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Abstract: Before the 19th century, all communication and official records relied on handwritten
documents, cherished as valuable artefacts by different ethnic groups. While significant efforts
have been made to automate the transcription of major languages like English, French, Arabic, and
Chinese, there has been less research on regional and minor languages, despite their importance
from geographical and historical perspectives. This research focuses on detecting and recognizing
Pashto handwritten characters and ligatures, which is essential for preserving this regional cursive
language in Pakistan and its status as the national language of Afghanistan. Deep learning techniques
were employed to detect and recognize Pashto characters and ligatures, utilizing a newly developed
dataset specific to Pashto. A further enhancement was done on the dataset by implementing data
augmentation, i.e., scaling and rotation on Pashto handwritten characters and ligatures, which gave
us many variations of a single trajectory. Different morphological operations for minimizing gaps
in the trajectories were also performed. The median filter was used for the removal of different
noises. This dataset will be combined with the existing PHWD-V2 dataset. Various deep-learning
techniques were evaluated, including VGG19, MobileNetV2, MobileNetV3, and a customized CNN.
The customized CNN demonstrated the highest accuracy and minimal loss, achieving a training
accuracy of 93.98%, validation accuracy of 92.08% and testing accuracy of 92.99%.

Keywords: enhance PHWD-V2 dataset; Pashto handwriting trajectories; customized CNN;
prediction; and recognition

1. Introduction

The Pashto language possesses a cursive writing style encompassing various literary
genres such as history, epics, poetry, stories, fiction, nonfiction, and more. Unfortunately, the
presence of these invaluable literary works has been gradually diminishing in contemporary
books. To preserve the rich heritage of Pashto literature, native speakers are now turning
to artificial intelligence (AI) techniques. Detecting and recognizing handwritten Pashto
characters and ligatures presents challenges due to their subtle variations and modifications.

1.1. Pashto Language

Pashto, spoken in Afghanistan and parts of Pakistan (particularly the Khyber Pakhtunkhwa
and Baluchistan provinces), is the language of the Pashtun ethnic group [1]. Pashto speakers
are also known as Pakhtuns or Pashtuns [2]. It is the official language of Afghanistan and the
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second most widely spoken language in Pakistan. Due to migration and cultural ties, Pashto is
also spoken in neighboring regions of Iran and Tajikistan.

1.2. Pashto Handwritings

Pashto literature includes various written works, with the oldest known book being
“PataKhazana”, an anthology of Pashto poetry dating back to the 8th century. Another
important work is “Khairul Bayan”, a prose book by the legendary Pashtun figure Pir
Rokhan or Bayezid Ansari [3]. Pashto literature covers various topics such as politics,
religion, poetry, music, athletics, and education. However, the availability of modern
technology and language services, including translation, text recognition, and speech
recognition, is limited for Pashto speakers [2].

1.3. Pashto Handwritten Characters and Ligatures Recognition

Recognizing handwritten Pashto characters and ligatures is a complex task in the
era of artificial intelligence. Pashto has a unique set of 44 characters [4,5], including other
alphabets introduced by Pir Rokhan [4]. These characters combine to form different words,
and their positioning in a word generates various ligature shapes [2]. Compared to other
scripts like Arabic, Urdu, and Persian, Pashto exhibits a more significant variation in
character shapes and a higher number of ligature joints.

Despite the significance of Pashto, there is a lack of available Pashto handwritten datasets
and limited research on Pashto OCR (optical character recognition) for handwritten character
recognition. The recognition of Pashto characters and ligatures poses challenges due to the
language’s diverse alphabet sets and the significant variation in character shapes based on
word positions [6]. The partial view of Pashto handwritten ligatures is shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 17 
 

 

1.1. Pashto Language 
Pashto, spoken in Afghanistan and parts of Pakistan (particularly the Khyber Pakh-

tunkhwa and Baluchistan provinces), is the language of the Pashtun ethnic group [1]. 
Pashto speakers are also known as Pakhtuns or Pashtuns [2]. It is the official language of 
Afghanistan and the second most widely spoken language in Pakistan. Due to migration 
and cultural ties, Pashto is also spoken in neighboring regions of Iran and Tajikistan. 

1.2. Pashto Handwritings 
Pashto literature includes various written works, with the oldest known book being 

“PataKhazana,” an anthology of Pashto poetry dating back to the 8th century. Another 
important work is “Khairul Bayan,” a prose book by the legendary Pashtun figure Pir 
Rokhan or Bayezid Ansari [3]. Pashto literature covers various topics such as politics, re-
ligion, poetry, music, athletics, and education. However, the availability of modern tech-
nology and language services, including translation, text recognition, and speech recog-
nition, is limited for Pashto speakers [2]. 

1.3. Pashto Handwritten Characters and Ligatures Recognition 
Recognizing handwritten Pashto characters and ligatures is a complex task in the era 

of artificial intelligence. Pashto has a unique set of 44 characters [4,5], including other al-
phabets introduced by Pir Rokhan [4]. These characters combine to form different words, 
and their positioning in a word generates various ligature shapes [2]. Compared to other 
scripts like Arabic, Urdu, and Persian, Pashto exhibits a more significant variation in char-
acter shapes and a higher number of ligature joints. 

Despite the significance of Pashto, there is a lack of available Pashto handwritten da-
tasets and limited research on Pashto OCR (optical character recognition) for handwritten 
character recognition. The recognition of Pashto characters and ligatures poses challenges 
due to the language’s diverse alphabet sets and the significant variation in character 
shapes based on word positions [6]. The partial view of Pashto handwritten ligatures is 
shown in Figure 1. 

 
Figure 1. Partial view of Pashto handwritten ligatures. Figure 1. Partial view of Pashto handwritten ligatures.

Every individual wants to contribute and do something new for their homeland, i.e.,
for their people, language, culture, education, and much more. It is a morally spiritual
motivation to spend energy on the Pashto language. In this new era of artificial intelligence,
there is a need for such research or study to facilitate Pashto speakers in learning and
communication. This research is also helpful in translating Pashto into different languages
based on recognition patterns.
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The main contributions of this research are given in the following:

� A novel deep-learning-based model is proposed, which is lightweight and efficiently
classifies and recognizes variational Pashto handwritten characters and the different
shapes of characters concerning connectivity with each other. The Pashto character
may have two to four possible shapes to construct a complete word, i.e., isolated,
middle, first, and end.

� The second contribution is the construction of the Pashto handwritten character and
ligature data set. The Pashto language is a low-resource language, and this paper also
contributes to its resource generation. This dataset is different from Pashto character
datasets because it also consists of the different shapes of a character.

� The shapes of Pashto characters and ligatures have been classified and recognized
with geometric variation, i.e., rotation, location shifting, and scaling.

The proposed technique will motivate other researchers to generate different regional
language resources and lightweight deep-learning techniques for their respective regional
languages. Handwritten Pashto text classification and recognition have serious challenges,
which are given as follows:

• Invalid hooks exist, which affect the accuracy of previously published techniques.
• Salt and pepper noise is generated during scanning and the type of written material.
• Zig-zag motion is generated due to hand shivering and writing speed that changes

the shape and features of a language base symbol.
• Invalid disconnected strokes.
• Rotated characters and ligature.
• Variant size of the same character and ligature.
• The difference in the handwriting of the same characters and ligature.

This paper is further divided into sections as follows:
Section 2 discusses related work. Section 3 elaborates the proposed approach. Section 4

elaborates on the experimental results and discussion, whereas Section 5 is the conclusion.

2. Related Work

The Pashto language has many features and variations to be investigated, and many
researchers have proposed different techniques to recognize Pashto text. Pashto text has
been discussed elaborately in the paragraphs given below.

Recognizing handwritten letters, words, signatures, and maps is a significant and
challenging issue. It has beneficial uses in various industries, including banking, retail,
education, data gathering, and touchscreen gadgets [7]. Many researchers worked on
creating and collecting Pashto Characters and their ligatures datasets of printed text. An
immense amount of Pashto text is presented on the internet to acquire corpora for extracting
valuable information to create different types of Pashto printed text datasets [6,8–10].
However, in [8], the authors created a dataset of whole words in printed form and then
manually marked the segmentation points. They developed a corpus of 2,313,736 Pashto
words from web sources. A total of 19,268 distinct ligatures are found, of which 7000
ligatures cover 91% of words.

A bidirectional and multi-dimensional long short-term memory (BLSTM and MDL-
STM) network that recognizes printed Pashto text was made in [11]. The limitation of this
work was its high constraint on location, i.e., baseline. In [6], the authors claim to construct
a printed Pashto words ligature-based dataset having 8k images of 1k different ligatures.
They performed manual augmentation, i.e., they showed different sizes, orientations, and
positions. The authors in [9] proposed a holistic approach for recognizing printed Pashto
words with 1k ligatures. The study also reveals that the SIFT descriptor performs better
than standard feature extraction approaches, i.e., PCA.

Furthermore, different researchers created a Pashto single handwritten character
dataset [1,2,12,13] with different implementation techniques and obtained different results.
Researchers in [14] implemented HOG, which is helpful in various sorts of rotation because
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it is rotationally invariant. For 730 characters, the suggested approach obtained a maximum
prediction accuracy of 93.5%. In contrast, in [5], the researcher generated a handwritten
Pashto character dataset only having 11352 images and implemented different models, i.e.,
histogram-oriented gradients (HOG), having a calculated accuracy of 80.34%. In paper [13],
zoning-based features have an estimated 76.42% accuracy using 10-fold cross-validation
and, a low-level feature technique based on K-nearest neighbors has an accuracy of 74.8%.
Another researcher in [15] implemented HoGs, the Gabor filter, DCT, DWT, and hybrid
feature maps based on a zoning technique. Accuracy ratings of 63.30%, 65.13%, 68.55%,
68.28%, 67.02%, and 83% were achieved with different configurations. The final accuracy
produced using convolutional neural networks was 81.02% lower than that of the multi-
class support vector machine. The hybrid feature map-based multi-class SVM model had
an accuracy of 83%. In [16], the trials’ continuous findings indicate that the recommended
OCR system is 80.7% accurate, artificial neural networks are 78% accurate, and SVM
is 56% accurate.

Another approach in [4], the probability-based multi-class naive Bayesian classifier,
which computes the probabilities of geometric invariant properties to predict the highest
likelihood, was used for real-time character recognition with a real-time accuracy of 97.5%.
In paper [17], a dataset of 43,000 images with multiple rectified linear unit (ReLU) layers was
trained and evaluated using three different feed-forward neural network configurations.
Models using the backpropagation method were Model 1, using a single ReLU layer; Model
2, using two ReLU layers; and Model 3, incorporating three ReLU layers. According to
the simulation, in contrast to Model 1’s accuracy of 87.6% on anonymous data, Model
2 and Model 3’s accuracies were 81.60% and 3%, respectively. In paper [1], recognizing
Pashto handwritten characters suggested a convolutional neural network (CNN) model.
The experimental results show that the suggested model was better than other models, with
a test accuracy for PHCR (Pashto handwritten character recognition) of 99.64%, limited to
only one character.

In the same way, in [18], a convolutional neural network was applied to detect offline
Urdu handwritten letters in many fonts in an unrestricted setting. Un [19], multi-level
sorting of the clustered data was one of the optimization steps used by the evolutionary
algorithm to improve the classification criteria for identifying Urdu ligatures. Using
the benchmark UPTI dataset, experiments produced a recognition rate of 96.72%. The
summarize comparative analysis of the literature review is shown in Table 1.

Table 1. Comparative analysis of the literature review.

Techniques

Pashto
Handwritten

Character
Recognition

Pashto
Handwritten

Ligatures
Recognition

Geometric
Variation

Lightweight
Classifier

Deep-Learning-
Based

Classifier

Accuracy
in %

Proposed Technique Yes Yes Yes Yes Yes
Training = 93.98%

Validation = 92.08%
Testing = 92.99%

[1] Yes No Unknown No Yes 99.6%

[2] No No No No No No accuracy, only
dataset

[3] No No No No No Only a printed
ligature dataset

[4] No No No No No Not clear

[5] Yes No Yes Yes No 93.5% on 730
characters only

[6] Yes No Yes Yes No 97.5%

[7] Yes No No No Yes 87.6%

[8] Yes No No No No 80.34%

[9] No No Yes No No Not Clear

[10] No No No No No Not Clear
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Table 1. Cont.

Techniques

Pashto
Handwritten

Character
Recognition

Pashto
Handwritten

Ligatures
Recognition

Geometric
Variation

Lightweight
Classifier

Deep-Learning-
Based

Classifier

Accuracy
in %

[4] No No Yes No No 74%

[12] No No No No Yes Not Clear

[13] No No Unknown No Yes 9.2%

[14] Yes No No No No Not Clear

[15] Yes No No No No 74.8%

[16] Yes No No No No 83%

[17] Yes No Unknown No No 78%

[18] No No No No Yes Not Clear

[19] No No No No No 96.72%

[20] No No Yes Unknown Unknown Not Clear

3. The Proposed Approach

For the conservation and preservation of Pashto handwritten text, a lightweight deep-
learning technique has been designed to detect and recognize geometrically invariant
handwritten characters and their positional ligatures. The Pashto language consists of
44 characters [20], from which all Pashto words are formed. Not every word has an
objective meaning in Pashto, but the meanings of words change with different dialects
and accents [11]. Each word forms a Pashto word according to a specific dialect or accent.
These words are combined to form sentences like in other cursive script languages, i.e.,
Urdu, Arabic, Persian, etc. The terms “Pashto” or “Pakhtu” may also be known as Afghani
throughout Indo-European regions and are denoted in phonetic international as p’ækhtu.
The various Indo-Iranian language families include the East Iranian branch which includes
the Pashto languages. There are two main dialects of the Pashto language: one is called
the soft dialect, and the other is called the hard dialect. The hard dialect is known as the
“Northern dialect” and the softer dialect as the “Southern dialect”. These two dialects
are phonetically different from each other. The word Pashto is pronounced “Pakhtu” in
northern dialects but “Pashto” in southern dialects. Both hard and soft Pashto dialects
are considered in this study. Another dialect that is considered the standard of the Pashto
language is Kandahari Pashto [15]. Pashto words are challenging to recognize using optical
character recognition (OCR). Researchers provided different techniques and scenarios
to detect, classify or recognize Pashto handwritten characters and words. They form a
significant development and will be a major leap forward for the future success of the
Pashto language.

3.1. Pashto Handwritten Ligatures

Pashto’s characters have a specific writing shape while constructing the words. The
change in a character’s shape is due to the cursive property of Pashto handwriting. Liga-
tures mean that the character’s different variations are connected at different locations. In
the Pashto language, the character can change meaning in different positions, i.e., a charac-
ter at the start of a word has a different shape from when it is used as a single character.
When a character is at the center or the end of a word, it generates a different style and
pattern. All these patterns are the properties of Pashto and other cursive languages, as
shown in Figure 2 below.



Sensors 2023, 23, 6060 6 of 16Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Pashto handwritten word ligatures. 

3.2. Dataset 
As discussed earlier, a slight change in the structure of the Pashto characters makes 

classification and recognition more complex. A real Pashto handwritten character and lig-
ature dataset is required as no such dataset exists up to the best of our knowledge. There 
are 44 characters and 110 ligatures. The ligatures are generated due to different positions 
in word construction. Some characters cannot connect with others in word construction 
and stand isolated. Therefore, the Pashto language generates only 110 unique ligatures, 
i.e., 44 characters, and 110 ligatures concerning character position in the word. 

3.2.1. Templates Designed for Data Collection 
A template for the collection of handwritten Pashto characters and ligatures was 

made, which would eventually lead to the creation of a dataset. A sheet was created on 
A4-sized paper with a 10 × 10 grid, i.e., the grid consists of 10 rows and 10 columns. This 
grid would collect 100 different samples written by 100 different people. Still, for better 
results and training in deep learning techniques, the number of handwritten characters 
and ligatures was increased from 100 to 200 individuals, which included high school 
teachers and students of Grades 9 and 10. These individuals wrote a single Pashto charac-
ter and ligature in the center of each cell. In the same way, 200 individual writing samples 
were generated, which produced 30,800 images. 

3.2.2. Generation and Collection of Datasets 
After collection, the A4-sized paper with a 10 × 10 grid was then scanned on an HP 

Laserjet Pro MFP M426fdn printer. All these scans were placed in a folder, then all the 
images were cropped, and then the grid was removed with Photoshop, and only the char-
acters and ligatures remained; the noise was also removed after the grid’s removal 
through deep-learning techniques, which are discussed in detail in the preprocessing sec-
tion. After removing gridlines and noise, 10 × 10 images were created for each character. 
The image’s background changed from white to black, and the characters were changed 
from black to white for the enhancement of accuracy. Two-hundred images were created 
for each character and ligature, and each character was placed in a separate folder. The 
dataset consisted of 154 unique characters and ligatures, and 154 folders were created. 
Each folder contained two-hundred images of a single Pashto character and ligature. The 
dataset consisted of 30,800 images and 154 classes. 

3.3. Preprocessing 
Upon the collection and generation of the dataset, the data were put into the second 

phase of the deep-learning technique known as preprocessing. This step was performed 
to prepare the data in a pure form for implementation. Some of the problems that emerged 
are as follows. 

  

Figure 2. Pashto handwritten word ligatures.

3.2. Dataset

As discussed earlier, a slight change in the structure of the Pashto characters makes
classification and recognition more complex. A real Pashto handwritten character and
ligature dataset is required as no such dataset exists up to the best of our knowledge. There
are 44 characters and 110 ligatures. The ligatures are generated due to different positions
in word construction. Some characters cannot connect with others in word construction
and stand isolated. Therefore, the Pashto language generates only 110 unique ligatures, i.e.,
44 characters, and 110 ligatures concerning character position in the word.

3.2.1. Templates Designed for Data Collection

A template for the collection of handwritten Pashto characters and ligatures was
made, which would eventually lead to the creation of a dataset. A sheet was created on
A4-sized paper with a 10 × 10 grid, i.e., the grid consists of 10 rows and 10 columns. This
grid would collect 100 different samples written by 100 different people. Still, for better
results and training in deep learning techniques, the number of handwritten characters and
ligatures was increased from 100 to 200 individuals, which included high school teachers
and students of Grades 9 and 10. These individuals wrote a single Pashto character and
ligature in the center of each cell. In the same way, 200 individual writing samples were
generated, which produced 30,800 images.

3.2.2. Generation and Collection of Datasets

After collection, the A4-sized paper with a 10 × 10 grid was then scanned on an
HP Laserjet Pro MFP M426fdn printer. All these scans were placed in a folder, then all
the images were cropped, and then the grid was removed with Photoshop, and only the
characters and ligatures remained; the noise was also removed after the grid’s removal
through deep-learning techniques, which are discussed in detail in the preprocessing
section. After removing gridlines and noise, 10 × 10 images were created for each character.
The image’s background changed from white to black, and the characters were changed
from black to white for the enhancement of accuracy. Two-hundred images were created
for each character and ligature, and each character was placed in a separate folder. The
dataset consisted of 154 unique characters and ligatures, and 154 folders were created. Each
folder contained two-hundred images of a single Pashto character and ligature. The dataset
consisted of 30,800 images and 154 classes.

3.3. Preprocessing

Upon the collection and generation of the dataset, the data were put into the second
phase of the deep-learning technique known as preprocessing. This step was performed to
prepare the data in a pure form for implementation. Some of the problems that emerged
are as follows.

3.3.1. Missing Trajectories

This technique identified missing values in the trajectories, i.e., when a Pashto character
or word is written, sometimes the connection point is missed, but the character and its meaning
remain unchanged. According to the rules, the missing space should be where the system
cannot recognize it. This problem is shown in Figure 3 below for a quick understanding.
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For this, a deep-learning approach called image inpainting is better at replicating
filled regions with fine details. The image inpainting technique, called Edge Connect, is a
two-stage adversarial model that starts with an edge generator and ends with an image
completion network [6,21]. The edge generators fill the gap and connect the characters
based on its data set, and the image completion network prioritizes filling in the incomplete
regions using visual hallucination edges [21]. The datasets used in the Edge Connect
approaches are publicly available in CelebA, Places2, and Paris StreetView.

3.3.2. Removal of Noise

Different noises were removed and cleaned from the dataset in the preprocessing step.
For instance, one of the most popular order–statistic filters is the median filter because it
handles certain forms of noise, including Gaussian, random, and salt and pepper noise. The
median filter substitutes the median value of the relevant window for the center pixel of an
M-by-M neighborhood. Be aware that noise pixels are thought to deviate significantly from
the median. This kind of noise issue may be eliminated using the median filter technique.
Before performing the binarization procedure, this filter is employed to eliminate the noise
pixels from the protein crystal pictures [22]. Crystallization and crystal identification are
essential phases in the experiment for increasing the accuracy of the picture classification
and recognition algorithms.

3.3.3. Minimization of Invalid Hooks

Unwanted signals, which are missed or exceed the base symbol of the Pashto character,
are discussed. These structures are also generated in the dataset and trained with different
models and techniques. Invalid hooks are generated during rushed Pashto handwriting. The
Pashto language consists of different types of hooks, some of which are shown in Figure 4.
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3.4. Customized Deep Learning-Based Techniques

After data cleaning and preprocessing, a customized lightweight deep-learning convolu-
tional neural network was designed. The proposed technique was trained on the developed
dataset, elaborated as the “neurons” that make up a neural network, i.e., a collection of inter-
connected nodes. The input, hidden, and output layers are where neurons are organized. The
input layer represents the predictors/features, and the output layer represents the response
variable(s). Convolutional operation involves multiplying arrays element by element and
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grouping or summing the result to produce a new array representing a × b, multiplying the
components of matrix b by the first three elements of matrix a [16]. In the general architecture
of CNN-based techniques, the convolution operation is calculated using (1).

xl
ij =

m−1

∑
a=0

m−1

∑
b=0

ωabyl−1
(i+a)(j+b) (1)

The product is added and saved in a new a × b array, demonstrating convolutional
layers without interruption until the function is completed.

Convolution and pooling extract properties from data chains, with a multi-layer
perceptron flattening the data. Max-pooling layers produce the maximum number in a
region, without learning independently for some k× k region. For instance, if their input
layer is an N × N layer, the output is generated as an Nk× Nk layer since the max function
reduces each k× k block to a single value.

The activation function adds non-linearity to the network, using differentiable sigmoid
functions and hyperbolic tangents. The output is transferred to the next layer, where ReLU
is the most widely used feature. These functions generate outputs ranging from 0 to 1, with
ReLU being the most widely used feature in deep learning. [18].

The SoftMax function, utilized for multi-class classification issues, was chosen for this
project. It is a sigmoid function generalization. Furthermore, it generates outputs between
0 and 1.

The neuron displaying the input (x1 − x2), their associated weights (w1 − w2), a bias
(shown in the image), and an activation function (shown in the figure) applied to the
weighted sum of the inputs is given as follows:

f (b + ∑n
i=1 xωi) (2)

Thus, five layers of CNN architecture are created, as shown in Figure 5 below.
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After the data preprocessing step, the dataset is fed into the customized CNN archi-
tecture. The proposed customized CNN architecture has five convolution and five max-
pooling layers, i.e., Conv→Maxpooling→Conv→Maxpooling→Conv→Maxpooling→
Conv→Maxpooling→Conv→Maxpooling. After the last maxpooling layer, the resultant
vectors are converted into a one-dimension feature vector. The feature vector is processed
via an artificial neural network. The last layer gives the desired output of the invariant
Pashto handwritten characters and ligatures, as shown in Figure 5.

3.5. Deep Learning Techniques Experimentation

After collecting the required datasets, the process of implementing different deep-
learning techniques, as shown in Figure 6, obtained different results for detecting and recog-
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nizing Pashto handwritten characters and ligatures. Different algorithms were implemented,
which produced different results on different epochs. They are discussed in detail below.
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4. Experimental Results and Discussion

This study has used different deep-learning techniques, and each technique has pre-
sented different results. All the results were different, and each technique had a separate
algorithm. All the deep-learning algorithms showed significant results, but the custom-
made CNN model had even better results. The more we tried and experimented, the better
the results we had [23].

4.1. Dataset Development Process

Many researchers have tried to resolve issues regarding character and ligature recogni-
tion using artificial intelligence, especially in the case of words written by hand. A Pashto
character database was created by Uddin I. et al. [17] for the experimental and simulation
work, which worked on the creation of OCR for handwritten Pashto characters. With the
automated recognition of Pashto handwritten characters, Mudaser et al. [12] created a
small-size database of Pashto handwritten characters. They used the following techniques:
a recurrence neural network, a convolutional neural network, and a deep neural network.

According to the literature, finding a workable solution remains a significant challenge
for researchers. Without a dataset of handwritten characters, developing an efficient
solution for the identification and recognition of inconsistent handwritten Pashto text
is quite difficult. This article describes the creation of a database to handle the issue of
interpreting Pashto handwritten letters and ligatures. The three steps of the recommended
database development process are data collecting, scanning and character extraction, and
labelling and arrangement.

4.1.1. Template Design Phase for Dataset Collection

For Pashto handwritten character and ligature detection and recognition, a data
collection template was required to collect the required dataset. For this, a template was
designed for the data collection of Pashto handwritten character and ligature samples on
A4-sized paper. This template consisted of a 10 × 10 grid in which 200 samples of Pashto
characters and ligatures were written.

4.1.2. Template Printing and Required Classes

A template was printed for the dataset comprising 154 classes, consisting of Pashto
handwritten characters and ligatures used in Pashto words. Hence, 308 sheets were printed.
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4.1.3. Data Collection

After printing the required template, a high school was visited where high school
teachers and students were asked to participate in creating different character and ligature
datasets. Almost 200 teachers and students contributed to creating the dataset, and the
required dataset was generated in about one month. Based on their position, gender, and
age, students’ and faculty members’ contributions are shown in Table 2.

Table 2. Dataset statistics.

Age (Years) Males Females Samples Designation

12–14 40 20 60 Students
13–14 42 18 60 Students
14–15 25 15 40 Students
28–50 30 10 40 Teachers

Total samples collected: 200.

The dataset was collected from different students and teachers and scanned through
an HP Scanner, as shown in Figure 7.
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4.1.4. Gridline Removal Phase

After dataset collection and scanning, template grid removal was required to crop all
the images. An app for removing salt and pepper noise already exists, but a system was
needed to remove the gridlines from the sheet; consequently, photoshop was used as there
are no applications for removing gridlines other than photo-editing apps. The following
result is shown in Figure 8.
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Figure 8. Partial view of dataset without gridlines.

4.1.5. Template Segmentation

The images were cropped according to the grid to achieve a single character and
ligature dataset. Then, Python was used to develop and design a system that cropped the
images in 10 × 10, i.e., one-hundred equal parts, and stored these 154 different classes into
separate folders. Each folder consisted of one-hundred different images as a separate entity
in JPG format, as shown in Figure 9.
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4.1.6. Morphological Operation

After cropping, the dataset obtained had much noise, like salt and pepper noise,
because of the scanning process. The noise could be removed by applying different
morphological and noise-removal techniques, such as dilation. The mathematical equation
for dilation is

A⊕ B = Ub∈B Ab (3)

The locus of the points covered by the center of B that move within A may be viewed as
the dilatation of A by B, if B, as before, has a center at the origin [24]. f ⊕ s is the dilation of
image f caused by structuring element s, whereas the mathematical formula for erosion is

A	 B = {z ∈ E|B= ⊆ A} (4)

If any pixel in a binary picture is set to 0, the output pixel is also set to 0. f 	 s
represents the erosion of picture f caused by structuring element s. The new pixel value
is established once the structural element s is positioned with its origin at (x, y) [24]. An
image can become tainted by salt and pepper noise by having some pixel values randomly
changed to 255 or 0. The interpolation method or filter design is the foundation of the
conventional image-denoising algorithm. The convolutional neural network (CNN) is
not eliminating salt and pepper noise itself [25]. The partial view of the prepared Pashto
character and ligature dataset is shown in Figure 10.
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4.2. Deep Learning Techniques Experimentation

After collecting the required datasets, different deep-learning techniques were im-
plemented to obtain different results for detecting and recognizing Pashto handwritten
characters and ligatures. Different algorithms were implemented, which produced different
results on different epochs. They are discussed in detail below.

4.2.1. VGG 19

Simonyan and Zisserman (2014) introduced VGG19, a convolutional neural network of
19 layers. Among the 19 layers, 16 are convolution layers, and three are fully connected layers
that classify the images into 1000-item categories. The VGG19 algorithm is trained using the
ImageNet database, which contains one million images organized into 1000 categories. Since
each convolutional layer uses 33 filters, it is a well-liked method for classifying images [26].
The outcome of the VGG19 after 50 iterations was 0.1567 training loss, 0.9467 training accuracy,
0.7993 validation loss, and 0.8085 validation accuracy. This architecture did not produce better
results because VGG19 requires extensive information resources through which this model
can learn maximally. On the other hand, Pashto characters and ligatures have very little
details, such as slight arches; as a result, VGG19 will produce good results in this scenario.
The graph is shown in Figure 11a,b:
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4.2.2. MobileNetV2

MobileNetV2, a mobile architecture that improves the performance of mobile models
for various sizes, operations, and benchmarks. There are two different kinds of blocks
in MobileNetV2, i.e., those with a stride of 1, a residual block, and another block for
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shrinking with a stride of two. For both kinds of blocks, there are three levels. This time,
11 convolutions with ReLU6 make up the first layer. The depth-wise convolution is the
second layer, and the additional one-to-one convolution is the third linear layer [27]. The
result of MobileNetV2 after 50 epochs was a validation loss of 0.6854 and a validation
accuracy of 0.8024, with a training loss of 0.2327 and a training accuracy of 0.9328. This
technique does not converge in the validation phase efficiently because of the manifold
of interest (MoI). The Pashto characters and their variant ligatures have small trajectories
that contain fewer data, and this technique further reduces the number of features due to
MoI [27]. The graphs for validation and training are shown in Figure 12a,b, respectively.
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4.2.3. MobileNetV3-Large

MobileNetV3 has two versions, MobileNetV3-Large and MobileNetV3-Small. Both
approaches are intended for use in situations with plenty or little resources. The models
are generated using Platform-aware NAS, NetAdapt, and the network improvements
discussed in this section are also included [28]. MobileNetV3Large is used in both the
training and validation phases using our dataset. MobileNetV3Large achieved a training
accuracy of 0.9062 and a training loss of 0.2799. The same technique achieved a validation
loss of 0.9823 and a validation accuracy of 0.7576 on development data. Another intriguing
aspect of MobileNetV3 is that it has few parameters and depth, even though the number
of parameters is substantially less and produces some noise [29]. Figure 13a displays the
training and validation accuracy, while Figure 13b shows the training and validation loss.
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4.2.4. Proposed Technique

In the convolutional layer, we tuned the parameters with a stride of 1 because Pashto
handwritten characters and ligature trajectories have very little information for detection
and recognition. To increase accuracy, we extracted the fine details. The proposed technique
used the same padding value, which lost some vital information, but in the case of Pashto
handwritten trajectories, we used data augmentation as well and some trivial information
was present in the boundary of the image. Kernel size was restricted to 3 × 3 because the
size 5 × 5, 7 × 7 and 9 × 9 lost some information on stroke trajectory. The next customized
entity for Pashto handwritten character and ligature trajectories was the number of filters
for each layer. In the first layer, the number of filters was 32; for the second layer, the
number of filters was 64; for the third layer, the number of filters was 128; for the fourth
layer, the number of filters was 256; for the fifth layer, the number of filters was 512.
In total, there were 992 different filters. The dropout value was fixed to 0.01 because
we did not want to drop large numbers of neurons, as the number of classes is large,
i.e., 154. In augmentation, eight parameters were applied, i.e., scaling, rotation, etc., and the
learning rate used was 0.01. In the pooling operation, the proposed technique used the max-
pooling operation. The hidden layers perform feature extraction by carrying out different
computations. Here, the first layer consists of convolution, then a max-pooling layer, then,
again, a convolution layer followed by a max-pooling layer, and then a ReLU. These five
multiple hidden layers extract features from an image according to the aforementioned
parameters. The result produced by the customized CNN architecture generated the best
result. It outperformed different algorithms, as discussed above, with their results on
Pashto handwritten characters and their ligature detection and recognition. The main
reason for this enhanced result is that this architecture is designed explicitly for Pashto
characters and ligatures. According to the given information, it produced state-of-the-art
results. The result after 50 epochs produced a training accuracy of 0.9398, training loss of
0.1783, validation loss of 0.2573, and validation accuracy of 0.9208, as shown in Figure 14a,b.
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niques is shown in Table 3. The customized CNN result is better than all other techniques.

Table 3. Comparative analysis of different deep-learning models.

S: No. Techniques Training
Loss
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Validation
Loss

Validation
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5. Conclusions

Pashto handwritten character and ligature classification and recognition is a pre-
cious, challenging, and complex task. Different existing deep-learning and customized
architectures were used to classify and recognize Pashto handwritten invariant characters
and ligatures. The customized CNN model outperformed the existing deep-learning ar-
chitectures in terms of accuracy and loss. The training and validation accuracies of the
proposed customized CNN are 93.98% and 92.08%, respectively. Similarly, the training loss
is 17.83%, and the validation loss is 25.73%. A trajectory-based dataset of the characters
and their variants is developed, which marks a new contribution to the Pashto language’s
resource generation. This research gives a new dimension to the Pashto handwritten text
classification and recognition. Future work: The accuracy can be increased by adding
more geometrically varied characters and ligatures. As people have diverse writing styles,
adding diverse writing styles can improve the impact of the proposed technique.
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