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Abstract: Multiple unmanned aerial vehicles (UAVs) have a greater potential to be widely used
in UAV-assisted IoT applications. UAV formation, as an effective way to improve surveillance
and security, has been extensively of concern. The leader–follower approach is efficient for UAV
formation, as the whole formation system needs to find only the leader’s trajectory. This paper
studies the leader–follower surveillance system. Owing to different scenarios and assignments, the
leading velocity is dynamic. The inevitable communication time delays resulting from information
sending, communicating and receiving process bring challenges in the design of real-time UAV
formation control. In this paper, the design of UAV formation tracking based on deep reinforcement
learning (DRL) is investigated for high mobility scenarios in the presence of communication delay.
To be more specific, the optimization UAV formation problem is firstly formulated to be a state
error minimization problem by using the quadratic cost function when the communication delay is
considered. Then, the delay-informed Markov decision process (DIMDP) is developed by including
the previous actions in order to compensate the performance degradation induced by the time delay.
Subsequently, an extended-delay informed deep deterministic policy gradient (DIDDPG) algorithm
is proposed. Finally, some issues, such as computational complexity analysis and the effect of the
time delay are discussed, and then the proposed intelligent algorithm is further extended to the
arbitrary communication delay case. Numerical experiments demonstrate that the proposed DIDDPG
algorithm can significantly alleviate the performance degradation caused by time delays.

Keywords: surveillance; formation control; intelligent control strategy; time delay; dynamic
leading velocity

1. Introduction

Recently, the development of unmanned aerial vehicles (UAVs) has brought many
benefits in UAV-assisted application fields, such as surveillance, rescue, reconnaissance
and search [1,2]. The UAV formation control, driving each vehicle to reach the prescribed
constraint on its own states through generating appropriate control commands, significantly
expands the potential applications and opens up new possibilities for UAVs. For example,
a group of UAVs could expand the fields of view when executing assignment.

A task of cooperative surveillance is considered in this paper. The target is to guide
a group of UAVs equipped with cameras to fly over an urban area (possibly hostile)
to provide complete surveillance coverage in an optimal manner [3]. Considering the
limitation of batteries, leader–follower units are introduced to make a group of UAVs fly
with a formation in order to improve the efficiency and expand the field of surveillance.
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In this paper, the leader is assigned to make the flying strategy, like the flying velocity and
trajectory position, depend on the environment information transmitted by wireless sensor
agent networks (WSANs). Followers focus on tracking with a dynamic leader and keep a
desired cooperation formation. In this paper, we focus on the design of the controller to
make followers achieve the desired cooperation formation while tracking a dynamic leader.

However, UAVs are underactuated systems constrained by high mobility and serious
disturbances [4]. Therefore, it becomes a great challenge to address the robust formation
controller design problem to enable UAVs to achieve the desired cooperation formation.
The traditional optimal formation control methods, such as the nonlinear model predictive
control (see [5,6]), and nonlinear PID control (see [7,8]), are proposed to alleviate the
degradation of control stability attributed to the external disturbances and uncertainties
in the UAV formation. These approaches can generally be regarded as a cost function
minimization problem defined by a set of UAV states and control actions. Unfortunately,
the above methods often fail to generalize to the wider range of application scenarios due
to the highly dynamic and time-varying features of UAVs.

Existing approaches have been proposed to overcome the limitations of traditional
formation control algorithms, among which the highest potential one is reinforcement
learning (RL) [9]. In fact, RL is a classical learning method to address the sequential decision-
making problem within the Markov decision process (MDP). At each step, the agent
interacts with the environment and derives a reward. After exploration and training, the
control policy gradually achieves the optimal trategy. By using the framework of MDP, RL
is a typical algorithm developed in the control field originally for optimal stochastic control
under uncertainty [10]. Different from the classical rule-based optimization methods, RL
learns intelligently in each step, interacting with the environment to derive approximate
optimal model parameters.

In order to improve the learning ability of RL, deep reinforcement learning (DRL),
integrating the benefits of both RL and deep neural networks (DNNs), has been proposed.
DRL can efficiently handle a much more complicated state space and dynamic environment,
and achieve superior performance for game-playing tasks [11–13]. DRL has become a
research hotspot in the field of UAV control, such as the outer-loop control (formation
maintenance, navigation [14], path planning [15]) and inner-loop control (altitude [16]).
In DRL, the deep Q learning (DQN) technique is employed to reduce the correlation
among successive experience samples by using an experience replay buffer. Nevertheless,
DQN can only deal with a limited action space, while the UAV formation control is a
continuous control process with an unlimited action space. Then, the actor–critic method is
further developed for continuous control action [9]. Based on the actor–critic framework,
the deep deterministic policy gradient (DDPG) algorithm, which takes advantage of the
DQN experience replay and dual network structure to enhance the deterministic policy
gradient (DPG) algorithm, has been used comprehensively for continuous agent control,
and its feasibility has been validated in many potential scenarios, such as autonomous
driving, (longitudinal see [17], mixed-autonomy see [18]), UAV (navigation see [19], motion
control see [20]), etc.

Formation control requires continual and real-time information exchange. At each
time interval, environment information should be exchanged (i.e., sent or received) by
sensor nodes through the WSANs, which typically suffers from a series of issues, such as
network topology, network traffic and system resource limitations, resulting in inevitable
network-induced time delays. In our surveillance study, the leader collect the environment
information through the sensor nodes spread in WSANs to make the flying strategy,
including velocity and position. Then, the new flying strategy, including the velocity and
position of the leader, is subsequently transmitted to the follower.

Considering the leader–follower units as an whole unit, this whole unit collects
environment information through WSANs and produces action, like an agent in MDP.
Consequently, the agent’s observations of its environment are not immediately available
due to the quality of WSANs, and the time delay actually exists in the action selection and
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actuation of the agent in MDP. However, most existing DRL-based algorithm designs are re-
strained to synchronous systems with delay-free observations and action actuation [21–23].
Therefore, it is of great practical significance to investigate the intelligent UAV formation
control considering the time delay constraint. In this paper, we propose a novel intelli-
gent formation control algorithm to deal with the time delay issue in accordance with the
model-based DDPG.

1.1. Related Works

The UAV formation control includes three typical types, such as formation generation
and maintenance, formation shape maintenance and regeneration and formation main-
tenance while trajectory tracking [24]. Refs. [25–29] integrate these types into an optimal
formation tracking problem. Although these works have the capability to meet the forma-
tion maintenance requirement, they fail to deal with much more complex environments
because the algorithm parameters cannot be intelligently adjusted according to the dynamic
feature of environments. Therefore, it is meaningful to introduce RL algorithms to UAV
formation control.

Several new techniques are developed based on the DRL to address the UAV control
problem. The DQN algorithm is employed in [30] for real-time UAV path planning. A dou-
ble deep Q-network (DDQN) is further trained in [15] using the experience replay buffer in
order to learn to generate the control policy according to time-varying scenario parameters
for UAV. Li et al. [14] focus on the ground target tracking to solve the obstacle problem for
UAV system using the improved DDPG. In [31], an end-to-end DRL model is developed for
the indoor UAV target searching. Unfortunately, the research of DRL-based UAV formation
maintenance is still not enough. In addition, these studies have ignored the effect of the
time delay issue, which is an inherent feature in actual UAV formation.

Currently, the study of the RL-based algorithm design with delays is attracting more
and more attention. For example, in the design of MDP, Walsh et al. [32] first directly
increased the length of a sampling interval in order to achieve the agent’s action syn-
chronization using the delayed observations, and then the authors further introduced the
delayed actions to the state, which effectively compensates for the effect of time delay.
Refs. [33–38] formally described the concept of delayed MDP, and demonstrated that the
delayed MDP can be transformed into an equivalent standard MDP, and then it can be em-
ployed to formulate the delay-resolved RL framework to derive the near-optimal rewards
interacting with the environments. In [39], a delay-aware MDP is proposed to address the
continuous control task by increasing the state space with a sequence being executed in the
next delay duration step. The interaction manner they proposed is motivated by applying
an action buffer as an interval. The agent can obtain environment observation as well as
the future sequences from the action buffer, and then determine its future action.

In general, the above methods can be divided into two types, one is that the state
space of the learning agent is integrated with the delayed action, and the other is to learn a
model of the underlying delay-free process to predict the control actions for future states.
Motivated by the existing RL approaches with time delays, the design of UAV formation
tracking based on deep reinforcement learning is further developed in our work to address
the UAV formation problem in the presence of time delays. In fact, there are few works
to address the influence of time delays on intelligent UAV formation in highly dynamic
scenarios. However, considering the actual real-time formation control, the time delay is an
inherent feature that needs to be studied to improve the control stability.

1.2. Contribution

Due to the uncertainty of wireless communications, the information transmission
in UAV formation control will suffer from time delays, which may lead to control insta-
bility and formation performance degradation, especially in the high dynamic applica-
tions [40–42]. Neither different from the intelligent algorithm in [43], which ignores the
influence of time delay, nor different from traditional control methods, such as Artstein’s



Sensors 2023, 23, 6190 4 of 21

model reduction [44] and Smith predictor [45], which are restrained to be applied to much
more complex and dynamic scenarios because of their limited intelligent adaptability, a
delay-informed intelligent framework is proposed in the paper to address the UAV forma-
tion problem subject to time delays. The main contributions of our work are as follows:

• In order to regulate the UAV motion, the UAV formation model considering time
delay is first established in discrete-time form based on the UAV error dynamics.
Then, an optimization problem designed to minimize the quadratic cost function is
formulated for the optimal formation control under time delays.

• According to the error dynamics and optimization formation control problem, a delay-
informed MDP (DIMDP) framework is presented by including the previous control
actions into the state and reward function. Then, a DRL-based algorithm is proposed
to address DIMDP, and the classical DDPG algorithm is extended as a delay-informed
DDPG (DIDDPG) algorithm to solve DIMDP.

• The computational complexity analysis and the effect of the time delay are discussed,
and the proposed algorithm is further extended to the arbitrary communication delay
case. Through the training results, the proposed DIDDPG for the UAV formation
control can achieve better convergence and system performance.

The rest of this paper is organized as follows. The system model and UAV formation
optimization problem are presented in Section 2. In Section 3, the environment model
is established as DIMDP, and then the DIDDPG algorithm is proposed to solve DIMDP.
Section 4 shows the simulation results, and Section 5 concludes our work.

2. System Modeling and Problem Formulation

In this section, by considering the time delay and dynamic leader velocity, the forma-
tion control model is first presented. Then, the cost function based on the discrete-time
states errors is designed for the follower to reach the desired states. Finally, the optimization
problem is formulated.

2.1. System Modeling

UAV formation can be applied to a multitude of security and surveillance areas.
The pattern formation is crucial for multi-UAV formation control mechanisms while cau-
tiously navigating the surveillance areas. The leader–follower formation is introduced to
improve the efficiency for UAV formation, as the surveillance system needs to find only the
leader’s trajectory.

In this paper, the UAV formation is divided into several leader–follower control
units, with one UAV designated as the leader and the remaining UAVs are as followers.
By realizing the tracking mission of each unit, the mission of the whole formation is realized.
In the formation control process, wireless communication technology is used to complete
the information collection and sharing through the WSAN. The leader can receive mission
and formation information, and then use the received information to plan the trajectory and
guide the direction of the entire formation. The controller regularly collects the position,
speed and other status information of the leader and the follower, and calculates the state
error of the follower, and then generates and transmits the control strategy to the follower
actuator to ensure the stability of formation control. At the same time, communication
delays, including leader-to-controller, controller-to-follower actuator, and information
processing delays are introduced.

The considered formation control model and corresponding timing diagram are shown
as Figures 1 and 2, respectively. The leader is assigned to make the flying strategy, like
the flying trajectory and speed, depend on the shared environment information, such as
mission and formation information transmitted through the WSAN. The leader makes
an appropriate strategy, such as acceleration, deceleration and hover, due to the relevant
real-world scenarios and assignments. For example, the formation needs to change when
encountering obstacles. Then, the updated formation state information is transmitted to
the controllers through the WSAN. Therefore, the leader-to-controller delay is introduced.
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Once the formation information is collected, the controller can calculate and generate the
control strategy, and then transmit it to the follower actuator to improve the formation
control. Meanwhile, the controller-to-follower actuator delay and data processing delay
are introduced.

Environment

WSANs

Leader Controller

Leader states

Follower states

Control signal
Follower

Controller Follower

Controller Follower

...
Environment 

information

Leader
Follower

Leader-follower 

unit

Environment 

information

Leader states

Follower

Figure 1. UAV formation system model.

Leader

Controller
Data processing

Sampling period 

Follower

Actuator

Time

Control signal

Time delay

Leader states

Figure 2. Timing diagram for the leader–follower formation control.

In fact, the location of controller can be placed on the leader UAV or the follower UAV
or the ground control center according to the real-world application scenarios. For example,
in [21], an intelligent controller placed in the follower is proposed and it is testified that this
approach is applicable in many applications, such as penetration and remote surveillance.
Figure 2 is able to include all the delay cases, no matter where the controller is placed;
due to this, Figure 2 shows a general case for communication delays of formation con-
trol. For example, when the controller is placed on the follower, the time delay from the
controller to the follower actuator will be small or even negligible. In our work, the dy-
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namic leading velocity and time delay are considered due to the complex environment and
real-world application.

Considering a leader–follower unit, the kinematics of the follower is given by

ṗ(t) = v(t),

v̇(t) = c(t− τ(t)),
(1)

where v(t) and p(t) are the velocity and position of the follower, respectively, c(t) denotes
the acceleration of the follower (i.e., the control strategy), τ(t) is the time delay shown as in
Figure 2, which accounts to the signal processing delay and the transmission latency from
the leader to the controller and from the controller to the follower, and the time delay is
typically assumed to be stochastic due to the quality of WSANs.

The model of desired states can be described as [46]

ṗr(t) = vr(t),

v̇r(t) = fr(pr(t), vr(t)),
(2)

where vr(t) and pr(t) are the expected velocity and position, respectively, which are deter-
mined by the state of the leader, and fr(pr(t), vr(t)) denotes the time-varying acceleration
of the leader.

The objective of the follower is to maintain the formation and track the leader. Define
the state errors of the follower as follows:

∆p(t) = p(t)− pr(t),

∆v(t) = v(t)− vr(t).
(3)

Then, based on Formulas (1)–(3) , the relationship among state errors can be deduced as

∆ ṗ(t) = ṗ(t)− ṗr(t) = v(t)− vr(t) = ∆v(t),

∆v̇(t) = v̇(t)− v̇r(t) = c(t− τ(t))− fr(pr(t), vr(t)).
(4)

which indicates that the differential of the position error presents the change in velocity,
and the differential of the velocity error denotes the change in acceleration.

Note that τ(t) is a time-varying item due to the uncertainty of the transmission
environment, and fr(pr(t), vr(t)) is an unknown item due to the dynamic feature of the
leader acceleration.

2.2. Optimization Problem Formulation

Define z(t) = [∆px(t), ∆vx(t), ∆py(t), ∆vy(t), ∆pz(t), ∆vz(t)]T as the state vector,
where the superscripts x, y and z represent the 3D information of state errors. Based on the
stat error model (4), the follower dynamics can be expressed as follows:

ż(t) = Az(t) + B[c(t− τ(t))− fr(pr(t), vr(t))], (5)

where

A =

 Ā 02×2 02×2
02×2 Ā 02×2
02×2 02×2 Ā

,

B =

 B̄ 02×1 02×1
02×1 B̄ 02×1
02×1 02×1 B̄

,
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that 0i×j is the zero matrix, and

Ā =

[
0 1
0 0

]
, B̄ =

[
0
1

]
.

During each sampling interval, the controller receives the measurement state informa-
tion, and then derived the control strategy to improve the formation control stability. Then,
the corresponding discrete-time dynamics of the follower in the j-th sampling interval
[jT, (j + 1)T) is given by

zj+1 = Ezj + D1
j cj + D2

j cj−1 + Gj, (6)

where

E=eAT , D1
j =

∫ T−τj

0
eAtdtB, D2

j =
∫ T

T−τj

eAtdtB,

Gj =
∫ (j+1)T

jT
eA[(j+1)T−s] fr(pr(s), vr(s))dsB,

and zj and τj are the sampled values of z(t) and τ(t) at time jT, respectively, and cj denotes
the control signal relevant to the received state zj.

Note that the time delay τj causes the time-varying feature of D1
j and D2

j , and the
dynamic leader movement also introduces the uncertain item Gj, which increases the
difficulty for traditional algorithms to address these dynamic features. Additionally, in each
sampling interval, the influence of the previous control signals is further introduced due to
the time delays.

The objective of the follower is to minimize state errors. Therefore, the typical quadratic
optimization problem for formation control can be formulated as [22]

min
{cj}

E
[

zT
N PzN +

N−1

∑
j=0

(zT
j Pzj + cT

j Qcj)

]
s.t. zj+1 = Ezj + D1

j cj + D2
j cj−1 + Gj,

(7)

where E denotes the expectation based on the stochastic natures of the leader movement
and time delays, P and Q are system parameters, and N is the finite time horizon.

3. DIDDPG Algorithm for Formation Control

In this section, the DIMDP framework is first presented, and then the environment
model which maps the system model to the interaction environment of DIMDP is for-
mulated. Additionally, a DIDDPG algorithm for the UAV formation controller design
is proposed.

3.1. DIMDP-Based Environmental Model

The framework of MDP for the leader–follower formulation is shown as in Figure 3.
At each time slot, based on the observed current UAV states from the environment, the
action is generated and executed according to the action policy. Then, the new state is
updated by the state transition function, and the corresponding reward is returned to the
agent. In the framework of MDP, the actor0-critic structure, integrating the advantages of
the policy search method with the value function learn, is used.

Considering the fact that time delay is an inevitably negative factor to the real-time
control, in order to address the optimization formation problem in (7), the MDP framework
associated with the time delay needs to be formulated. In fact, the basic MDP framework
typically assumes that the system’s current states are always available to the agent and
the agent always takes relevant actions immediately. However, these assumptions are not
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appropriate for the optimization formulation problem because of the time delay. How to
integrate the effect of time delay into the MDP framework design is the key issue. Therefore,
DIMDP, the standard MDP extension with time delay, is proposed, in which the agent
interacts with the environment, and the environment is influenced by the delayed control
strategies (i.e., the delayed actions). Below, the detailed definitions of the state space, action
space, state transition function and reward function for the DIMDP are given.

r
v

r
v

f
v

z
p
z

y
p
y

x
p
x

r
v

f
vv

mq

'mq

Qq

'Qq

Figure 3. The framework of MDP for the leader–follower formulation.

(1) State: Referring to the leader–follower UAV formation, several factors, including the
action of the follower and the error states between the leader and the follower, are
considered. As shown in (4), the state errors of the follower are determined by the
position and velocity errors. From the discrete-time dynamics (6), the effect of the
previous control strategy cj−1 is also attributed to the time delay as shown in Figure 4.
Therefore, the state in the j-th sampling interval is defined as

sj =
[
zj

T , cj−1
T
]

=
[
∆px

j , ∆py
j , ∆pz

j , ∆vx
j , ∆vy

j , ∆vz
j , ∆ax

j−1, ∆ay
j−1, ∆az

j−1

]T
.

(8)

In (8), the updated state error information and local previous control strategy infor-
mation are extracted to represent the environment state to regulate the follower UAV
tracking. In particular, the previous control strategy is used to compensate for the
effects of the time delay.



Sensors 2023, 23, 6190 9 of 21

(2) Action: The decision action is given by

aj = cT
j , (9)

where aj is actually the acceleration policy of the follower UAV, which is a continuous
value, and we have

cmin ≤ aj ≤ cmax, (10)

which indicates that the action is constrained by boundary values.
(3) State transition function: The state transition function can be determined according to

the discrete-time dynamics of the follower in (6) as follows:

sj+1 = sjFj + ajHj +
[

GT
j , 03×1

]
, (11)

where

Fj =

[
E 03×6

D2
j 03×3

]
, Hj =

[
D1

j
I3×3

]
.

(4) Reward function: The reward is used to evaluate the performance of the action,
and then the follower can intelligently learn to derive the proper control strategy to
maintain the formation tracking. The reward function can be designed as the opposite
of the cost function in terms of the optimization problem in (7) as follows:

rj = −sj P̄sT
j − aj+1QaT

j+1, (12)

where

P̄ =

[
P 03×6

06×3 03×3

]
.

In fact, the closer the follower’s states are to the desired ones, the greater the reward.
It is significant that, based on the well-designed reward function, the follower can
rapidly achieve the desired position and velocity by continuously adjusting the action
in order to acquire the maximum long-term cumulative rewards, which is formulated
as a finite horizon N item by

GN = −
N−1

∑
j=0

γj
(

sj P̄sT
j + ajQaT

j

)
, (13)

where γ is a discount factor.

3.2. DIDDPG UAV Formation Algorithm

In this section, we employ the DDPG method with the DIMDP definitions, and then a
model-based DIDDPG algorithm for the continuous UAV formation control is proposed.

The framework of DIDDPG is presented as in Figure 5. The main network includes two
parts (i.e., critic network and actor network). The actor network µ(s|θµ) builds a mapping
from states to actions, and the main policy is generated, while the critic network Q

(
s, a|θQ)

estimates the action value, where θQ and θµ are parameters of the critic network and actor
network, respectively. The target network is employed for the actor–critic architecture to
acquire a stable target Q value. The parameters of target network µ′(s|θµ′) and target critic
Q′
(

sj+1, a′
∣∣θQ′

)
update based on the main network parameters.
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Figure 4. Delay-informed MDP.
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Figure 5. Framework of DIDDPG algorithm.

In each time slot j, the online actor network generates the corresponding action policy
µ
(
sj|θµ

)
based on state sj. After executing the action aj = µ

(
sj|θµ

)
+ η (η is an additional

random noise to ensure the effective exploration), the next state sj+1 can be updated
based on (11), and the corresponding reward rj can be obtained according to (12). Then,
the transition (sj, aj, sj+1, rj) is stored as a sample in the experience replay memory buffer.
Repeating this process based on the closed loop control, enough training data can be
generated by interacting with the environment. While training the networks, the mini-
batch of K experience samples are randomly selected from the experience replay memory
buffer in order to reduce the correlation among samples that the training efficiency can
be improved.

By minimizing the loss function L(θQ), typically defined as a mean quadratic er-
ror function, the main critic network can update the parameter θQ using the gradient
descent method:

L(θQ) = 1
K

K−1
∑

j=0

(
Q
(
sj, aj|θQ)− yj

)2, (14)

where Q(sj, aj|θQ) represents the current Q value generated by the output of main critic
network based on action aj and state sj, and yj is the target Q value given by

yj = rj + γQ′(sj+1, µ′(sj+1|θµ′)|θQ′). (15)
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In (15), µ′(sj+1|θµ′) and Q′(sj+1, µ′(sj+1|θµ′)|θQ′) denote the next action policy and
next Q value derived from the target actor and critic networks, respectively.

Then, the main actor network updates the parameter θµ by the policy’s gradient
algorithm as [47]

∇θµ J ≈ 1
K

K−1

∑
j=0

[
∇aQ(s, a|θQ)|s=sj ,a=µ(sj)

∇θµ µ(s|θµ)|sj

]
, (16)

The updating gradient of the policy helps to improve the possibility of choosing a
better action. Then, the DIDDPG softly updates the target networks as

θQ′ ← δθQ + (1− δ)θQ′ ,
θµ′ ← δθµ + (1− δ)θµ′ .

(17)

and here, δ is a small constant.
After training, the parameters θµ∗ will converge, and then the optimal formation

control strategy for the follower is derived as

a∗ = µ(s|θµ∗). (18)

The detailed DIDDPG-based UAV formation algorithm is presented as Algorithm 1.

Algorithm 1 DIDDPG-based UAV formation algorithm.

1: Initialize system parameters P, Fj, Hj, D1
j , D2

j and the replay memory buffer R.

2: Randomly initialize θµ, θQ, µ′ and Q′.

3: Initialize online actor and critic networks µ(s|θµ ) and Q
(
s, a
∣∣θQ ), respectively.

4: for episode = 0 : 1 : N − 1 do

5: Initialize the random noise ω and state s0.

6: for j = 0 : 1 : M− 1 do

7: Update the action aj = µ
(
sj|θµ

)
+ ω.

8: Update the next state sj+1 based on (11) that sj+1 = sjFj + aj Hj +
[

GT
j , 03×1

]
.

9: Derive the reward rj by (12) that rj = −sj P̄sT
j − aj+1QaT

j+1.

10: Store transition (sj, aj, rj, sj+1) in R.

11: Randomly Select a mini-batch of K experience samples (sj, aj, rj, sj+1) from R.

12: Update target Q value based on (15) that yj = rj + γQ′(sj+1, µ′(sj+1|θµ′)|θQ′).

13: Update θQ by minimizing the mean quadratic error function based on (14).

14: Update θµ by sampled policy gradient ∇θµ J given by (16).

15: Update the target networks:

16:
θQ′ ← δθQ + (1− δ)θQ′ ,

θµ′ ← δθµ + (1− δ)θµ′ .
17: end for

18: end for

3.3. Algorithm Analysis

The analysis of some issues, such as time delay and the computational complexity, are
discussed for the proposed DIDDPG algorithm in this section.
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3.3.1. Time Delay Analysis

Due to the inherent features of wireless transmission, the time delay is an inevitable
issue that needs to be addressed in the UAV formation control process. It is known from (6)
that the follower’s state update is dependent on previous delayed control strategies due to
the time delay. That is, the actor input in a sampling interval is given by

c(t) =
{

cj−1, j∆T < t ≤ j∆T + τ,
cj, j∆T + τ < t ≤ (j + 1)∆T.

(19)

The different scenarios of time delay on the actor input are shown as in Figure 6. It
is necessary to further discuss the influence of delayed information on how to design the
DIMDP. Below, two special cases are represented to show the effect of time delay on the
actor input, state definition and state transition function design of DIMDP.

Figure 6. Different scenarios of actor input in a sampling interval.

When τ=0, the actor immediately receives the control strategy, and there is no effect
of the previous control strategy on the follower’s states. The discrete-time state update
function is given by

zj+1 = Ezj + D1
j cj + Gj. (20)

When τ = ∆T, the actor input only includes the previous control strategy in the j-th
sampling interval, and the discrete state update function can be expressed as

zj+1 = Ezj + D2
j cj−1 + Gj. (21)

In fact, the time delay is influenced by many uncertainties, such as network topology,
access technology and transmission channel quality, thus causing long and stochastic
delays. Therefore, an arbitrary time delay should be further investigated, which is typically
represented as τ ∈ [q∆T, (q + 1)∆T), and here q is a positive integer [48]. Then, based
on (5) and (6), the relevant discrete-time state update function can be expressed as

zj+1 = Ezj + D̃1
j cj−q + D̃2

j cj−q−1 + Gj, (22)

where

D1
j =

∫ (q+1)T−τj

0
eAtdtB, D2

j =
∫ T

(q+1)T−τj

eAtdtB.

When the arbitrary time delay is considered, the follower’s states are dependent on
cj−q and cj−q−1. Similar to (8), the state can be extended to be

sj =
[
zj

T , cj−1
T , cj−2

T , · · · , cj−q−1
T
]
. (23)

Then, based on (22) and (23), the state transition function can be formulated as

sj+1 = sj F̃j + aj H̃j +
[

GT
j , 03×1

]
, (24)
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where

F̃j =



ET 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
(D̃1

j )
T 0 0 0 · · · 1

(D̃2
j )

T 0 0 0 · · · 0


, H̃j =


0

I3×3
0
...
0



T

.

The reward function can be defined as

rj = −
(

sj P̃sT
j + ajQaT

j

)
, (25)

where

P̃ =

[
P 06×(q+1)

0(q+1)×6 0(q+1)×(q+1)

]
.

Based on the above extension definitions of state, the state transition function and
reward function for arbitrary time delays, the proposed DIDDPG algorithm can be similarly
applied to address the UAV formation control problem with long and stochastic delays.

3.3.2. Computational Complexity Analysis

In the following, the computational complexity, typically described as the floating
point operations per second (FLOPS) of the training and validating processes for the
proposed DIDDPG algorithm is investigated. In fact, the operation, such as multiplication
and division, is regarded as a single FLOP. In the training process, the FLOPS can be
derived as the computation times in actor and critic networks. In the validating process,
only the main actor network needs to be considered because there is no replay buffer and
critic network.

The computational complexity of the training process can be deduced as [49]

vactivationui + 2×
M−1
∑

m=0
uactor

m uactor
m+1 + 2×

N−1
∑

n=0
ucritic

n ucritic
n+1

= O
(

M−1
∑

m=0
uactor

m uactor
m+1 +

N−1
∑

n=0
ucritic

n ucritic
n+1

)
,

(26)

where M and N are fully connected layers for the actor network and critic network, re-
spectively. ui means the unit number in the i-th layer, and vactivation determined by the
activation layer’s type such that vactivation = 1, vactivation = 4 and vactivation = 6 represent
the Relu layer, sigmoid layer and tanh layer, respectively.

During the validation process, only the main actor network exists. Then, the computa-
tional complexity for the validation process is given by

O

(
N−1

∑
n=0

ucritic
n ucritic

n+1

)
. (27)

In the proposed DIDDPG-based UAV formation algorithm, double fully connected
layers with 30 units and 1 units, respectively, are used to build the actor network, and Relu
and tanh layer are used as the activation layer. Double fully connected layers with 60 units
and 1 units, respectively, are used to build the critic network, and the Relu layer is used
as the activation layer. Based on (26) and (27), the computations of the actor network and
critic network are obtained as 756 and 900, respectively.

4. Simulation Results and Discussions

Numerical experiments are presented in this section to evaluate the performance of
DIDDPG algorithm. The flight data are designed based on real UAV flight data in [29,30].
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First, we show the effectiveness and convergence of the proposed DIDDPG algorithm. Then,
we compare proposed algorithm with existing algorithms for performance evaluation. Last,
it is verified that the proposed optimal policies are applicable to long arbitrary time delays.
As a case study, a typical 2D UAV formation with constant altitude is investigated.

In order to avoid collisions and improve the formation, the desired velocity and
headway (i.e., the relative distance between the leader and the follower) are often influenced
by each other. Typically, the expected headway needs to be adjusted in real time according
to the UAV velocity change, that is, the expected headway will become larger with the
increase in the desired UAV velocity. As an example for simulations, we set this relationship
as a typical sigmoid function as [50]

v(h) =


0, 0 <h < hmin

vmax
2 (1− cos(π h−hmin

hmax−hmin
)), hmin ≤ h ≤ hmax

vmax, h > hmax

(28)

where h denotes the headway, hmin and hmax represent the maximum and minimum head-
way, respectively, and vmax means the maximum velocity.

In the simulations, the system parameter settings are presented as in Table 1.

Table 1. Simulation parameter settings.

Symbol Description Setting

Sv Velocity space [0, 30] m/s

Sp Acceleration space [−5, 5] m/s2

K Mini-batch size 32

N Episode 260

M Time steps 200

la, lc Learning rates for actor and critic 0.001, 0.002

γ Discount factor 0.97

hmax Maximum headway 30

hmin Minimum headway 5

∆T Sampling interval 0.2 s

4.1. Performance Comparison of Convergence

The convergence of the proposed DIDDPG algorithm is evaluated and analyzed under
various reward function forms and learning rates, and time delay is uniform in [0, 0.2∆T].
In order to facilitate performance comparison, we take the following normalization measure
to the cumulative rewards as

ḠN =
GN − Gmin

Gmax − Gmin
, (29)

where Gmax and Gmin are the maximum and minimum cumulative rewards, respectively.
Figures 7 and 8 depicts the convergence of the proposed intelligent control algorithm

under different actor and critic learning rates when the reward function is quadratic. If the
learning rate is too small, the gradient descent could be slow, or the gradient descent may
overshoot the minimum value such that it will fail to converge or even diverge. Obviously,
in the case lc = 0.00002, the parameter update speed is slow, resulting in the inability to
quickly find a good descending direction. Thus, the suitable range of values of la and
lc when the reward function is quadratic is obtained. In Figure 9, the effects of three
types of reward functions under suitable learning rate values from Figures 7 and 8 on the
convergence performance of proposed algorithm are compared. It can be observed that the
learning process of the case of quadratic reward function is the fastest and most stable. It
indicates that, within suitable learning rates, the quadratic reward function consistently
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outperforms other forms and achieves the most benefit for the purposed intelligent control
algorithm because it is consistent with the cost function of the UAV formation.

Figure 7. Normalized reward comparison with different learning rates of actor.

Figure 8. Normalized reward comparison with different learning rates of critic.

Figure 9. Normalized reward comparison with different forms of reward function.

4.2. Performance Comparison of Different Scenarios

The velocity and headway tracking performance in the presence of different time
delays under different application scenarios are shown in Figures 10–12. In the simulations,
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three scenarios are considered, including harsh brake, stop-and-go and speed limit. These
three basic cases are covered by most application tasks, and the proposed algorithm
has good practicality if it can satisfy the control requirements in these three cases. The
simulation results show that the follower can track the desired states accurately by the
proposed algorithm. Figure 10 shows the case when the follower suddenly meets an
obstacle and needs to brake harshly, and the rapid velocity decline happens to represent
the harsh brake. It takes about 11 s for the follower to stop from 20 m/s. Figure 11 shows
the application scenario when UAV needs to stop and hover sometimes. For example,
the UAV-assisted wireless powered IoT network, where UAVs hover to visit IoT devices
and collect data, and the velocity variations are typically small. It can be seen that near 10 s,
the velocity reaches the desired value and the headway stops changing; although there is
a small error between the desired states, it is still within the acceptable range, and at 14 s
when the follower starts flying, it can quickly follow the desired state. Figure 12 shows
the case that UAV flights in restricted environments and the velocity change are limited.
What is more, the headway’s tendency over time is the same as that of velocity, which
is consistent with the relationship of the headway and velocity. The results show that
proposed intelligent algorithm could be applicable to either high- or low-velocity cases and
also could be used in large and small velocity variation conditions. In general, the proposed
algorithm can derive the control strategy satisfying the tracking assignment under the
above three common scenarios.

Figure 10. Harsh brake.

Figure 11. Stop-and-go.
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Figure 12. Speed limit.

4.3. Performance Comparison with Different Aspects

The performance comparisons with different time delays and existing algorithms are
shown in Figures 13 and 14, respectively.

In Figure 13, the time delay is set to be 0.2∆T, ∆T and 1.5∆T, and here the deter-
ministic time delay settings represent the three delay scenarios discussed in Section 3.3.1
to demonstrate the influence of time delays on the relative performance of the proposed
algorithm. Figure 13 shows that a larger time delay leads to more serious performance
degradation. For example, when the time delay τ=1.5∆T, the control strategy executed in
each sampling interval is the delayed control strategy but not the current control strategy,
thus causing the followers to react slower. Fortunately, the control performance still meets
the tracking requirement. It indicates that the proposed algorithm can effectively regulate
the follower to achieve the stable tracking under various time delays. When the time delay
τ=0.2∆T, the follower can keep close to the desired states all the time, which indicates that
the proposed algorithm can compensate for the effect of the time delay and improve the
control performance.

Figure 13. Velocity comparison with different delays.
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Figure 14. Velocity comparison with existing algorithms (Algorithm 1 in [39] and Algorithm 2 in [43]).

Figure 14 shows that our proposed algorithm has the quickest response and best
control performance compared with the existing works under the time-varying leader
velocity. In the simulations, the sampling interval is ∆T=0.2 s, the time delay is uniform in
[0, 0.2∆T], and the other system parameter settings are the same as those in Table 1. Actually,
the existing algorithm in [39] does not include the previous actions into the state, which
may lead to the insufficient utilization of the delay information. Therefore, although this
existing algorithm can reach the desired states, it still reacts more slowly. The existing
algorithm in [43] does not consider the latency information in the agent environment,
resulting in its performance being worse than the others.

5. Conclusions

UAV formation can be deployed in a multitude of surveillance scenarios. The leader–
follower approach can effectively improve the efficiency of the whole formation. Since the
desired velocity and time delay are dynamic due to different scenarios and the inherent
feature of wireless communications, it is taken into account in the optimization formation
problem in this paper. In order to compensate for the effect of time delay, a new MDP,
called DIMDP, is designed by including previous actions into the state and reward function,
and then the DIDDPG algorithm is proposed to solve the DIMDP of the UAV formation.
The reward function form is designed, dependent on the quadratic cost function relevant to
the objective of the optimization formation problem. After training, the intelligent control
strategy can be derived for the follower. The simulation experiments demonstrate that
the proposed intelligent controller can effectively alleviate the effects of time delays and is
applicable to high dynamic formation scenarios. Compared with existing DRL algorithms
with or without time delays, the proposed DIDDPG algorithm can achieve better control
convergence and stability. However, the proposed algorithm is designed based on the flight
data in the simulation according to the existing literature, and the lack of the real-world data
or realistic simulation environments needs to be addressed in future work. The cooperative
formation control system considered and designed in this paper aims to achieve control of
the entire formation by dividing it into individual units and realizing the tracking control
of each LF unit. However, at present, the construction of the multi-UAV cooperative control
system and the research on multi-objective control algorithms are gradually attracting
attention, and the multi-intelligent reinforcement learning algorithm can be studied in
the future.
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