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Abstract: Distributed Denial of Service (DDoS) attacks pose a significant threat to internet and cloud
security. Our study utilizes a Poisson distribution model to efficiently detect DDoS attacks with a
computational complexity of O(n). Unlike Machine Learning (ML)-based algorithms, our method
only needs to set up one or more Poisson models for legitimate traffic based on the granularity of
the time periods during preprocessing, thus eliminating the need for training time. We validate this
approach with four virtual machines on the CDX 3.0 platform, each simulating different aspects
of DDoS attacks for offensive, monitoring, and defense evaluation purposes. The study further
analyzes seven diverse DDoS attack methods. When compared with existing methods, our approach
demonstrates superior performance, highlighting its potential effectiveness in real-world DDoS
attack detection.
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1. Introduction

Network attacks, especially Distributed Denial of Service (DDoS) attacks, pose sig-
nificant concerns due to their severity. Over the past two decades, DDoS attacks have
caused considerable disruptions across various industries, leading to major catastrophes
and service interruptions. In September 2017, Google Cloud withstood the largest recorded
DDoS attack, peaking at a staggering 2.5 Tbps [1]. In February 2018, GitHub experienced a
1.3 Tbps attack [2], while AWS successfully defended against a 2.3 Tbps DDoS assault in
February 2020 [3]. These incidents underscore the crucial importance of proactive defensive
measures against network attacks to effectively neutralize threats to information security.
Without suitable countermeasures, the consequences of such attacks could be catastrophic.

A host-based intrusion detection system (IDS), Snort, is capable of identifying unusual
network traffic. The study [4] explores Snort’s application in analyzing bandwidth traffic
for intrusion detection and prevention systems, and it presents defensive strategies for
two common types of attacks. This work thoroughly discusses the IDS’s implementation,
structure, and intrusion detection method. In [5], a DDoS mitigation approach leveraging
Snort for DDoS detection within a Eucalyptus private cloud setup is proposed. While
corporate networks often implement multiple protection measures, protection in home
environments remains relatively weak, frequently due to home users’ lack of security-
risk awareness. A cost-effective intrusion protection system, based on Snort and using
the Raspberry Pi 3 B+ model, is proposed in [6]. This system uses the TaZmen Sniffer
Protocol (TZSP) to analyze network traffic and calculate periodic hash values with the
SHA3 algorithm, offering an affordable solution to enhance home network security.

Slow HTTP DoS attacks pose a significant threat to HTTP servers. In response to
the challenge of distributed slow HTTP DoS attacks, a defense mechanism is proposed
in [7]. This mechanism thwarts potential attack connections by monitoring the quantity
and duration of connections per IP address. The advent of Information-Centric Networks
(ICNs) has ushered in a new paradigm for content distribution, access, and retrieval.
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However, these networks remain susceptible to DDoS attacks. To address this issue, a
robust mechanism, GET Message Logging-based Filtering (GMLF), designed to combat
path identifier-based attacks targeting ICNs, is introduced in [8]. The mechanism employs
Bloom filter logging to store incoming GET messages, validates related content messages,
and filters packets from malicious hosts.

DDoS attacks pose a significant risk to cloud-based systems, having the potential
to cause substantial financial disruption. Current defense strategies often overlook the
sophisticated tactics employed by attackers, particularly those exploiting the elasticity
and multi-tenant features of the cloud, and fail to account for the constraints of the cloud
system’s finite resources. A real-time detection mechanism for TCP-based DDoS attacks
is introduced in [9]. This mechanism utilizes two decision tree classifiers to select ef-
fective features from TCP traffic and distinguish between malicious and normal traffic.
A cooperative fair rate adjustment mechanism, treating the attacks as rate management
and congestion control issues, is proposed in [10] to counter DDoS attacks. This solution
presents a decentralized defense architecture, featuring an anomaly detection mechanism
for identifying attacks, an early detection mechanism, and a feedback system between
autonomous systems (ASes). The study further introduces secure, private, authenticated
channels to manage the feedback process and an active resource management mathematical
model. A dual-pronged solution is proposed in [11]. The first component enhances the
hypervisor’s ability to form robust trust relationships with guest Virtual Machines (VMs).
The second component involves designing a trust-based maximin game. The solution to
this game offers strategic advice to the hypervisor, enabling it to dynamically determine
the most beneficial detection load distribution among VMs. DDoS attack detection in
cloud security is essential for ensuring uninterrupted access to cloud resources. Machine
Learning (ML)-based IDSs have shown promise in handling network incidents, including
DDoS attacks. In this context, feature selection in ML classification plays a critical role.
An ensemble framework for feature selection methods (EnFS) is presented in [12]. This
framework combines seven well-known feature selection methods using a majority voting
(MV) technique. This approach demonstrates higher accuracy and fewer false alarms
compared to existing methods, indicating the effectiveness of EnFS in enhancing IDS per-
formance. The study [13] utilizes various ML classifiers to detect and classify attack traffic
and normal traffic. They employ five common feature-selection methods on the NSL KDD
dataset. Their proposed hybrid method demonstrated the highest detection rate compared
to existing approaches. The study [14] outlines various cloud defense mechanisms, includ-
ing prevention, detection, and mitigation techniques, and emphasizes the challenges in
distinguishing between high traffic due to a DDoS attack and legitimate high traffic.

The use of blockchain technology to enhance the mitigation of DDoS attacks is pro-
posed in [15]. By leveraging the smart contracts of the Ethereum blockchain, an Intrusion
Prevention System (IPS) can share information about attack origins or blacklisted IPs with
other IPSs, thereby streamlining the mitigation process. Software Defined Networking
(SDN), a pivotal enabling technology in the current landscape, offers a novel and robust
network architecture, which allows dynamic operation of different services on a common
network infrastructure. The study discusses the vulnerabilities of SDN and proposes the
selection of specific attack attributes to identify those most influential to anomaly detec-
tion [16]. These selected attributes are used to train the model, enhancing its performance
while reducing computational costs. The research concludes with detailed analyses and
simulation results, revealing the primary attributes and their levels of impact on different
attacks. In [17], an analysis of DDoS threats and a review of innovative defense mechanisms
are presented. The study extensively discusses performance metrics commonly used for
evaluating these defense strategies. The paper concludes with a list of common DDoS
attack tools and open challenges.

The Cyber Defense eXercise (CDX) platform [18], under the guidance of the National
Science Council and implemented by the National Center for High-Performance Computing
(NCHC), Taiwan, is part of the “Information Security Open Data Platform Development
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and Malware Knowledge Base Maintenance (II)” project. This platform adopts a cloud
service architecture for its planning and design, primarily to overcome the limitations
of traditional cyber defense platforms due to hardware and software constraints and
issues related to ease of management and use. Leveraging a virtualized architecture, the
CDX platform demonstrates the feasibility of swiftly deploying cyberattack and defense
exercise scenarios. It provides an environment conducive to multi-player and multi-
scenario exercises simultaneously, and can also simulate real network environments for
related research in cyberattack and defense techniques. It enables participants to familiarize
themselves with and master past information security incidents, learning from these to
hone their detection and analysis skills in the realm of information security.

In this paper, we leverage the Poisson distribution model to detect potential DDoS
attacks. Unlike Machine Learning (ML) detection algorithms, our research does not require
training time. Instead, it only needs the creation of several Poisson distribution models
for legitimate traffic during preprocessing. Then, by comparing the model with the data
collected from the network, the presence of attack traffic can be determined. We conduct
experiments simulating seven different DDoS attack methods and defense techniques
on virtual machines hosted on a cloud platform. Packet analysis tools and performance
monitoring utilities are employed to detect whether the system is under attack. These
performance monitoring tools continuously collect data, enabling a comparison of vari-
ations in attack methods and their respective impacts on the system. We utilize Snort as
an intrusion detection system (IDS) in this study to identify malicious attack packets and
record alarm logs. Timely detection during an attack allows for the implementation of
strategies to mitigate or defend against the assault. Finally, we compare our research with
existing methods. The results reveal that our study achieves superior performance.

The remainder of this paper is organized as follows: Section 2 presents the methodol-
ogy of the proposed scheme. Section 3 illustrates the system architecture and corresponding
experimental results. Finally, we conclude this paper and outline potential future work.

2. Research Methodology

We assume that the arrivals from legal traffic sources follow a Poisson process. Let us
consider K independent sources, where each source, k, is a Poisson process with a rate of λk,
generating normal packets per second. A merged arrival stream is formed by amalgamating
the inputs from all K sources. Let us consider the following argument as true [19].

(1) The merged stream maintains the Poisson property, characterized by a parameter λ,
which is the sum of rates from all individual sources, i.e., λ = λ1 +λ2 + . . . + λk.

(2) Suppose pi is the probability that a packet from the merged stream is assigned to
the ith sub-stream. Given an overall arrival rate of λ packets per second, the ith
sub-stream also follows a Poisson process with a rate of λpi.

(3) Define Xj as a sequence of identically distributed, mutually independent Bernoulli
random variables, such that P [Xj = 1] = p and P [Xj = 0] = 1 − p. The sum is
SN = X1 + . . . + XN, for a random number N of these variables Xj, where N follows
a Poisson distribution with a mean λ. SN also adheres to a Poisson distribution, but
with a mean of λp.

(4) In the M[x]/M/1 model, the actual number of arrival packets is a random variable,
X, where x ∈ X, with a corresponding probability of cx. λx is the arrival rate of the
Poisson process for batches of size X. Therefore, we can express cx = λx/λ, where λ
represents the compound arrival rate of all batches. Clearly, λ equals the summation
of all individual rates, or λ = ∑i=1

∞λi.

In a DDoS attack, the packet arrival rate might suddenly increase significantly. We
can compare this behavior with the Poisson distribution model to detect possible DDoS
attacks. From the arguments mentioned above, we may induce that the burst arrivals from
DDoS attacker sources do not follow the Poisson process. Figure 1 depicts a flowchart of
using Poisson distribution to detect and prevent DDoS attacks, which can be described
as follows.



Sensors 2023, 23, 6139 4 of 19

Step 1: Collect Baseline Data. Collect network traffic data in non-attack scenarios to obtain
the packet arrival rate under normal conditions.
Step 2: Establish Poisson Model. Based on the arrival rate under normal conditions,
establish a Poisson distribution model.
Step 3: Real-time Monitoring. Monitor network traffic in real-time and calculate the arrival
rate in a specific time range.
Step 4: Anomaly Detection. If the arrival rate in a specific time period is significantly higher
than the arrival rate expected by the Poisson model, a DDoS attack may exist. Specifically,
if the actual arrival rate exceeds the predicted 95% confidence interval, an alert will be
generated within the system, prompting the subsequent initiation of procedures to block
the suspicious IP address.
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The computational complexity of our algorithm using Poisson distribution for anomaly
detection in DDoS attack scenarios primarily depends on two aspects:

(1) Data Collection and Preprocessing: This involves collecting and processing network
traffic data, which typically is a constant time operation, O(1), for each packet, but in
total it is O(n), where n is the number of packets.

(2) Anomaly Detection: This part involves calculating the Poisson distribution parame-
ters, calculating the expected arrival rate for each time period, and comparing it with
the observed rate. These are generally arithmetic operations, and if performed for
each packet, the complexity would be O(n).

So, the overall time complexity of the algorithm is linear, i.e., O(n), assuming that we
process each packet once.

Poisson distribution is a commonly used statistical model for representing the occur-
rence of events over a specified interval of time. It can be especially useful in detecting
DDoS attacks due to the following reasons:

(1) Modeling Event Frequency: DDoS attacks usually involve a sudden increase in
network traffic over a short period of time, which deviates significantly from normal
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behavior. The Poisson distribution can effectively model this because it describes the
probability of a given number of packet arrivals occurring in a fixed interval of time.

(2) Simplicity and Efficiency: The Poisson model is relatively simple to understand and
implement, and it requires fewer computational resources compared to more complex
models. This allows for efficient real-time analysis, which is critical in DDoS detection
where timely response is of the essence.

(3) Independence of Events: The Poisson distribution assumes that each event is indepen-
dent of the others. This assumption aligns well with certain types of DDoS attacks,
where each request (or packet) can be considered independent.

(4) Usefulness in Anomaly Detection: A significant deviation from the expected number
of packet arrivals, based on the Poisson distribution, can be considered an anomaly.
Therefore, using the Poisson distribution, we can develop a threshold for what consti-
tutes “normal” behavior, and anything exceeding that could be flagged as a potential
DDoS attack.

3. System Architecture and Experiment Results

In the proposed system architecture, we deploy four virtual machines (VMs) on the
CDX 3.0 cloud platform [18]. Figure 2 illustrates the configuration and setup of these VMs
on the CDX platform. The setup involves initializing various types of operating systems
(such as Windows, Linux, etc.) with distinct roles (like attackers, victims, etc.). It also
encompasses the configuration of necessary resources, including the number of CPU cores,
memory size, and network interface setup. The VMs are typically configured to closely
mirror real-world systems. We can model the precise nature of background traffic and
attack patterns on this platform. The first VM, playing the role of the attacker, is built on
Ubuntu with KALI installed. KALI generates multiple private IP addresses, simulating
the behavior of cloned botnets. To mimic DDoS attacks, we employ Hping3 within the
KALI VM. As the number of bots increases, the flow of traffic correspondingly intensifies.
The second key component of our system is the intrusion detection system (IDS), which
is based on Ubuntu and installed with Snort. The KALI VM generates a flood of network
traffic directed towards a specific target, in this case, Snort, within the platform. The
third component of the system utilizes Wireshark for the analysis of incoming packets.
Wireshark offers an in-depth understanding of the network’s activities at the protocol
level and is capable of decoding and analyzing protocols from the network layer up to the
application layer. In the case of a security incident, Wireshark can be utilized to inspect
packet payloads for potential malicious content or patterns that align with known attack
signatures. The final component is tasked with monitoring the attacker’s traffic flow. It
employs PRTG, installed on an Ubuntu-based system. PRTG is used to monitor crucial
network performance indicators such as bandwidth usage, latency, and packet loss. During
a DDoS attack scenario, PRTG is capable of sending an alert in response to an unusual
spike in incoming traffic, enabling a prompt reaction. Figure 3 depicts the experimental
architecture, and Table 1 provides a related description of the experiment.
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Table 1. Detailed description of experiment.

Software
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10

Hardware Spec 2 cores
4 GB Memory

1 core
4 GB Memory

1 core
4 GB Memory

2 cores
4 GB Memory

Role Attack Defense Analyzing Monitoring
IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4

Tools Hping3 Snort Wireshark PRTG

Here are the details on how to implement the Poisson distribution model in Snort:

(1) Data Collection: Regular, non-attack network traffic data should be collected over a
specified period of time. The data should be comprehensive enough to cover different
times of the day and different days of the week. We focus on the number of arriving
packets per minute.

(2) Model Setup: Using the collected data, calculate the average rate (λ) of packet arrivals
per minute. This will serve as a parameter for our Poisson distribution.

(3) Threshold Establishment: Define a threshold at which the rate of packet arrivals
becomes anomalous. This threshold should be set high enough to minimize false
positives, but low enough to catch actual attacks. It could be determined based on
the statistical properties of the Poisson distribution, such as a number of standard
deviations above the mean. In our study, we set it at two standard deviations above
the mean.

(4) Real-Time Monitoring and Anomaly Detection: During real-time operation, incoming
traffic should be divided into the same time units (minutes) used during model
training. For each time unit, calculate the number of arriving packets. Use the Poisson
probability mass function to determine the likelihood of observing that number of
packet arrivals, given the average rate λ. If the calculated probability falls below
a certain threshold, or equivalently, if the number of arriving packets exceeds the
established threshold, the traffic should be flagged as a potential DDoS attack.

(5) Prevention: Once an anomalous traffic pattern has been detected, the system can trig-
ger an alarm for predefined prevention strategies, blocking the suspicious IP address.

In the experiment, we generated seven types of DDoS attacks using Hping3 to test
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood,
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and Smurf attack. When Snort detects attack traffic, it stores the relevant information in an
alert file. The experimental procedures can be described as follows.

1. TCP SYN Flood Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Experimental architecture. 

Table 1. Detailed description of experiment. 

Software 
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10 

Hardware Spec 
2 cores 

4 GB Memory 
1 core 

4 GB Memory 
1 core 

4 GB Memory 
2 cores 

4 GB Memory 

Role Attack Defense Analyzing Monitoring 

IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4 

Tools Hping3 Snort Wireshark PRTG 

In the experiment, we generated seven types of DDoS attacks using Hping3 to test 
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN 
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood, 
and Smurf attack. When Snort detects attack traffic, it stores the relevant information in 
an alert file. The experimental procedures can be described as follows. 

1. TCP SYN Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

2. UDP Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3. TCP FIN Flood 

Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Experimental architecture. 

Table 1. Detailed description of experiment. 

Software 
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10 

Hardware Spec 
2 cores 

4 GB Memory 
1 core 

4 GB Memory 
1 core 

4 GB Memory 
2 cores 

4 GB Memory 

Role Attack Defense Analyzing Monitoring 

IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4 

Tools Hping3 Snort Wireshark PRTG 

In the experiment, we generated seven types of DDoS attacks using Hping3 to test 
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN 
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood, 
and Smurf attack. When Snort detects attack traffic, it stores the relevant information in 
an alert file. The experimental procedures can be described as follows. 

1. TCP SYN Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

2. UDP Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3. TCP FIN Flood 

Part of alert file:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Experimental architecture. 

Table 1. Detailed description of experiment. 

Software 
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10 

Hardware Spec 
2 cores 

4 GB Memory 
1 core 

4 GB Memory 
1 core 

4 GB Memory 
2 cores 

4 GB Memory 

Role Attack Defense Analyzing Monitoring 

IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4 

Tools Hping3 Snort Wireshark PRTG 

In the experiment, we generated seven types of DDoS attacks using Hping3 to test 
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN 
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood, 
and Smurf attack. When Snort detects attack traffic, it stores the relevant information in 
an alert file. The experimental procedures can be described as follows. 

1. TCP SYN Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

2. UDP Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3. TCP FIN Flood 

2. UDP Flood Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Experimental architecture. 

Table 1. Detailed description of experiment. 

Software 
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10 

Hardware Spec 
2 cores 

4 GB Memory 
1 core 

4 GB Memory 
1 core 

4 GB Memory 
2 cores 

4 GB Memory 

Role Attack Defense Analyzing Monitoring 

IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4 

Tools Hping3 Snort Wireshark PRTG 

In the experiment, we generated seven types of DDoS attacks using Hping3 to test 
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN 
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood, 
and Smurf attack. When Snort detects attack traffic, it stores the relevant information in 
an alert file. The experimental procedures can be described as follows. 

1. TCP SYN Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

2. UDP Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3. TCP FIN Flood 

Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Experimental architecture. 

Table 1. Detailed description of experiment. 

Software 
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10 

Hardware Spec 
2 cores 

4 GB Memory 
1 core 

4 GB Memory 
1 core 

4 GB Memory 
2 cores 

4 GB Memory 

Role Attack Defense Analyzing Monitoring 

IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4 

Tools Hping3 Snort Wireshark PRTG 

In the experiment, we generated seven types of DDoS attacks using Hping3 to test 
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN 
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood, 
and Smurf attack. When Snort detects attack traffic, it stores the relevant information in 
an alert file. The experimental procedures can be described as follows. 

1. TCP SYN Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

2. UDP Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3. TCP FIN Flood 

Part of alert file:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. Experimental architecture. 

Table 1. Detailed description of experiment. 

Software 
Spec Kali 2020.4 Ubuntu 20.04 Ubuntu 20.04 Window10 

Hardware Spec 
2 cores 

4 GB Memory 
1 core 

4 GB Memory 
1 core 

4 GB Memory 
2 cores 

4 GB Memory 

Role Attack Defense Analyzing Monitoring 

IP address 10.99.192.1 10.98.1.165 10.99.192.3 10.99.192.4 

Tools Hping3 Snort Wireshark PRTG 

In the experiment, we generated seven types of DDoS attacks using Hping3 to test 
Snort’s rules and monitor attack traffic. The seven types of DDoS attacks are: TCP SYN 
Flood, UDP Flood, TCP FIN Flood, TCP RST Flood, PUSH and ACK Flood, ICMP Flood, 
and Smurf attack. When Snort detects attack traffic, it stores the relevant information in 
an alert file. The experimental procedures can be described as follows. 

1. TCP SYN Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

2. UDP Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3. TCP FIN Flood 3. TCP FIN Flood Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

Part of alert file:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

4. TCP RST Flood Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

Part of alert file:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

5. PUSH and ACK Flood Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

Part of alert file:



Sensors 2023, 23, 6139 8 of 19

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: 

6. ICMP Flood Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

4. TCP RST Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

5. PUSH and ACK Flood 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

6. ICMP Flood 

Attack command: 

 
Snort rule: Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Part of alert file: 

 

7. Smurf attack 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3.1. TCP SYN Flood 
Figures 4–6 represent CPU loading, available memory, and incoming flow under a 

TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the 
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a 
maximum of 52%. Available memory, due to the impact of the attack, gradually drops to 
a minimum of 8.6%, and the network traffic increased significantly to a maximum of 529 
Mbit/s. 

 
Figure 4. CPU loading under TCP SYN flood. 

  

Part of alert file:

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Part of alert file: 

 

7. Smurf attack 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3.1. TCP SYN Flood 
Figures 4–6 represent CPU loading, available memory, and incoming flow under a 

TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the 
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a 
maximum of 52%. Available memory, due to the impact of the attack, gradually drops to 
a minimum of 8.6%, and the network traffic increased significantly to a maximum of 529 
Mbit/s. 

 
Figure 4. CPU loading under TCP SYN flood. 

  

7. Smurf attack Attack command:

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Part of alert file: 

 

7. Smurf attack 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3.1. TCP SYN Flood 
Figures 4–6 represent CPU loading, available memory, and incoming flow under a 

TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the 
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a 
maximum of 52%. Available memory, due to the impact of the attack, gradually drops to 
a minimum of 8.6%, and the network traffic increased significantly to a maximum of 529 
Mbit/s. 

 
Figure 4. CPU loading under TCP SYN flood. 

  

Snort rule:

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Part of alert file: 

 

7. Smurf attack 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3.1. TCP SYN Flood 
Figures 4–6 represent CPU loading, available memory, and incoming flow under a 

TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the 
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a 
maximum of 52%. Available memory, due to the impact of the attack, gradually drops to 
a minimum of 8.6%, and the network traffic increased significantly to a maximum of 529 
Mbit/s. 

 
Figure 4. CPU loading under TCP SYN flood. 

  

Part of alert file:

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Part of alert file: 

 

7. Smurf attack 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3.1. TCP SYN Flood 
Figures 4–6 represent CPU loading, available memory, and incoming flow under a 

TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the 
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a 
maximum of 52%. Available memory, due to the impact of the attack, gradually drops to 
a minimum of 8.6%, and the network traffic increased significantly to a maximum of 529 
Mbit/s. 

 
Figure 4. CPU loading under TCP SYN flood. 

  

3.1. TCP SYN Flood

Figures 4–6 represent CPU loading, available memory, and incoming flow under a
TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a
maximum of 52%. Available memory, due to the impact of the attack, gradually drops
to a minimum of 8.6%, and the network traffic increased significantly to a maximum of
529 Mbit/s.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Part of alert file: 

 

7. Smurf attack 

Attack command: 

 
Snort rule: 

 
Part of alert file: 

 

3.1. TCP SYN Flood 
Figures 4–6 represent CPU loading, available memory, and incoming flow under a 

TCP SYN flood, respectively. We observed all changes occurring at 09:24, the time the 
system was subjected to the TCP SYN flood attack. The CPU loading rises sharply to a 
maximum of 52%. Available memory, due to the impact of the attack, gradually drops to 
a minimum of 8.6%, and the network traffic increased significantly to a maximum of 529 
Mbit/s. 

 
Figure 4. CPU loading under TCP SYN flood. 

  

Figure 4. CPU loading under TCP SYN flood.



Sensors 2023, 23, 6139 9 of 19
Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Available memory under TCP SYN flood. 

 
Figure 6. Attack traffic under TCP SYN flood. 

3.2. UDP Flood 
Figures 7–9 reveal performance changes that occurred at 01:25, when the system was 

subjected to a UDP flood. CPU loading grew sharply to a maximum of 27%, and available 
memory gradually decreased to the minimum of 20.3%. Incoming attack flow increased 
dramatically to the highest rate of 211 Mbit/s. 

 

Figure 7. CPU loading under UDP flood. 

Figure 5. Available memory under TCP SYN flood.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Available memory under TCP SYN flood. 

 
Figure 6. Attack traffic under TCP SYN flood. 

3.2. UDP Flood 
Figures 7–9 reveal performance changes that occurred at 01:25, when the system was 

subjected to a UDP flood. CPU loading grew sharply to a maximum of 27%, and available 
memory gradually decreased to the minimum of 20.3%. Incoming attack flow increased 
dramatically to the highest rate of 211 Mbit/s. 

 

Figure 7. CPU loading under UDP flood. 

Figure 6. Attack traffic under TCP SYN flood.

3.2. UDP Flood

Figures 7–9 reveal performance changes that occurred at 01:25, when the system was
subjected to a UDP flood. CPU loading grew sharply to a maximum of 27%, and available
memory gradually decreased to the minimum of 20.3%. Incoming attack flow increased
dramatically to the highest rate of 211 Mbit/s.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Available memory under TCP SYN flood. 

 
Figure 6. Attack traffic under TCP SYN flood. 

3.2. UDP Flood 
Figures 7–9 reveal performance changes that occurred at 01:25, when the system was 

subjected to a UDP flood. CPU loading grew sharply to a maximum of 27%, and available 
memory gradually decreased to the minimum of 20.3%. Incoming attack flow increased 
dramatically to the highest rate of 211 Mbit/s. 

 

Figure 7. CPU loading under UDP flood. Figure 7. CPU loading under UDP flood.



Sensors 2023, 23, 6139 10 of 19
Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Available memory under UDP flood. 

 
Figure 9. Attack traffic under UDP flood. 

3.3. TCP FIN Flood 
Figures 10–12 showcase the system’s performance under a TCP FIN flood, with all 

changes observed at 03:15. The CPU load rose sharply to a maximum of 30% due to the 
impact of the attack. The available memory gradually dropped to a minimum of 30.8%, 
and the network traffic surged a maximum of 213 Mbit/s. 

 
Figure 10. CPU loading under TCP FIN flood. 

Figure 8. Available memory under UDP flood.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Available memory under UDP flood. 

 
Figure 9. Attack traffic under UDP flood. 

3.3. TCP FIN Flood 
Figures 10–12 showcase the system’s performance under a TCP FIN flood, with all 

changes observed at 03:15. The CPU load rose sharply to a maximum of 30% due to the 
impact of the attack. The available memory gradually dropped to a minimum of 30.8%, 
and the network traffic surged a maximum of 213 Mbit/s. 

 
Figure 10. CPU loading under TCP FIN flood. 

Figure 9. Attack traffic under UDP flood.

3.3. TCP FIN Flood

Figures 10–12 showcase the system’s performance under a TCP FIN flood, with all
changes observed at 03:15. The CPU load rose sharply to a maximum of 30% due to the
impact of the attack. The available memory gradually dropped to a minimum of 30.8%,
and the network traffic surged a maximum of 213 Mbit/s.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Available memory under UDP flood. 

 
Figure 9. Attack traffic under UDP flood. 

3.3. TCP FIN Flood 
Figures 10–12 showcase the system’s performance under a TCP FIN flood, with all 

changes observed at 03:15. The CPU load rose sharply to a maximum of 30% due to the 
impact of the attack. The available memory gradually dropped to a minimum of 30.8%, 
and the network traffic surged a maximum of 213 Mbit/s. 

 
Figure 10. CPU loading under TCP FIN flood. Figure 10. CPU loading under TCP FIN flood.



Sensors 2023, 23, 6139 11 of 19
Sensors 2023, 23, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 11. Available memory under TCP FIN flood. 

 
Figure 12. Attack traffic under TCP FIN flood. 

3.4. TCP RST Flood 
Figures 13–15, respectively, indicate performance changes under a TCP RST flood, 

with changes noticed at 03:44. The CPU load advanced sharply to a maximum of 28%, 
while due to the impact of the attack, the available memory gradually decreased to a min-
imum of 28.7%. At the same time, incoming attack traffic grew dramatically to a maximum 
of 211 Mbit/s. 

 
Figure 13. CPU loading under TCP RST flood. 

Figure 11. Available memory under TCP FIN flood.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 11. Available memory under TCP FIN flood. 

 
Figure 12. Attack traffic under TCP FIN flood. 

3.4. TCP RST Flood 
Figures 13–15, respectively, indicate performance changes under a TCP RST flood, 

with changes noticed at 03:44. The CPU load advanced sharply to a maximum of 28%, 
while due to the impact of the attack, the available memory gradually decreased to a min-
imum of 28.7%. At the same time, incoming attack traffic grew dramatically to a maximum 
of 211 Mbit/s. 

 
Figure 13. CPU loading under TCP RST flood. 

Figure 12. Attack traffic under TCP FIN flood.

3.4. TCP RST Flood

Figures 13–15 respectively, indicate performance changes under a TCP RST flood, with
changes noticed at 03:44. The CPU load advanced sharply to a maximum of 28%, while due
to the impact of the attack, the available memory gradually decreased to a minimum of 28.7%.
At the same time, incoming attack traffic grew dramatically to a maximum of 211 Mbit/s.
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memory descended slowly to a minimum of 25.4%. The attack traffic climbed greatly to a
maximum of 206 Mbit/s.
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3.8. PING Test

Using the PING command, we tested response time and packet loss rate when the victim
was under different types of attacks. The monitoring end (10.99.192.3) uses the PING com-
mand to send 100 ECHO_REQUEST packets to the victim end (10.99.192.4), repeating 10 times.
According to the experimental results, it can be found that both ICMP flood and Smurf attack
have the highest packet loss rates (100%). The reason is that the attack characteristics of
both misuse PING packets, making the victim (10.99.192.4) full of EHCO_REQUEST. These
ECHO_REPLY cannot be returned to 10.99.192.3 normally, resulting in 100% packet loss rate.
Table 2 displays the comparison of packet loss rates under different attack scenarios.

Table 2. Comparison of packet loss rate for various scenarios.

Normal
Traffic

TCP
SYN Flood

TCP
FIN Flood

TCP
RST Flood

TCP PUSH and
ACK Flood

UDP
Flood

ICMP
Flood Smurf

Test 1 0% 11% 1% 1% 0% 0% 100% 100%
Test 2 0% 8% 0% 3% 1% 2% 100% 100%
Test 3 0% 3% 0% 1% 0% 1% 100% 100%
Test 4 0% 3% 0% 1% 0% 1% 100% 100%
Test 5 0% 6% 1% 6% 0% 3% 100% 100%
Test 6 0% 9% 0% 0% 0% 1% 100% 100%
Test 7 0% 8% 0% 0% 0% 1% 100% 100%
Test 8 0% 8% 0% 0% 0% 1% 100% 100%
Test 9 0% 3% 0% 0% 0% 0% 100% 100%
Test 10 0% 5% 1% 0% 0% 0% 100% 100%
Averge 0.0% 6.4% 0.3% 1.2% 0.1% 1.0% 100% 100%
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In Table 3, we used PING packets to measure response time. Both ICMP flood and
Smurf attacks resulted in 100% packet loss rates, which meant response time could not be
measured. Both types of attack are not applicable to statistics of response time. Compared
to the other five types of attack, the TCP SYN flood attack has the longest network response
time, which is 0.39 ms longer than normal traffic.

Table 3. Comparison of response time for various scenarios.

Normal
Traffic
(ms)

TCP
SYN Flood

(ms)

TCP
FIN Flood

(ms)

TCP
RST Flood

(ms)

TCP PUSH and
ACK Flood

(ms)

UDP Flood
(ms)

ICMP
Flood
(ms)

Smurf
(ms)

Test 1 0.24 0.85 0.30 0.30 0.31 0.32 N/A N/A
Test 2 0.23 0.58 0.38 0.42 0.30 0.27 N/A N/A
Test 3 0.25 0.93 0.31 0.30 0.31 0.30 N/A N/A
Test 4 0.24 0.53 0.29 0.33 0.33 0.32 N/A N/A
Test 5 0.23 0.38 0.29 0.48 0.30 0.35 N/A N/A
Test 6 0.24 0.49 0.29 0.32 0.39 0.31 N/A N/A
Test 7 0.24 1.06 0.39 0.31 0.40 0.33 N/A N/A
Test 8 0.25 0.59 0.30 0.29 0.36 0.36 N/A N/A
Test 9 0.24 0.41 0.29 0.32 0.33 0.34 N/A N/A
Test 10 0.23 0.44 0.30 0.31 0.30 0.29 N/A N/A

Average 0.24 0.63 0.31 0.34 0.33 0.32 N/A N/A

We summarized the aforementioned experimental results in Table 4. Table 5 unveils
the performance disparities before and after the attacks. As evidenced by Table 5, the TCP
SYN flood attack influences CPU loading the most, marking a 34.68% increase post-attack.
The ICMP flood attack contributes to a 15.48% rise in memory utilization, while the other
kinds of attacks do not exhibit any considerable impact. The TCP FIN flood attack notably
affects traffic flow, generating a surge of 69.52 Mbit/s. The packet loss rate triggered by the
ICMP flood and Smurf attacks is substantial, reaching 100%. As every response packet is
lost, it is impossible to measure any response time. The TCP SYN flood results in the longest
response time, clocking in at 0.39 ms longer than standard traffic. It is important to pay
particular attention to the memory utilization in Table 5. The memory utilization actually
declines following a TCP-related attack, owing to Windows 10’s protective mechanism that
filters out half-open or abnormal TCP connections.

Next, we benchmark our method against existing DDoS detection approaches, namely,
the Radial Basis Function (RBF) Network, Support Vector Machine (SVM), Bagging, and
J48 Decision Tree [20]. We evaluate their performance in terms of accuracy, false positives,
and training time. For the experiment, we selected the LIBSVM package [21] with an RBF
kernel. Table 6 shows that our method, RBF, and SVM outperform others in accuracy and
false-positive rate. While RBF matches SVM in results, it demands a much longer training
time. Our method, however, negates training time by establishing one or more Poisson
models for legally arriving packets during preprocessing.

Table 4. Performance comparison between various scenarios.

CPU
Loading (%)

Memory
Utilization (%)

Peak Traffic Flow
(Mbit/s)

Response Time
(ms)

Packet Loss Rate
(%)

Normal traffic 1.75 39.40 0.004 0.24 0.0
TCP SYN flood 36.43 39.25 64.73 0.63 6.4
TCP FIN flood 24.71 36.49 69.52 0.31 0.3
TCP RST flood 22.73 36.26 68.33 0.34 1.2

TCP PUSH and ACK flood 24.67 38.76 69.06 0.33 0.1
UDP flood 23.17 36.84 24.83 0.32 1.0
ICMP flood 23.35 54.88 22.27 N/A 100.0

Smurf 20.98 40.48 24.27 N/A 100.0
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Table 5. Performance comparison before and after attack.

CPU
Loading (%)

Memory
Utilization (%)

Peak Traffic Flow
(Mbit/s)

Response Time
(ms)

Packet Loss Rate
(%)

TCP SYN flood +34.68 −0.15 +64.73 +0.39 +6.4
TCP FIN flood +22.96 −2.91 +69.52 +0.07 +0.3
TCP RST flood +20.98 −3.14 +68.32 +0.10 +1.2

TCP PUSH and ACK flood +22.92 −0.64 +69.06 +0.09 +0.1
UDP flood +21.42 −2.56 +24.83 +0.08 +1.0
ICMP flood +21.60 +15.48 +22.26 N/A +100.0

Smurf +19.23 +1.08 +24.26 N/A +100.0

Table 6. Performance comparison of the proposed scheme with other methods.

Accuracy (%) False Positive Rate
(%) Training Time (s)

The Proposed Scheme 96.13 0.005 N/A
Radial Basis Function Network 94.56 0.01 1320

Support Vector Machine 95.11 0.008 120
Bagging 91.49 0.024 60

J48 Decision Tree 91.82 0.024 7

4. Conclusions and Future Works

In this study, we propose an innovative detection mechanism that utilizes the Poisson
distribution model to identify potential DDoS attacks. This model has a computational
complexity of O(n), offering an efficient alternative to more resource-intensive methods. We
utilize Snort as an intrusion detection system and Wireshark and PRTG for analyzing and
monitoring the impact of attacks. Our findings reveal that different types of attacks have
varied impacts on system performance. A TCP SYN flood attack has a more significant
effect on CPU utilization and response time than other types of attacks. Conversely, memory
utilization is most impacted by ICMP flood attacks. Both ICMP flood and Smurf attacks
have the greatest impact in terms of packet loss rate among all the attack types studied.
Experimental results confirm the effectiveness of this approach. When compared with
existing detection mechanisms, our model demonstrated superior performance metrics,
indicating its potential usefulness in real-world applications. Thus, this research offers a
novel and effective approach to the ongoing challenge of DDoS attack detection.

The experiments were conducted on the virtual machines of the CDX 3.0 cloud plat-
form, which may not perfectly replicate a real network environment. It is important to note
that the proposed method might overreact to sudden normal traffic changes, leading to
false positives. Therefore, it may be necessary to use it in combination with other detection
methods to ensure accuracy and completeness. Moreover, the actual computational require-
ments can be significantly influenced by factors such as the volume of network traffic and
the granularity of the time periods. Specifically, the smaller the time periods, the more
computations required. Additionally, the space complexity will be affected by the volume
of historical data required to establish the baseline model.
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