + Audio PINS [11] 0.79 0.50 0.91
Visual + Audio AMBR with SFF 0.93 0.59 1.04
Visual + Audio AMBR with AF 0.68 0.47 0.80

4.4. The Experimental Results in FL Settings

To evaluate the AMBR with FL approach, we conducted experiments on the VoxCeleb1
dataset. Specifically, we selected 50 speakers from India, the USA, Canada, the UK, and
Austria, resulting in 7500 face-voice pairs. We divided these pairs into 6000 pairs of training
data and 1500 pairs of test data. We created two additional datasets by subsampling 50%
and 30% of the original training data while leaving the test data unchanged. We denoted
the aforementioned three experimental data configurations as Setting 1, Setting 2, and
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Setting 3, correspondingly. By utilizing subsampling datasets, we aimed to better evaluate
the performance differences between our proposed approach and other methods under
different scenarios.

In our experiments, we utilized a central server and five client devices, each client was
restricted to speakers of a single nationality to mimic the IoT scenario, where participants
utilize their own biometric data to train the model without compromising each other’s
private information. For a fair comparison, we set the communication round, local epoch,
and local batch size to 200, 5, and 10, respectively. We maintained a learning rate of 0.01 in
the centralized standard SGD within the FL framework.

Compared with other methods, our proposed method demonstrated superior accuracy
and convergence speed as revealed by Figure 5. The reduced datasets lack the full diversity
and richness of the original data, resulting in lower performance. A larger training set
provides more samples for model training, improving generalization ability and perfor-
mance, and facilitates a more comprehensive representation of the data, reducing bias and
enhancing the model’s understanding of data distribution and features. We also trained a
centralized model on the entire dataset, which achieved an accuracy of 0.974. We observed
that despite the performance gap of the FL model, our proposed method outperformed
other methods, confirming the effectiveness of our approach.

(a) (b) (c)

Figure 5. Evaluate different methods for accuracy and loss under different settings. (a) Setting 1;
(b) Setting 2; (c) Setting 3.

Specifically, our approach outperformed method MCB by 8%, 7.3%, and 6% in the
three distinct settings, and it showed 3.9%, 3.2%, and 2.7% higher accuracy than method
PINS. The superiority of our proposed method becomes more pronounced as the experi-
mental data volume increases. The decreasing trend in loss values across different settings
indicates that our AMBR method demonstrates faster convergence compared with other
methods. The decreasing trend in loss values across different settings confirmed that our
proposed method exhibits faster convergence compared with the other methods. In FL
applications, this accelerated convergence speed can significantly reduce the communi-
cation bandwidth pressure. Consequently, our method achieves efficient utilization of
communication bandwidth while ensuring optimal model performance.

5. Discussion

In this work, we developed a multimodal biometric recognition network, AMBR,
which utilizes attention mechanisms to selectively attend to the most relevant modality of
the inputs to generate a powerful fusion representation that is suitable for the biometric
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recognition task in IoT. The effectiveness of two feature fusion strategies, simple feature
fusion and attention-based fusion were compared, and the results indicated that attention-
based fusion is more efficient in combining the biometric features. Our proposed AMBR
network achieved EER results of 0.68%, 0.47%, and 0.80% on the Vox1_O, Vox1_E, and
Vox1_H test sets, showing that our AMBR outperforms the traditional unimodal systems
significantly.

Furthermore, we proposed the utilization of FL to safeguard user data privacy during
the training process, which enables individual IoT clients to collaborate in training the
central model while ensuring the confidentiality of sensitive user data by preventing raw
data from leaving devices. Our experiments showed that the proposed approach can
effectively train with privacy preservation in place.

In future research, it is crucial to explore improved FL aggregation methods that can
lead to enhanced performance gains. In addition, extending our experiments to include
a larger number of clients and diverse data distributions will enable us to investigate
the trade-off between preserving privacy and achieving high model accuracy. Moreover,
research on lightweight multimodal networks is also a promising direction. By training
a lightweight model within the context of FL, we may potentially achieve even greater
performance improvements and reduce communication overhead, as the model’s structure
and parameter count can significantly influence these factors.
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