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Abstract: Small and medium-sized enterprises (SMEs) often encounter practical challenges and
limitations when extracting valuable insights from the data of retrofitted or brownfield equipment.
The existing literature fails to reflect the full reality and potential of data-driven analysis in current
SME environments. In this paper, we provide an anonymized dataset obtained from two medium-
sized companies leveraging a non-invasive and scalable data-collection procedure. The dataset
comprises mainly power consumption machine data collected over a period of 7 months and 1 year
from two medium-sized companies. Using this dataset, we demonstrate how machine learning
(ML) techniques can enable SMEs to extract useful information even in the short term, even from a
small variety of data types. We develop several ML models to address various tasks, such as power
consumption forecasting, item classification, next machine state prediction, and item production
count forecasting. By providing this anonymized dataset and showcasing its application through
various ML use cases, our paper aims to provide practical insights for SMEs seeking to leverage ML
techniques with their limited data resources. The findings contribute to a better understanding of
how ML can be effectively utilized in extracting actionable insights from limited datasets, offering
valuable implications for SMEs in practical settings.

Keywords: industry 4.0; retrofit; machine learning; benchmark dataset; industrial IoT

1. Introduction

In recent years, the emergence of Industry 4.0 (I4.0) has transformed the manufacturing
industry by integrating digital technologies with traditional manufacturing processes. This
new era of manufacturing has brought about many benefits such as increased productivity,
reduced costs, and improved quality [1]. However, the implementation of Industry 4.0
poses significant challenges, particularly for small and medium enterprises (SMEs). The
challenges faced by SMEs in implementing Industry 4.0 are multifaceted and require careful
consideration of the unique needs and constraints of small businesses [2].

Firstly, SMEs often have limited financial resources, and the benefits of adopting
I4.0 technologies may not be as immediately evident for SMEs as they are for larger
organizations. I4.0 requires significant investment in new technologies, such as the Internet
of things (IoT), artificial intelligence (AI), and big data analytics, which can be costly and
complex to implement. In addition, there may be a lack of awareness and understanding of
Industry 4.0 among SMEs. Many SMEs may not fully comprehend the benefits of these
new technologies or may not have access to the necessary information and resources to
effectively implement them [3,4]. Fortunately, the growth in interest in this field and the
search for more sustainable industries has resulted in funding programs and incentives
from the European Union and other governments [5,6] to support SMEs in their Industry
4.0 initiatives, which can help alleviate financial burdens. In addition to this, education and
training programs can be provided to increase awareness and understanding of Industry
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4.0 among SMEs, enabling them to better assess the potential benefits and to justify the
initial investment [7].

Secondly, the technical complexity of Industry 4.0 can be a significant challenge for
SMEs, especially due to the old machinery they may have. Upgrading to the latest machines
can be prohibitively expensive, and many SMEs lack the financial resources or technical
expertise to make the switch. A possible solution that has been studied and adopted in
recent years is retrofitting existing machinery [8]. Instead of replacing the entire machine,
retrofitting allows for the integration of new elements into the existing framework. This
can include adding sensors, actuators, controllers, software systems, connectivity solutions,
or other advanced features that enable the machine to operate more efficiently, improve
productivity, achieve higher accuracy, meet regulatory standards, or align with emerging
industry trends such as the adoption of Industry 4.0 principles. Retrofitting offers a cost-
effective way to leverage existing machinery investments while leveraging the benefits of
modern technologies [9].

In this context, another problem that SMEs must face after retrofitting their machines
is understanding why and how the data coming from their sensors can be used. The
academic world has not yet been able to define a clear and definitive pathway to follow
in practice, despite the fact that the growth of the Internet of things and the increased
connectivity of manufacturing equipment have made it possible to collect large amounts of
data from the machines and equipment used in industrial manufacturing. By now, one of
the main identified benefits of analyzing data from industrial manufacturing machinery is
the ability to identify trends and patterns that can help optimize production processes. By
analyzing the data, it is possible to detect inefficiencies, identify opportunities for process
improvements, and predict potential equipment failures [10].

In this paper, we present our work on retrofitting industrial machines in the context
of discrete manufacturing environments, with a particular focus on small and medium
enterprises (SMEs). Our study aims to contribute to this field in several significant ways.

Firstly, we address the need for a cost-effective and non-invasive data-acquisition
phase in retrofitting processes. By leveraging power clamps and Internet of things (IoT)
devices, we propose a methodology that allows for the acquisition of relevant data with-
out disrupting the existing production status quo. This approach overcomes one of the
primary challenges faced by SMEs in the discrete manufacturing sector, where implement-
ing retrofitting solutions can be costly and disruptive. By providing a more affordable
and non-intrusive data-acquisition method, we facilitate the adoption of retrofitting prac-
tices in SMEs, thereby enabling them to improve their operational efficiency without
significant disruptions.

Furthermore, our work contributes to the space by releasing a dataset derived from two
different companies operating in the discrete manufacturing sector. This dataset serves as a
valuable resource for researchers and academics, offering them an opportunity to explore
and develop a clearer pathway and methodology for retrofitting in this specific context.
By sharing this dataset, we aim to encourage further research and collaboration, fostering
a better understanding of the challenges and opportunities associated with retrofitting
industrial machines in SMEs.

Lastly, our study provides a diverse range of machine learning (ML) and data mining
use cases, showcasing the potential applications and benefits of retrofitting in SMEs. By
demonstrating the practical implementation of ML techniques in this context, we aim to
improve both the perception and acceptance of retrofitting practices among SMEs and the
academic community. Through our use cases, we highlight how retrofitting can lead to
operational improvements, cost reduction, and new opportunities for SMEs, while also
presenting intriguing challenges for researchers in terms of optimizing and enhancing
retrofitting methodologies.

The paper is organized as follows: In Sections 1 and 2, we provide a comprehensive
review of the relevant literature and related works about retrofitting machines. Section 3
provides an overview of the pipeline from manufacturing machines to ML results. Section 4
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describes in detail the data acquisition process. In Sections 5 and 6, we provide a thorough
description of the dataset itself and some preliminary statistical analysis. Section 7 is
dedicated to showcasing some of the possible machine learning applications that can be
analyzed in the provided dataset. In Section 8, we present the detailed methodology for
the development of our ML models. Section 9 presents the results obtained from the
application of machine learning algorithms. Section 10 is dedicated to the discussion of our
findings and the limitations of our study. Finally, in Section 11, we conclude the paper by
summarizing the key findings, discussing their implications, and proposing future research
directions.

2. Related Works

While there are many studies covering the topic of retrofitted machines, there are few
that analyze the data coming from them. Strauß et al. [11] presented a case of brownfield
digitization for heavy lifting, showcasing a general application of ML methods. To account
for the scarcity of failure-labeled data in real-life scenarios, the authors used a combination
of semi-supervised anomaly detection and unsupervised machine learning algorithms to
enable the predictive maintenance of such machines.

In the existing literature, CNC machines are an especially covered subject when
discussing legacy equipment modernization. Herwan et al. [12] proposed an alternative
position for embedding sensors in CNC turning with a rotating turret, called the turret
bed, and evaluated its accuracy in predicting tool flank wear through pattern classification
using an artificial neural network. Thus, this study demonstrates a feasible method for
retrofitting old CNC turning machines with sensors. Hesser and Markert [13] trained an
artificial neural network with acceleration data to classify the tool state of a retrofitted CNC
milling machine, allowing for the continuous monitoring of tool wear in service.

The process from digitization to data analysis is also described in [14], where Ralph et
al. demonstrated the retrofitting of a rolling mill machine and the development of a related
machine learning algorithm to predict and adapt the resulting rolling schedule of a defined
metal sheet. The importance of using low-cost sensors to encourage SMEs to adopt I4.0 and
to show its benefits was discussed by Lima et al. [15]. Here, the authors present a retrofit
solution for a CNC milling system using an energy-measurement industrial sensor and an
IoT gateway for machine connectivity and data transmission to the cloud. The embedded
machine learning approach for energy prediction was described in [16], where an ANN
model was used to predict the total energy consumption in job-shop environments. The
authors highlighted the critical issue of input variables, demonstrated good prediction
results, and suggested that the model could be used as an auxiliary tool for estimating
energy consumption costs or lean energy indicators. In [17], Selvaraj and Min retrofitted an
ultra-precision CNC machine with a low-cost power meter to collect power consumption
data and streamed it to AWS servers in real time. Starting with these data, they developed
anomaly-detection models and used machine learning to classify and cluster the different
error states of the machine.

Regarding the modernization of legacy injection machines, Silva et al. [18] discussed
a system using Raspberry Pi zero and Raspberry Pi 4 to collect, process and store data
generated by plastic-injection machines, which can be used for machine learning algo-
rithms and observed through dashboards created by the open-source version of Grafana.
Polenta et al. [19] present a study that compares six classifiers used to predict the qual-
ity of plastic products produced by the injection molding process, using real processing
parameters collected during the production of plastic road lenses (with the dataset pub-
licly available). The results showed that the random forest classifier achieved the highest
accuracy of 95.04%, confirming the suitability of ML techniques for automating quality
prediction in plastic injection molding.

The literature highlights the growing interest in retrofitting legacy machines and ap-
plying machine learning techniques to analyze the data collected from them. However,
several issues are identified. First, one issue that can be highlighted is the lack of utiliza-
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tion of easy-to-install low-cost sensors and devices, which can be noted as a barrier for
SMEs to adopt Industry 4.0. Our study addresses this concern by developing prediction
models for affordable sensor solutions in legacy equipment modernization scenarios, thus
demonstrating the feasibility of such approaches for SMEs and making I4.0 more accessible
for them.

Another major challenge highlighted in the reviewed literature is the absence of
methods or models to classify and label the items produced by retrofitted brownfield
equipment. This information is relevant for quality control and process optimization
in various industries in the discrete manufacturing sector. To overcome this, our study
compares supervised, unsupervised, and semi-supervised learning algorithms to classify
produced items, laying the foundation for future research on the topic.

Third, the lack of machine-agnostic approaches in the existing literature limits the
generalizability of the proposed methods. In contrast, our study adopts a machine-agnostic
approach, enabling the application of our methodology and algorithms to a wide range of
retrofitted brownfield equipment. In this way, our study extends the analysis to include the
prediction of the next status of the machines and the forecasting of both item production
and power consumption. By leveraging historical data and machine learning algorithms,
we can provide accurate predictions for these key performance indicators, thus enabling
better production planning, energy management, and cost optimization.

Finally, the scarcity of publicly available real-world datasets is recognized as a chal-
lenge in fostering new research on this topic. To contribute to overcoming this issue, our
study releases a comprehensive real-world dataset, providing a valuable resource for re-
searchers and practitioners to validate and compare their own approaches. By addressing
these issues, our research strengthens the conclusions of the literature, facilitating the
effective adoption of Industry 4.0 by SMEs and promoting advancements in data analysis
and machine learning for retrofitted machinery equipment.

3. Pipeline Overview

The overall flow of the procedure carried out, from the retrofit machine to the ML
model results, is illustrated at a high level in Figure 1. Each stage corresponds to one of
the following sections in this paper. The first stage references the data acquisition enabled
by retrofitting. The second refers to the data anonymization and cleaning that led to the
described public dataset being released. The third represents the preliminary analysis work
that allows for some understanding of the data. The last stage depicts the ML applications
and their evaluation.

Data Extraction
Data Anonymization

& Cleaning Preliminary Analysis
ML Model Training

& Evaluation

Figure 1. Flow chart of procedure.

4. Data Acquisition

IoT infrastructures are complex systems that require careful design and implemen-
tation to ensure efficient and secure data collection from connected devices. For this intricate
phase, we benefit from the hardware and cloud infrastructure of Zerynth
(https://zerynth.com/, accessed on 25 June 2023), an Italian company working in the
Industrial IoT world. In this section, we describe the IoT infrastructure we used and
provide a detailed explanation of the data-collection phase.

4.1. Hardware

The type of device we used is a modular hardware electronic unit, called the 4ZeroBox
(provided by Zerynth, Pisa, Italy), connected to a current clamp for real-time measurements
of machine power consumption. A 4ZeroBox is composed of:

https://zerynth.com/
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• Six analog channels that can measure: 4–20 mA sensors, 0–10 V sensors, current
transformers, and resistive sensors;

• Two solid-state relay channels with max voltage and current equal to 36 VDC and
150 mA, respectively;

• RS232 and RS485 interface;
• CAN protocol support;
• Support for USB-C for PC communication and power;
• USB-C slot for DEBUG/updating Firmware of BG95;
• SMA antenna for GSM/GPRS (SX) and GPS (DX);
• LiPo battery support;
• JTAG support;
• Edge computation module.

The computation module is a 32 bit dual core microcontroller based on the ESP32-
WROOM-32SE and allows for edge calculations that will be better described in the following
section. The CPU clock frequency is treated as an option and can vary from 80 to 240 MHz.
The microcontroller can also count on an embedded 16 MB of SPI flash memory, an
integration of the ATECC608A crypto element allowing for ultra-secure communication,
WiFi (client and AP mode supported) and Bluetooth low-energy support.

Installed in each microcontroller is a real-time operating system, the Zerynth OS, which
allows for the execution of firmware written in Python and C languages. A complete guide
and description of the OS can be found at https://docs.zerynth.com/latest/reference/
os/, accessed on 25 June 2023. Microcontrollers allow us to perform calculations on the
edge, avoiding sending data to the cloud after each measurement. Because of this, we
were able to aggregate data directly at the edge; for example, we calculated statistics on
measurements per minute for energy consumption, without losing the benefits of lower
measurement frequency.

4.2. Firmware Characteristics

Creating firmware that possesses resilience and dependability within the challenging
operational environment of an IoT device presents a formidable challenge. The objective is
to minimize data loss in the event of potential power disruptions or lack of connectivity. To
reach this goal, the firmware used in the devices presents a variety of technicalities.

The first step of the firmware for collecting and sending data is the connection to the
cloud. Our devices use the MQTT protocol as well as the following functions to ensure a
secure connection:

• Stores an ECC secp256r1 private key. The private key is inserted into the secure
element by the manufacturer (microchip), exploiting its expensive and
FIPS-certified infrastructure.

• Stores a set of device certificates. These certificates are generated by the manufacturer
and are signed by its root certificate.

• Signs, verifies and exchanges secret keys to accelerate cryptography operations.
• Generates cryptographically secure random numbers, allowing for always fresh secret

keys during connections.

On the cloud side, there is a copy of every certificate stored in the hardware compo-
nents, and a connection can be made only if the request comes from a device owning a
known certificate.

After the connection is established, the firmware will update the real-time clock to the
current time and will try to keep it synchronized. The reliability of the connection is also
guaranteed by automatically retrying to connect in case of network failure. Finally, data
points, such as sensor readings, can be sent to the cloud in JSON format.

Regarding firmware robustness, two main features are used: a watchdog and a time
series log (TSLog). In real-world products, it is imperative to include a watchdog mech-
anism that automatically resets the board if the firmware becomes unresponsive. This
crucial feature ensures the stability of the system by initiating a board reset after a specific

https://docs.zerynth.com/latest/reference/os/
https://docs.zerynth.com/latest/reference/os/
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time frame if the firmware fails to provide periodic signals to the watchdog, indicating
proper functionality.

TSLog offers a solution for separating data acquisition and transmission in time series
applications. In this use case, multiple sensors generate data points that are not immediately
sent over the network. Instead, they are stored in the log system, allowing a separate thread
to access the log in read-only mode and to retrieve the data points for transmission when
a network connection becomes available. The architecture of TSLog ensures its resilience
and ability to withstand challenges commonly faced in IoT scenarios, such as network
unavailability, system resets, and power loss.

TSLog stores fixed-length records in containers known as buckets, residing in non-
volatile memory. Each record is assigned a sequentially increasing sequence number. As a
bucket reaches its capacity, a new bucket is created to accommodate incoming records. At
regular intervals, the buckets are committed, meaning a snapshot of the current log status
is taken and saved in non-volatile memory. Upon successful snapshotting, all records up to
the current sequence number are securely stored and ready for retrieval. To facilitate data
extraction, TSLog employs readers, specialized objects capable of reading records from the
buckets. Each reader maintains its own cursor, representing the sequence number of the last
successfully read record. Readers also have the ability to commit their state, permanently
saving the value of their cursor. Due to these characteristics, TSLog proves to be a robust
solution in cases of power loss or network unavailability. When the system resumes
operation, all readers automatically restart from the last committed cursor, ensuring data
continuity. Moreover, the log system automatically cleans up old data by deleting buckets
that have been completely consumed by all readers.

4.3. Cloud Infrastructure

In this paper, we leverage the Zerynth cloud platform that encompasses various key
characteristics to facilitate the deployment of scalable and secure IoT solutions. The archi-
tecture of the cloud platform revolves around two main components: device management
and data storage, complemented by the availability of REST APIs for seamless integration
and extensibility.

Device management is a software platform for handling hardware devices. It allows
one to control the devices’ life cycle with remote updates. In addition, as previously men-
tioned, each physical device is linked with one virtual device via a hardware components
certificate. Thus, with the adoption of strict security measures, devices can be easily added
to the device management while ensuring data integrity and confidentiality.

Data storage is a dedicated cloud service optimized for storing time series data. This
service provides efficient storage and retrieval mechanisms for both raw and aggregated
data and offers the flexibility to export data in various formats such as CSV and JSON.

5. Dataset Description

Our dataset was collected using the infrastructure described in the prior section, from
two companies, “A” and “B”. The rows were produced at a 1 min frequency. Listings 1 and 2
show the final attributes of the dataset. The first two listings refer to Company A and B’s
data attributes. A small separate subset of Company A’s data was labelled manually by
operators to include what item was being produced. The subset consists of 14,491 rows at a
5 min frequency spanning 20 days and is described in the Listing 3.
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Listing 1. Company A Data Attributes.
{

ts: (string) a timestamp in the format YYYY -MM -DD HH:mm:ss+TZ,
asset: (string) an identifier for the machine used;
items: (int) the number of items produced in the time span;
status: (int) the machine state where 0 is idle , 1 is manual production mode;
2 is automatic production mode and 3 is an alarm or interrupted state;
power_avg: (int) the average power consumed , in kilo -watts;
cycle_time: (int) the total time , in seconds , to produce the items.

}

Listing 2. Company B Data Attributes.
{

ts: (string) a timestamp in the format YYYY -MM -DD HH:mm:ss+TZ;
asset: (string) an identifier for the machine used;
status: (string) the machine state
(Alarm , Standby , MachineOn , Production , Loading , Tooling );
alarm_time: (int) the time spent in the alarm state;
loading_time: (int) the time spent preparing the machine for production;
tooling_time: (int) the time spent preparing machine tools;
maintenance_time: (int) the time spent performing machine maintenance;
support_time: (int) the time spent performing machine repair;
power_avg: (int) the average power consumed , in kilo -watts;
power_max: (int) the highest power consumption value in the 1-minute period;
power_min: (int) the lowest power consumption value in the 1-minute period.

}

Listing 3. Company A Subset with Product Labels.
{

ts: (string) a timestamp in the format YYYY -MM -DD HH:mm:ss+TZ;
asset: (string) an identifier for the machine used;
items: (int) the number of items produced in the time span;
status: (int) the machine state where 0 is idle , 1 is manual production mode ,
2 is automatic production mode and 3 is an alarm or interrupted state;
power_avg: (int) the average power consumed , in kilo -watts;
cycle_time: (int) the total time , in seconds , to produce the items;
product: (int) a product identifier ranging from 0 to 13.

}

For company A, there is a total of 1,521,065 rows over a 7-month period using
9 machines. While for company B, there is a total of 1,568,736 rows over a 1-year pe-
riod using 18 machines. The dataset also contains measurement errors that we decided
to keep in order to allow users to adopt different preprocessing techniques. In our work,
we drop the rows with outliers in the power-consumption-related columns and replace
values bigger than 60 in the time-related columns, since they represent seconds spent in the
machine in different machine states.

Despite the increasing interest in machine learning for industry 4.0 applications,
there are not many public data options for time-series discrete manufacturing. Hence,
we saw the need to make our dataset public as a contribution. It is available at https:
//github.com/HumanCenteredTechnology/SME-Manufacturing-Dataset, accessed on 25
June 2023.

6. Preliminary Analysis

In order to (1) gain a basic understanding of the data distribution of values and
(2) to examine the possible limits of what can be carried out with simple statistical tech-
niques (i.e, without ML), we also performed a preliminary analysis of our dataset.

We initially calculated some descriptive statistics (such as averages, standard devia-
tions and minimum, maximum and percentile observed values) in order to gain a basic
understanding of the data. Tables 1–3 show the results of this for each company and feature.

Toward our second goal for this step, we computed the pairwise correlation of the
features for each company. The plot for company A is shown in Figure 2. From this figure,
we can see that there is a limited correlation between any two given features, thus limiting
what one can achieve purely with simple statistical inferences. On the other hand, ML
approaches can explore deeper relationships with the data and a target by finding more

https://github.com/HumanCenteredTechnology/SME-Manufacturing-Dataset
https://github.com/HumanCenteredTechnology/SME-Manufacturing-Dataset
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complex representations of the features. The plot for company B was quite similar; thus,
we chose to omit that figure.

Table 1. Company A data statistics.

Asset Items Status Status_Time Power_Avg (kW) Cycle_Time (s) Alarm

mean 3.882 2.152 1.609 56.427 39.891 23.302 0.075
std 2.601 3.103 0.623 12.623 19,159.073 27.986 0.264
min 0.000 0.000 1.000 0.000 0.000 0.000 0.000
25% 2.000 0.000 1.000 60.000 0.000 0.000 0.000
50% 4.000 0.000 2.000 60.000 0.000 0.000 0.000
75% 6.000 4.000 2.000 60.000 3.000 60.000 0.000
max 8.000 547.000 3.000 60.000 16,777,216.000 60.000 1.000

Table 2. Company B data statistics.

Asset Alarm_Time (s) Loading_Time (s) Tooling_Time (s) Maintenance_Time (s)

mean 7.860 1.918 2.732 0.834 0.694
std 4.703 10.289 11.962 6.989 6.370
min 0.000 0.000 0.000 0.000 0.000
25% 4.000 0.000 0.000 0.000 0.000
50% 8.000 0.000 0.000 0.000 0.000
75% 12.000 0.000 0.000 0.000 0.000
max 17.000 62.000 61.000 60.000 62.000

Table 3. Company B data statistics continued.

Support_Time (s) Power_Avg (kW) Power_Min (kW) Power_Max (kW)

mean 0.191 46.417 29.913 74.176
std 3.374 72.841 48.924 108.651
min 0.000 0.017 0.000 0.017
25% 0.000 3.504 2.714 5.374
50% 0.000 7.904 5.038 14.778
75% 0.000 75.933 44.335 109.232
max 60.000 31,241.600 28,171.600 32,821.800
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Figure 2. Correlation plot for Company A.
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7. Machine Learning Applications

As previously said, the I4.0 paradigm has transformed the manufacturing industry
by leveraging automation, interconnectivity, and data exchange. In the context of data
analysis, artificial intelligence and machine learning have recently shown their power and
the impact they can have in a variety of human activities, such as text generation [20],
image synthesis [21], biology [22], human behaviors [23], etc.

For this reason, it should not be surprising that they can also be key technologies driv-
ing the fourth industrial revolution. Existing examples of machine learning applications in
Industry 4.0 involve predictive maintenance [24], demand forecasting [25], and scheduling
activities [26]. The authors in [27,28] provide a complete list of interesting applications as
well as challenges and opportunities for machine learning in I4.0.

In this section, we describe some possible applications of ML and AI in the retrofitting
scenario that, despite what we said above about success, remains still little explored. We
also tested some algorithms trained on the previously mentioned dataset. As described
in Section 5, the main available features in the dataset are the number of items produced,
machine status and power consumption. Combined with the available supervised data
about the type of items being produced, we will use AI and ML algorithms for three
different applications: next status prediction, item classification, and item production count
and power consumption forecasting.

7.1. Next Status Prediction

The first possible use of machine learning we analyze is machine status prediction. As
previously said, the available data offer us three different machines statuses: working, idle,
and alarm.

The most straightforward use case of this ML application is the prediction of alarms.
Clearly, a manufacturing company can derive several benefits from early predictions of
alarms, such as predictive maintenance and worker safety. Further analyses can also
include the adoption of explainable AI methodologies [29] to try to understand the patterns
in the data that lead to an alarm status.

Another possible advantage this use case can provide is early knowledge of the dura-
tion of working and idle phases. This knowledge can be very useful for the optimization
of production processes, which is one of the main challenges for discrete manufacturing
companies. Several activities can improve with a full understanding of the production
stage, such as scheduling activities or supporting managerial decision making for the
production phase.

7.2. Items Classification

The second application we explore is item classification. Our data provide only
information about the number of actions each machine performs in every time step (e.g., the
number of presses for injection molding machines in one minute), without any information
about the type of item that is being produced. In addition, manual labeling of the items
being produced is a tedious and intense task. For this reason, we decided to test AI and
ML algorithms that can leverage patterns in the data to extract the types of items that are
being produced. This knowledge can be used for a better understanding of the real cost of
items as well as for the production time, in order to improve the scheduling process and to
optimize cost or revenues.

The availability of a portion of labels for a subset of machines allows us to com-
pare three different machine learning paradigms: unsupervised, semi-supervised and
supervised. The unsupervised paradigm allows us to analyze and cluster unlabeled data.
Unsupervised algorithms usually leverage some definition of distance between data points
and try to find a (predefined or not) number of clusters by minimizing distances between
points in the same cluster and maximizing them between points in different ones. Another
option is to include another step before the clustering phase, often used for non-tabular
data points, in which data points are mapped into vectorial representations [30], possibly
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followed by a feature reduction algorithm. It is the most challenging but also the most likely
to be impactful, since it does not require any labeling phase, which can be cumbersome
and costly both for workers and companies.

Unlike unsupervised techniques, supervised AI and ML classification algorithms re-
quire complete knowledge of data labels and aim at minimizing the number of classification
errors. Technically speaking, this paradigm is the easiest, since it leverages a much bigger
amount of information with respect to the others. This paradigm is also the most studied
in the literature, but the challenging data-acquisition process makes its impact smaller than
expected in real-world scenarios.

Semi-supervised, or weakly supervised, classification falls in between the previously
described paradigms. It combines the knowledge of a small portion of labels with a large
amount of unlabeled data. In the analyzed context, this may seem the most suitable, since
it represents a compromise between the tedious task of collecting labels and the difficulty
of the use case. Many different methods have been developed in the literature, and they
range from probabilistic generative mixture models [31] to graph-based methods, where
similar data points are connected and the labels are used for classical algorithms [32] and
deep-learning-based methods [33].

7.3. Item Production and Power Consumption Forecast

The last application we analyzed is the forecasting of both power consumption and
item production.

Power consumption forecasting is important because it enables manufacturers to
identify areas where energy usage can be reduced, which can lead to significant cost
savings. By forecasting power consumption, manufacturers can also ensure that they have
enough energy to meet production demands. This is particularly important in the context
of Industry 4.0, where manufacturers increasingly rely on real-time data to make informed
decisions [34].

Item production forecasting plays a pivotal role in driving efficiency, optimizing re-
source allocation, and enhancing overall productivity. As manufacturing processes become
increasingly interconnected and automated, the ability to accurately predict item produc-
tion has become essential for seamless operations. This proactive approach minimizes
inventory costs, reduces wastage, and ensures timely delivery, thereby maximizing cus-
tomer satisfaction. Moreover, accurate production forecasting empowers companies to
make informed decisions regarding capacity planning, resource utilization, and workforce
management, leading to improved operational agility and competitiveness in the rapidly
evolving Industry 4.0 landscape [35].

8. Methods

In this section, we describe the procedure we adopt for developing ML models to
address the aforementioned applications. For all of them, we split the dataset into two
splits. The first one, composed of 80% of the data, is used for model training and validation
(for supervised tasks). The remaining part is used as a test set to assess model performances.
Model selection and evaluation are performed by a grid search of model hyperparameters
and k-fold cross-validation [36], with k = 5. The model-selection phase mainly focused
on two types of models: random forest [37] and LSTM [38]. We made this decision
given the proven strength and past successes of these models [39–41]. That being said,
we recognize the modest depth of our model selection phase and grid search, thus we
acknowledge that exploring these aspects extensively falls beyond the scope of our study.
Our primary objective was to showcase and establish the profound impact of machine
learning by developing models that are deemed sufficiently effective by using almost only
power-consumption data. Table 4 shows the hyperparameters used for each model.

In the following subsections, we elaborate on the technical details for each of the
machine learning paradigms we faced: supervised regression for item count and power-
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consumption forecasting, supervised classification for the next state prediction and item
classification, and unsupervised and semi-supervised learning tasks.

Table 4. Hyperparameters for each model.

Use Case Model Type Hyperparameter Value

Power consumption
forecasting LSTM hidden size 32

learning rate 0.01
dropout rate 0.02

Item classification Random Forest n_estimators 1000
Next state
prediction Random Forest n_estimators 100

Item count
forecasting Random Forest n_estimators 10

8.1. Supervised Regression Tasks

Predicting a continuous variable based on machine data and prior patterns is a problem
that can be shaped into many forms depending on the forecasting horizon and available
data. The further ahead one aims, the more difficult the problem, but the closer to the
current time, the less useful the information. We used mean absolute error (MAE) to
validate and assess our models.

Regarding power consumption, focusing more on usefulness, we chose to predict
the total power consumption for the next day of manufacturing. We used company B for
this model due to its larger variety of machines and therefore greater variability in power
consumption. We opted for an LSTM model to exploit the temporal structure of our data.

Instead, in the item count scenario, we decided to illustrate the problem in its simplest
form, predicting the number of items produced in a period based on the machine data of
that period, as a basis for expanding into its more complicated forms. For this, we trained a
random forest regressor on company A’s data using all the features available.

8.2. Supervised Classification Tasks

Supervised classification tasks include next-state prediction and item classification by
leveraging the portion of the data that includes item labels. To evaluate the models, we
used accuracy for both cases.

The problem of identifying items being manufactured based on machine sensor data
faces the challenge of limited data availability in practice. In our described dataset, only
14,492 rows have labels on what items were being produced. Moreover, as we can see in
Figure 3, the labels are not evenly distributed across the possible classes. For this reason,
we trained a random forest classifier both on the original unbalanced dataset and on a
balanced one obtained by oversampling [42] the original dataset.

The machine alarm state represents an unexpected interruption. Toward exemplifying
the case of predicting the next alarm state, we trained a random forest classifier to predict
whether or not there will be an interruption within the next 5 min given the current
minute of data. This choice allows us to have a balanced dataset without compromising
its real-world plausibility. For company A, some machines rarely enter an alarm state;
thus, we trained and evaluated using only one machine that did so relatively frequently.
For company B, we trained and evaluated a model using each machine separately and
calculated the average F1 score.
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Figure 3. Distribution of item labels.

8.3. Unsupervised and Semi-Supervised Tasks

As previously said, manually labeling data is a tedious, expensive and error-prone
operation. For this reason, aiming at having a more realistic impact in real-world scenar-
ios, we tested two different machine learning paradigms for the item classification task:
unsupervised and semi-supervised learning. For the second one, we focused only on
semi-supervised clustering. In particular, we tested the constrained k-means clustering [43].
Both unsupervised and semi-supervised clustering methods were evaluated by calculating
the adjusted rand score [44] between the true labels and the predicted clusters.

The unsupervised model was based on simple k-means clustering. Despite knowing
the ideal number of clusters, i.e., the number of possible items, we also performed the
clustering by selecting the ideal k, according to Bayesian information criterion (BIC) [45]
and Akaike information criterion (AIC) [46]. Then, we analyzed the item distribution in
each cluster to check whether our partition was able to discriminate item types or not.

9. Results

The two regression tasks turned out to be the most complex ones. The best model for
power consumption forecasting yielded a mean absolute percentage error of 16%, while the
item production count forecasting model gave an R2 score, also known as the coefficient of
determination, of 0.902.

The next alarm-state prediction, instead, gave better results. The model resulted in an
average F1 score of 84.7% on company A’s machine 0 and an average of 88.6% across all of
company B’s machines.

Given the unbalanced nature of the available labels, for the supervised item classi-
fication, we trained a random forest model on both the original dataset as well as on an
oversampled one. Oversampling was carried out in such a way that the minority classes
represented at least 20% of the majority class. In both cases, the accuracy score was 74%,
and we did not find any major difference between the techniques. We also computed model
performances in top-three classification, i.e., we checked whether the correct label was
within the three most probable predicted classes. This score may be useful for understand-
ing the feasibility of an application of the ML model that can support and facilitate data
annotation, offering fewer alternatives to a human operator. The best model obtained 97%
of accuracy.

The unsupervised task was carried out with k-means. Based on the knowledge about
the number of different types of items, we decided to make an initial attempt by fixing
k = 14, trying to see if each type of item can be grouped into a single cluster. This attempt
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yielded a sum of squared distances from cluster centroids of 5773 and an adjusted rand score
with respect to the actual labels of 0.39. This score ranges between −0.5 and 1, with values
being close to 0 for random labeling and 1 for a perfect match. For reference, generally, a
score between 0.25 and 0.5 is considered to indicate moderate clustering performance. The
second analysis we performed was checking the ability of k-means to discriminate between
types of items with the ideal number of clusters. To find it, we computed BIC and AIC
scores for values of k up to 130. The optimal value with respect to these scores was 34, and
the sum of the squared distances in this case was 1608. To analyze clustering discrimination
ability, we used the frequencies of labels within a cluster as posterior probabilities assigned
to a data point belonging to that cluster. In doing so, we computed both accuracy and
top-three accuracy and obtained 58% and 92%, respectively.

Finally, the semi-supervised clustering did not give the expected improvements com-
pared to unsupervised clustering. For constrained k-means, we obtained an adjusted
rand score of 0.35, even smaller than the unsupervised k-means. Understanding this be-
havior and trying different semi-supervised clustering and learning techniques is part of
our planned future work, given the possible impact of the semi-supervised paradigm in
real-world scenarios.

10. Discussion and Limitations

The total power consumption forecasting use case is a challenging one because its
usefulness is tied to the length of the prediction horizon. Despite this issue, we saw
moderate performance from the respective model with a mean absolute percentage error of
16%. We believe this helps to highlight the potential of retrofitting’s usefulness. However,
in some environments where the daily production schedule is consistent, the most likely
power consumption total is easier to predict but is not useful, whereas predicting an
anomalous value ahead of time is more relevant but is even more challenging.

The aforementioned issues also extend to the case of item production count forecasting,
where the larger the forecast horizon the more challenging it is to predict. For this reason,
we focused on exploring the simplest case of predicting the production count given only
the machine data. The result of this was an R2 of 0.902, suggesting a strong predictive
relationship. We believe this bodes well for other expanded use cases.

The item classification solution could enable many additional routes for impactful
insights into company data. For instance, having individual labels on item production as
machines produce them would allow for analytics on a deeper item-by-item scale than
what is otherwise possible. Manual labeling for this is tedious and time-consuming and
is prone to human error considering the high frequency at which item production occurs.
This also means that the problem is challenging for machine learning to solve due to the
lack of data in sufficient quantity and quality.

That being said, the threshold for the usefulness of such a model is lower than those
already discussed. Because even though attaining high accuracy in predicting the exact
item is difficult, if the correct answer is within the top three or five predictions, it can be
used for aiding the labeling process. Operators can select the correct answer from them
on a screen. This, in turn, provides a stepping stone for better solving the problem in the
future while allowing the company to benefit in the present.

The unsupervised result indicates moderate performance, which is also a promising
sign for solutions that address the lack of individual labels as overall machine data become
more available. On the contrary, the semi-supervised approach did not produce the
expected improvements over the unsupervised one. These unexpected results should be
more carefully analyzed in future works, and more advanced semi-supervised techniques
should be used.

Moreover, from the analysis of these different approaches to the problem we noted,
the power consumption profile is potentially a strong indicator of the item being produced.
Figure 4 shows the average power consumption over a 13-day period from the company
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A subset with product labels. It shows that the distinction between the three products
produced can be seen from only the power consumption values.
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Figure 4. Power consumption over 13 days of producing three item classes.

Further leveraging of this relationship is of significant importance. If a solution to the
item classification problem can be carried out using only this one feature, it reduces the
required components for retrofitting the machines. This in turn allows companies to benefit
from the analyses with less upfront cost and effort.

Lastly, the results of the alarm state prediction, an average F1 score of 84.7% on
company A’s machine 0 and an average of 88.6% across all of company B’s machines were
positive considering the potential impact of even a 5-minute horizon period. However, the
more challenging cases of machines with infrequent alarm interruptions are likely to need
more advanced and tailored solutions.

Overall, we are aware that the reported results can be improved through a more
detailed and wider model-selection phase. However, this goes beyond the scope of this
work, since our goal is to show possible data analyses that can be realized using a cheap
and potentially large-scale data-acquisition system that is suitable for SMEs. We believe
that the proposed ML applications exemplify the potential for usefulness considering:
(1) the limited time for collection, (2) the leverage of almost only machine power consump-
tion, (3) the higher granularity of the data due to the network flow and size limitations that
come with storing higher frequency data, and (4) the fact that value could still be extracted
from approximate predictions.

11. Conclusions and Future Work

Given the practical challenges and limitations of extracting useful insights from the
data of retrofitted or brownfield equipment, much of the existing literature does not reflect
what is possible in current SME environments.

Toward addressing the data availability issue, we present an anonymized dataset of
discrete manufacturing machine data from two medium-sized companies over 7-month
and 1-year collection periods. Using these data, we showcase how ML can help com-
panies extract useful information even in the short term as they work toward building
their own historical datasets. We put forward several ML model use cases, power con-
sumption forecasting, item classification, next machine state prediction and item produc-
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tion count forecasting, the results of which exemplify the potential impact despite the
challenging circumstances.

Future work includes exploring more recent machine learning approaches to develop
new applications or to simplify the present ones. An interesting paradigm can be continual
learning, which can help models reach a useful state in a shorter time, as well as allow
for a more flexible model update phase. Another interesting ML paradigm is explainable
AI, which can be used to provide a clearer description of model predictions and to extract
human-understandable knowledge from ML models. Another possible improvement over
the current approach is to move AI and ML models from cloud to edge devices. This can
overcome the limitations leading to coarse data granularity.

Lastly, a major direction of planned future work is aimed at inferring the machine
state and item cycles based solely on the power consumption profile. Such a feature would
minimize the components that need to be added to retrofitted machines while still helping
companies gain the benefits of item classification and analyses.
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4. Dec, G.; Stadnicka, D.; Paśko, Ł.; Mądziel, M.; Figliè, R.; Mazzei, D.; Tyrovolas, M.; Stylios, C.; Navarro, J.; Solé-Beteta, X. Role of
academics in transferring knowledge and skills on artificial intelligence, internet of things and edge computing. Sensors 2022,
22, 2496. [CrossRef]

5. Santos, C.; Mehrsai, A.; Barros, A.; Araújo, M.; Ares, E. Towards Industry 4.0: An overview of European strategic roadmaps.
Procedia Manuf. 2017, 13, 972–979. [CrossRef]

6. Calenda, C. Piano Nazionale Industria 4.0; Ministero Dello Sviluppo Economico: Roma, Italy, 2017.
7. Huy, D.T.N.; Van, P.N.; Ha, N.T.T. Education and computer skill enhancing for Vietnam laborers under industry 4.0 and evfta

agreement. Ilkogr. Online 2021, 20, 1033–1038.
8. Lins, T.; Oliveira, R.A.R. Cyber-physical production systems retrofitting in context of industry 4.0. Comput. Ind. Eng. 2020,

139, 106193. [CrossRef]
9. Lins, T.; Oliveira, R.A.R.; Correia, L.H.; Silva, J.S. Industry 4.0 Retrofitting. In Proceedings of the 2018 VIII Brazilian Symposium

on Computing Systems Engineering (SBESC), Salvador, Brazil, 5–8 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 8–15.
10. Choudhary, A.K.; Harding, J.A.; Tiwari, M.K. Data mining in manufacturing: A review based on the kind of knowledge. J. Intell.

Manuf. 2009, 20, 501–521. [CrossRef]

https://github.com/HumanCenteredTechnology/SME-Manufacturing-Dataset
https://github.com/HumanCenteredTechnology/SME-Manufacturing-Dataset
http://doi.org/10.1142/S1363919617400151
http://dx.doi.org/10.3390/su14063312
http://dx.doi.org/10.3390/s22072496
http://dx.doi.org/10.1016/j.promfg.2017.09.093
http://dx.doi.org/10.1016/j.cie.2019.106193
http://dx.doi.org/10.1007/s10845-008-0145-x


Sensors 2023, 23, 6078 16 of 17

11. Strauß, P.; Schmitz, M.; Wöstmann, R.; Deuse, J. Enabling of predictive maintenance in the brownfield through low-cost sensors,
an iiot-architecture and machine learning. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data),
Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA, 2018, pp. 1474–1483.

12. Herwan, J.; Kano, S.; Ryabov, O.; Sawada, H.; Kasashima, N.; Misaka, T. Retrofitting old CNC turning with an accelerometer at a
remote location towards Industry 4.0. Manuf. Lett. 2019, 21, 56–59. [CrossRef]

13. Hesser, D.F.; Markert, B. Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manuf. Lett.
2019, 19, 1–4. [CrossRef]

14. Ralph, B.J.; Sorger, M.; Hartl, K.; Schwarz-Gsaxner, A.; Messner, F.; Stockinger, M. Transformation of a rolling mill aggregate to a
cyber physical production system: From sensor retrofitting to machine learning. J. Intell. Manuf. 2022, 33, 493–518. [CrossRef]

15. Lima, F.; Massote, A.A.; Maia, R.F. IoT energy retrofit and the connection of legacy machines inside the industry 4.0 concept. In
Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17
Ocotber 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 5499–5504.

16. Pereira, M.S.; Lima, F. A machine learning approach applied to energy prediction in job shop environments. In Proceedings of
the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 2665–2670.

17. Selvaraj, V.; Min, S. Real-time fault identification system for a retrofitted ultra-precision CNC machine from equipment’s power
consumption data: A case study of an implementation. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 1–17. [CrossRef]

18. Silva, B.; Sousa, J.; Alenya, G. Data acquisition and monitoring system for legacy injection machines. In Proceedings of the
2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and
Applications (CIVEMSA), Hong Kong, China, 18–20 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

19. Polenta, A.; Tomassini, S.; Falcionelli, N.; Contardo, P.; Dragoni, A.F.; Sernani, P. A Comparison of Machine Learning Techniques
for the Quality Classification of Molded Products. Information 2022, 13, 272. [CrossRef]

20. Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of
artificial general intelligence: Early experiments with gpt-4. arXiv 2023, arXiv:2303.12712.

21. Yang, L.; Zhang, Z.; Song, Y.; Hong, S.; Xu, R.; Zhao, Y.; Shao, Y.; Zhang, W.; Cui, B.; Yang, M.H. Diffusion models: A
comprehensive survey of methods and applications. arXiv 2022, arXiv:2209.00796.

22. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

23. Atzeni, D.; Bacciu, D.; Mazzei, D.; Prencipe, G. A Systematic Review of Wi-Fi and Machine Learning Integration with Topic
Modeling Techniques. Sensors 2022, 22, 4925. [CrossRef]

24. Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; Loncarski, J. Machine learning approach for predictive maintenance
in industry 4.0. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems
and Applications (MESA), Oulu, Finland, 2–4 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

25. Moroff, N.U.; Kurt, E.; Kamphues, J. Machine Learning and statistics: A Study for assessing innovative demand forecasting
models. Procedia Comput. Sci. 2021, 180, 40–49. [CrossRef]

26. Hu, H.; Jia, X.; He, Q.; Fu, S.; Liu, K. Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible
shop floor in industry 4.0. Comput. Ind. Eng. 2020, 149, 106749. [CrossRef]

27. Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine learning in manufacturing and industry 4.0 applications. Int. J. Prod. Res.
2021, 59, 4773–4778. [CrossRef]

28. Mazzei, D.; Ramjattan, R. Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling.
Sensors 2022, 22, 8641. [CrossRef]

29. Gade, K.; Geyik, S.C.; Kenthapadi, K.; Mithal, V.; Taly, A. Explainable AI in industry. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3203–3204.

30. Bengio, Y.; Courville, A.C.; Vincent, P. Unsupervised feature learning and deep learning: A review and new perspectives. arXiv
2012, arXiv:1206.5538v1.

31. Zhu, X.J. Semi-Supervised Learning Literature Survey; University of Wisconsin: Madison, WI, USA, 2005.
32. Chong, Y.; Ding, Y.; Yan, Q.; Pan, S. Graph-based semi-supervised learning: A review. Neurocomputing 2020, 408, 216–230.

[CrossRef]
33. Ouali, Y.; Hudelot, C.; Tami, M. An overview of deep semi-supervised learning. arXiv 2020, arXiv:2006.05278.
34. Babich, L.; Svalov, D.; Smirnov, A.; Babich, M. Industrial power consumption forecasting methods comparison. In Proceedings of

the 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg,
Russia, 25–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 307–309.

35. Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the adoption of Industry 4.0 technologies in
improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [CrossRef]

36. Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808.
37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
39. Nguyen, H.D.; Tran, K.P.; Thomassey, S.; Hamad, M. Forecasting and Anomaly Detection approaches using LSTM and LSTM

Autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manag. 2021, 57, 102282. [CrossRef]

http://dx.doi.org/10.1016/j.mfglet.2019.08.001
http://dx.doi.org/10.1016/j.mfglet.2018.11.001
http://dx.doi.org/10.1007/s10845-021-01856-2
http://dx.doi.org/10.1007/s40684-022-00497-x
http://dx.doi.org/10.3390/info13060272
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.3390/s22134925
http://dx.doi.org/10.1016/j.procs.2021.01.127
http://dx.doi.org/10.1016/j.cie.2020.106749
http://dx.doi.org/10.1080/00207543.2021.1956675
http://dx.doi.org/10.3390/s22228641
http://dx.doi.org/10.1016/j.neucom.2019.12.130
http://dx.doi.org/10.1016/j.susoc.2022.01.008
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102282


Sensors 2023, 23, 6078 17 of 17
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