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Abstract: Urban intersections are one of the most common sources of traffic congestion. Especially
for multiple intersections, an appropriate control method should be able to regulate the traffic flow
within the control area. The intersection signal-timing problem is crucial for ensuring efficient
traffic operations, with the key issues being the determination of a traffic model and the design of
an optimization algorithm. So, an optimization method for signalized intersections integrating a
multi-objective model and an NSGAIII-DAE algorithm is established in this paper. Firstly, the multi-
objective model is constructed including the usual signal control delay and traffic capacity indices.
In addition, the conflict delay caused by right-turning vehicles crossing straight-going non-motor
vehicles is considered and combined with the proposed algorithm, enabling the traffic model to better
balance the traffic efficiency of intersections without adding infrastructure. Secondly, to address the
challenges of diversity and convergence faced by the classic NSGA-III algorithm in solving traffic
models with high-dimensional search spaces, a denoising autoencoder (DAE) is adopted to learn
the compact representation of the original high-dimensional search space. Some genetic operations
are performed in the compressed space and then mapped back to the original search space through
the DAE. As a result, an appropriate balance between the local and global searching in an iteration
can be achieved. To validate the proposed method, numerical experiments were conducted using
actual traffic data from intersections in Jinzhou, China. The numerical results show that the signal
control delay and conflict delay are significantly reduced compared with the existing algorithm, and
the optimal reduction is 33.7% and 31.3%, respectively. The capacity value obtained by the proposed
method in this paper is lower than that of the compared algorithm, but it is also 11.5% higher than that
of the current scheme in this case. The comparisons and discussions demonstrate the effectiveness of
the proposed method designed for improving the efficiency of signalized intersections.

Keywords: intelligent transportation; signalized intersections; multi-objective optimization; NSGA-III;
denoising autoencoder

1. Introduction

With increasing population and vehicles, traffic congestion becomes more and more
serious in urban areas. Managing and mitigating traffic congestion is one of the great
challenges for urban management [1]. Mitigating the impact of traffic congestion is mainly
carried out from three aspects, namely, building more road infrastructure, promoting
alternative modes of transportation, and managing traffic flows. Building more road in-
frastructure can be limited by various factors, including environmental (e.g., inappropriate
terrain), economic (e.g., budget), and social factors, and promoting alternative modes of
transportation is mainly a public policy issue. By factoring connected autonomous vehicles
and unconnected human-driven vehicles, a number of platoon control techniques are pro-
posed in the literature [2,3], which can improve vehicular mobility and vehicle-to vehicle
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communication. In addition, effective traffic signal control can also better manage traffic
flows, which is an effective scientific and technological means to alleviate urban traffic
congestion at appropriate cost [4]. Thus, how to improve the traffic efficiency of urban
signalized intersections effectively has become increasingly important.

According to the current situation of urban traffic control systems, they can be divided
into fixed-time control, actuated control, and adaptive signal control systems [5]. At present,
most signalized intersections in developing countries such as China [6] and developed
countries such as the United States [7] are equipped with fixed-time controllers and semi-
actuated or actuated controllers. The aim of traffic control is to improve traffic efficiency.
One of the most common ways is to control the traffic lights at intersections. The design of
decision variables can be expressed as an optimization problem aiming at a traffic efficiency
index, also known as an intersection signal-timing problem (ISTP). In general, traditional
traffic signal control strategies based on mathematical approaches can provide many useful
ideas and new methods for applications [8]. However, mathematical approaches have
difficulties in providing solutions for ISTPs, which are generally complex and nonlinear.
Instead, computational intelligence (CI) methods have been proposed [9].

Various CI approaches have been proposed for traffic signal control schemes to solve
ISTPs. The key idea of CI is to simulate the intelligence of nature to a certain extent by using
computing methods, including artificial neural networks, fuzzy systems and evolutionary
computing (EC) algorithms. Each method is well developed and has many branches. In
addition, CI adopts approaches such as swarm intelligence [10], reinforcement learning [11],
game theory [12], etc. Each method is well developed and has many branches; we focus on
the application of EC algorithms to solve the ISTP.

The remainder of the paper is organized as follows. Section 2 presents a brief explana-
tion of related work. Section 3 describes the traffic environment of the study area and gives
the current timing of each intersection and its traffic flow survey values. In Section 4, the
ISTP is defined and formulated from basic symbols to optimization objectives. Section 5
introduces the basic principles of DAE and the specific ideas and steps for combining it
with NSGA-III. Section 6 describes the test verification and analysis of results in detail.
Finally, in Section 7, we summarize some highlighted points and the potential research
directions of this article.

2. Related Work

As mentioned earlier, the purpose of traffic signal optimization is to improve the
performance of traffic networks. Examples of optimization objectives include minimizing
the delay time, maximizing traffic capacity, minimizing exhaust emissions, and so on.
Rouphail et al. [13] employed a GA to optimize the traffic signal timing of nine intersections
in Chicago, USA. As far as the queue length is concerned, due to the slow convergence
behavior of GAs, further improvement can be made. Garcia et al. [14] proposed an opti-
mization method based on a PSO algorithm to find a successful timing scheme by adjusting
the initialization and decoding of individuals. The obtained solution makes the number of
vehicles arriving at a destination and the total travel time achieve a quantitative improve-
ment. In [15], a swarm intelligence algorithm called discrete harmony search was proposed
to minimize the total delay of a traffic network.

In addition, optimizing multiple objectives simultaneously has attracted researchers’
attention. For example, Jia et al. [16] formulated a multi-objective model based on per capita
delay, vehicle emissions, and intersection capacity. In their model, a PSO-based method
enhanced with a difference operator and dynamic relaxation strategy is presented, and the
effectiveness of the algorithm is verified by numerical experiments for a single intersection.
Similar studies are also available in [17]. For the ISTP, there are mutual conflicts among
the objectives to be optimized. To address this problem, multi-objective evolutionary
algorithms (MOEAs) have been proposed. In [18], in order to maximize the throughput
and minimize the average queuing rate at a single intersection with traffic oversaturation,
an NSGA-II algorithm was proposed to optimize traffic signal timing. However, since the
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classical control parameters, such as signal cycle and splits, are not used, the algorithm
is not easily applied in existing signal control systems. Zhang et al. optimized signal-
timing plans by considering the saturation flow of an intersection, which indicates the total
delay, traffic capacity, and emissions of a single intersection [19]. Under the framework of
an NSGA-III, a constraint strategy is embedded to obtain a better signal-timing scheme.
Li and Wang et al. [20] combined a GA algorithm with the Pareto criterion to optimize four
indicators and propose an algorithm to help users select and realize the optimal design
from the Pareto optimal solution set. The experimental results showed that the capacity,
delay, safety, and overflow effect of nine intersections were improved. Zhao et al. [21]
established a multi-objective signal-timing optimization model for average vehicle delay,
slow traffic delay, parking times, and traffic capacity. To solve the established model, the
Pareto dominance theory was integrated into a PSO algorithm. The experimental results
showed that several indicators were improved at a single intersection.

Although these models and methods focus on many aspects of intersection signal
control, some points can still be worth studying. First, it is reasonable to consider the
interests of motor vehicles for the optimization of signalized intersections, and it is also
worthwhile to design optimization objectives reasonably to minimize the impact on the
original objectives when considering the interests of non-motor vehicles. Second, in the
multi-objective models with multiple intersections, the dimensions of the decision variables
that need to be optimized are relatively high. Based on these two aspects, it is necessary to
study reasonable strategies to better solve the ISTP.

The issues outlined above call for novel research on traffic control models and MOEAs.
(1) Traditional signal control models (TRRL, ARRB, and HCM [22]) are still used as the basis
of modeling. The traffic efficiency indicators represented by these models can be adapted
to different traffic conditions [23]. On this basis, we can establish a reasonable target model
for the ISTP combined with the traffic environment of the studied area. (2) In recent years,
many MOEAs have been tailored to solve the various optimization problems in real-world
settings, e.g., network structure learning [24], reactive power dispatch [25], allocation
support funds [26], relief distribution [27], and so forth. In addition, an AutoML approach
using evolutionary algorithm has been proposed for EEG signal classification [28]. The [29],
the authors adopted a MOSA algorithm to improve the supply chain for personal protection
equipment during the COVID-19 pandemic. Also, an improved MOEA/D was proposed
for project portfolio optimization [30]. The [31], the authors present a well-designed coding
scheme and a problem-specific local search mechanism to improve the performance of
an MOEA/D. In 2020, to solve many objective problems, Zi-Min Gu et al. [32] improved
the ability of an NSGA-III by introducing a feedback model. In [33], two unsupervised
neural networks were used to approximate the Pareto-optimal subspace for large-scale
multi-objective optimization. In their work, the authors designed a support vector re-
gression predictor, which makes individuals better for adapting to the environment in a
dynamic multi-objective optimization problem [34]. These applications not only inherit
the original algorithm frameworks and advantages but also add new strategies, including
information from the newly generated individuals to solve the shortcomings of the original
algorithms. These previous results also indicate that a new MOEA algorithm based on
hybrid mechanisms can be effective. It is worth researchers’ attention to improve the search
effect of the algorithm by combining different components or strategies.

In this study, through the application of traffic flow theory and the improvement of a
non-dominated sorting genetic algorithm, the following methods have contributed to the
optimization at signalized intersections: (1) In [35,36], the intersection performance was
improved by adding infrastructure. Different to them, this article adds the conflict delay
between right-turning vehicles and straight-going non-motor vehicles at intersections as one
of the performance indicators to be optimized in a multi-objective model and quantitatively
analyzes its impact on the performance of intersections in the studied area. (2) The proposed
NSGAIII-DAE algorithm utilizes the ability of the NSGA-III framework [37] to deal with
the multiple objective problems and the feature extraction capabilities of the DAE [38]
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deep learning model and demonstrates their combination to solve the optimization of the
high-dimensional ISTP.

3. Study Scenario and Data Description

The data utilized in this study were collected from four signalized intersections in the
city of Jinzhou, Liaoning Province, China. In the city of Jinzhou, some roads are divided by
railways, so traffic congestion easily occurs on the main roads. Most intersections are not
equipped with dedicated right-turn phases, and vehicles are vulnerable to non-motor vehicles.

Intersections I1 and I3, respectively, represent the intersections of Yan’an Road, Renmin
Street, and Yunfei Street where the railway station is located. Intersections I2 and I4,
respectively, represent the intersections of Jiefang Road, Renmin Street, and Yunfei Street.
There are many commercial centers and government agencies near Jiefang Road (as shown
in Figure 1). The proportion of non-motor vehicle travel is also high because of the
continuous improvement of people’s awareness of green and low-carbon travel and the
investment in shared-travel electric vehicles in recent years, so the mixing of motor vehicles
and non-motor vehicles is serious. The traffic flow at these intersections is controlled and
regulated by fixed/pre-timed signals. Two types of data are mainly acquired, i.e., traffic
flow and signal cycle lengths, green splits, including the phasing sequence.
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Figure 1. The layout of the regional traffic network in Jinzhou (from Google Street Maps).

Table 1 shows the phasing scheme at four trunk intersections in the study area. I1 and I2
have four phases, I3 has six phases, and I4 has three phases. Taking phase 1 of intersection
I3 as an example, “E-St” indicates that the east entrance is allowed to go straight during this
phase. The traffic flow of the four trunk intersections is shown in Table 2. Motor vehicles in
Table 2 mainly include cars, buses, and trucks, and non-motor vehicles mainly refer to electric
motorcycles and bicycles. The saturation flow rate of vehicles is 300 veh/h in this study.

Table 1. Current configuration of phase sequences at trunk intersections I1–I4.

Phase Sequence

1 2 3 4 5 6

I1, I2 E 1&W 2-ST 3 E&W-L 4 S&N-ST S&N-L --- ---
I3 E-ST W-ST W-R 5 W-L S&N-ST S&N-L
I4 E&W-ST E&W-L S&N-ST --- --- ---

1 east; 2 west; 3 straight; 4 left; 5 right.
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Table 2. Investigation of the traffic flow at trunk intersections I1–I4.

No

Motor Vehicle Flow
(veh/15 min)

Non-Motor Vehicle Flow
(veh/15 min)

East West South North East West South North

I1

straight 88 113 104 157 55 28 210 142
left 24 4 57 127 7 10 16 20

right 128 28 11 23 75 20 17 15

I2

straight 121 128 142 155 46 80 114 137
left 101 55 63 60 18 35 78 49

right 27 59 16 27 32 69 26 22

I3

straight 53 78 105 154 48 33 140 243
left 32 69 25 73 46 37 13 59

right 63 47 5 38 64 16 1 60

I4

straight 130 170 164 123 85 77 154 158
left 37 45 59 29 21 16 28 43

right 16 17 6 19 15 7 15 13

4. Definition and Formulation of the ISTP

Different optimization objectives can be adopted for the different actual requirements
of the ISTP. Delay and capacity are the two most important criteria used for determining
performance and the level of service of signalized intersections. Our scheme additionally
considers the conflict delay between right-turning vehicles and straight-going non-motor
vehicles because the traffic environment of Jinzhou City has the actual characteristics of the
mixed traffic of motor vehicles and non-motor vehicles, and there is no right-turn phase set
at intersections, in addition to the traffic capacity and signal control delay. To simplify the
technical discussions, some key notations in the ISTP formulation are listed in Table 3.

Table 3. Notations used in the intersection signal-timing problem.

Notation Meaning

i phase index at intersections, i = 1, 2, · · · , M;
j approach index at intersections, j = 1, 2, · · · , L;

(k) intersection index, k = 1, 2, · · · , N;
Dv the total vehicle delay in a signal cycle;

c(k) the signal cycle of the kth intersection;
gi(k) the effective green time of the ith phase;
qij(k) the motor traffic volume of the jth approach at the ith phase;

qij_sn(k)
the traffic volume of straight non-motor vehicles at the jth approach of the

ith phase;
Sij(k) the lane saturation flow of the jth lane at the ith phase;
xij(k) the traffic saturation of the jth lane at the ith phase;

u The safe time interval, and the value here is 5 s;

nqueue
The number of vehicles in a motor vehicle fleet that can be accommodated in

a right-turn lane.

u0
The minimum headway of a right-turning vehicle passing the conflict point,

which is 2 s;

bij(k)
The duration of the random dissipation process of the jth approach of the ith

phase, bij(k) = gi(k)/3;

aij(k)
The duration of the centralized dissipation process of the jth approach of the

ith phase, aij(k) = gi(k)/5.
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• Vehicle control delay at signalized intersections

Here, the total average delay of vehicles is taken as the optimization objective of the
trunk intersection, which can be written as follows:

Dv =
N

∑
k

M

∑
i

Vi(k)Di(k) (1)

where N is the maximum number of intersections, M is the maximum of phases at the
intersection, Vi(k) is the traffic volume of all lanes in the ith phase at the kth intersection,
and Di(k) is the vehicle delay in the ith phase at the kth intersection. An ARRB model is a
delay model of a signalized intersection suitable for variable demand conditions [39].Di(k)
can be written as a function of c(k), Sij(k), xij(k), and gi(k). For more details, including
constraints, please refer to [16].

• Conflict delay of right-turning vehicles

The dissipation process of non-motor vehicles gathered at an intersection after the
signal light is released includes centralized dissipation and random dissipation. The
crossing interval of right-turning motor vehicles appears randomly in the process of random
dissipation, and right-turning vehicles can cross randomly, while there is almost no crossing
interval in the process of centralized dissipation. At common signalized intersections,
the arrival distribution of vehicles and non-motor vehicles generally follows a Poisson
distribution, and the headway between non-motor vehicles follows a negative exponential
distribution [40,41]. The total delay of right-turning vehicles crossing the straight-going
non-motor vehicle flow at an intersection is expressed as follows:

Dv_right =
N

∑
k

M

∑
i

L

∑
j



(
1− e−λij(k)u0

)(
βij(k)bij(k) + βij(k)aij(k)

)
λij(k)e

−λij(k)u
(

1− e−λij(k)nqueueu0
) +

βij(k)aij(k)
2

2
− u0

(
βij(k)bij(k) + βij(k)aij(k)

)

 (2)

λij(k) = qij_sn(k)
e−qij_sn(k)u/900

900
(3)

βij(k) = qij_r(k)
e−qij_r(k)u/900

900
(4)

where λij(k) and βij(k) are the average arrival rates of the non-motor vehicles and right-
turning motor vehicles, respectively. qij_r(k) is the traffic flow of right-turning vehicles at
the jth entrance in the ith phase.

• Traffic capacity

The traffic capacity of a signalized intersection is estimated according to each entrance
lane of the intersection. The capacity of an entrance lane in one direction is the sum of the
capacity of each lane of the entrance lane. The capacity of an entrance lane is multiplied by
the green signal ratio of its signal phase based on the saturation flow rate of the lane. The
total capacity of multiple intersections is expressed as follows:

CAPvehicle =
N

∑
k

M

∑
i

L

∑
j

Sij(k)
(

gi(k)
c(k)

)
(5)

where CAPvehicle refers to the capacity of motor vehicles.
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• Construction of the optimization objective model

The purpose of traffic control is to improve traffic efficiency. Generally, the traffic
capacity and motor vehicle delay under signal control should be considered. According
to the characteristics of the traffic environment in the studied intersection area, the delay
caused by the conflict between the right-turning vehicle and straight-going non-motor
vehicle flow is also considered. Our ISTP can be expressed by a mathematical formula as
follows:

f (X) = min
[
−CAPvehicle(X), Dv(X), Dv_right(X)

]
(6)

where the decision vector X is composed of the decision vectors of each intersection, specifi-
cally written as X = (X1, · · · , Xk, · · · , XN), where Xk represents the decision vector of inter-
section k. The specific elements of the decision vector of each intersection refer to the green
time and signal cycle of the intersection, which are recorded as Xk = (g1(k), · · · , gL(k), c(k)).
CAPvehicle(X) is the total traffic capacity; Dv(X) refers to the delay of motor vehicles under
the control of traffic lights. Due to the large non-motor vehicle traffic flow in the study
area, Dv_right(X) represents the delay of right-turning vehicles caused by straight-going
non-motor vehicles. In the following sections of this article, it is referred to as the conflict
delay. The negative expression symbol before CAPvehicle(X) does not mean that the value
of CAPvehicle(X) is negative but indicates the Pareto relationship between CAPvehicle(X)
and the other two goals.

5. Methodology

The NSGA-III algorithm is an advanced algorithm based on Pareto dominance and
has shown good performance in multi-objective optimization problems. It uses the gener-
ated reference point information and niche technology to select a new parent population,
which improves the selection pressure of the Pareto dominance relationship. However,
when adopted in an ISTP, it faces a high-dimensional search space, and its optimization
performance still has some room for further improvement. In order to solve the problems
of feature extraction, large-scale calculation, slow function proficiency, and easy-to-fall-into
local optimization, Hinton et al. proposed the training strategy of deep learning [42], and
then some scholars proposed a denoising autoencoder (DAE) [38]. The main idea of the
proposed NSGAIII-DAE algorithm is to train the deep learning network DAE using high-
dimensional populations generated during the iteration process of the NSGAIII framework.
Then, the trained DAE can be used to treat the Pareto solutions in low-dimensional space
as a compact representation or approximation of the Pareto solutions in high-dimensional
space. Next, there are two subsections. Firstly, the basic principles of the AE and DAE deep
neural network models are explained. Secondly, the detailed steps for embedding the DAE
deep neural networks in the NSGA-III are demonstrated.

5.1. General Denoising Autoencoder

A single automatic encoder (AE) is usually the basic structure of a deep artificial
neural network for unsupervised feature extraction [43]. The DAE is a variant of an AE.
The robustness is enhanced by adding noise with a specific distribution to the original
input data. The DAE’s main structure is shown in Figure 2; it is a three-layer network
model in structure. The network parameters between the input layer and the hidden layer
are regarded as encoding operations, and the network parameters between the hidden
layer and the output layer are decoding operations. XN = {x1, x2, · · · , xN} represents the
original data vector, and AE directly takes XN as the input of the model. The idea of the
DAE is to add a noise signal to the original data XN , and then take the generated noisy data
X∗N as the input of the model. CM represents the hidden-layer vector, and ZN represents
the output-layer vector. The output target of the DAE is equal to the original input data XN ,
thus forming an ‘XN-CM-ZN ’-type neural network. Once the output ZN successfully copies
the original data, it indicates that CM contains most of the information of the original data.
The training process is represented by the following four steps:
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Step 1: Add noise to input vector XN to obtain X∗N . Generally, the types of noise added
to a DAE are Gaussian noise, random noise, and mask noise. In this paper, random noise is
used, which is expressed as follows:

X∗N = q(XN) (7)

where q is a random mapping.
Step 2: Encoding from the input layer to the hidden layer. The function of the encoding

operation of the DAE is to extract the intermediate feature CM from the noise-added data
X∗N , and the value of each node cj is calculated as follows:

cj = σ

(
aj +

N

∑
i=1

x∗i ωij

)
(8)

where aj represents the bias of the jth neuron of the hidden layer, x∗i is the ith element
of X∗N , and ωij represents the weight from the ith neuron of the input layer to the jth
neuron of the hidden layer. σ refers to the activation function, and the specific formula is
σ(x) = 1/(1 + exp(−x)).

Step 3: Decoding operation from the hidden layer to the output layer. This operation
uses the input data XN as the target output and decodes the intermediate feature to obtain
the reconstructed data ZN , and the value of each node Zi is expressed as follows:

zi = σ

(
bi +

M

∑
j=1

cjω
′
ji

)
(9)

where bi represents the bias of the ith neuron of the output layer, cj is output value of the
jth neuron in the hidden layer, and ω′ji represents the weight form the jth neuron in the
hidden layer to the ith neuron of the output layer.

Step 4: Minimize the error between the input and reconstruction. The ultimate goal of
training is to minimize the input XN and the reconstruction result ZN after encoding and
decoding operations:

LDAE =
1
S

(
S

∑
s=1
‖XN − ZN‖

)
(10)

where LDAE represents the error between all reconstructed ZN and the original data XN in
the sample set, and S is the number of sample sets.
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5.2. Improving the NSGA-III Algorithm Embedded with a DAE

Here, we describe in detail how the DAE is combined with the NSGA-III and explain
the workflow of the NSGAIII-DAE algorithm. The main processing flow of the NSGAIII-
DAE is shown in Figure 3, and the main steps are detailed as follows:

Step 1: Initialize population. NSGA-III is a genetic algorithm based on reference points.
The initialization process includes generating a set of reference points, randomly initializing
the population Pt with size Np, and initializing the ideal points. The reference points are
predefined according to Das [44]. t is the times of iterations, and Pt is the population
generated by the tth iteration. When t = 0, Pt is referred to as the initial population.

Step 2: Train the DAE model. To make the DAE (as shown in Figure 2) compactly
represent the decision variables XN or ZN of higher dimensions, the number of neurons
(marked as M in Figure 2) in the hidden layer shall be set according to Formula 10, and
its value shall be less than the number of neurons in the other two layers (marked as N in
Figure 2). After using Pt to train the DAE model by a gradient descent method, the model
can encode data XN into CN and then decode it into ZN about equal to XN .

Step 3: Generate offspring population ZN1 and ZN2. First, we need to randomly select
two vectors each time from the current population Pt (two individuals randomly selected
from Np individuals were marked as XN1 and XN2). The original NSGA-III algorithm
generates the offspring population by using a crossover operator and mutation operator on
the individuals in the parent population Pt. At this time, each operation is directly carried
out in the N dimensional space where the input vector is located. Whether each offspring
solution is generated in the Pareto optimal subspace (dimension is M) or the original search
space (dimension is N) can be determined by parameter η.

If η is greater than the random value of the [0, 1] interval, the offspring solution is
generated in the Pareto optimal subspace. Specifically, the individuals XN1 and XN2 of the
parent generation are compactly expressed as CN1 and CN2 according to Formula (8), and
the crossover and mutation operations are performed to generate Cmut

N1 and Cmut
N2 , which are

decoded according to Formula (9) to restore the individuals ZN1 and ZN2 in the original N
dimensional space. Otherwise, the descendant solution will be generated in the original
search space without using the DAE. The vectors XN1 and XN2 in the current population
Pt directly cross and mutate in the original N dimensional space to generate ZN1 and ZN2.

Step 4: New generation population Pt+1 is obtained. The current population Pt is
updated by merging Pt with the offspring individuals ZN1 and ZN2 generated in each
iteration. After all iterations are completed, the population, after removing the duplicate
individuals in the population Pt, is recorded as Ut. In order to obtain the next generation
population Pt+1, we first need to perform non-dominated sorting on Ut and divide Ut into n
different non-dominated ranks (F1, F2, . . . , Fl, . . . , Fn). From F1, we move a non-dominated
level to the population St until |St| ≥ Np (|St| represents the number of individual
solutions of the population). Suppose the level at this movement is Fl, then St = (F1∪F2∪
. . . ∪Fl). Then, it is necessary to observe whether |St| is equal to Np. If so, St directly
acts as the next-generation population Pt+1. Otherwise, we select (Np-|F1∪F2∪ . . . ∪Fl-1|)
individuals from Fl and merge them with (F1∪F2∪ . . . ∪Fl-1) to form Pt+1. The population
size is still Np.

Step 5: Update rules of hyper parameters related to the generation of offspring indi-
viduals. In the NSGAIII-DAE, there are two parameters related to the offspring, namely,
the ratio η of the offspring solution generated in the Pareto optimal subspace and the size K
of the hidden layer. Intuitively, parameter η should be adjusted dynamically and updated
iteratively in the following way:

ηt+1 = 0.5×
(

ηt +
n1t

n2t

)
(11)

where ηt represents the value of η at generation t, η0 = 0.5, and n1t and n2t represent
the number of successful subsolutions generated in the Pareto optimal subspace and the
original search space of generation t, respectively. A successful offspring individual should
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be more likely to survive to the next generation. Therefore, the ratio (n1t/n2t) and ηt are
added together to reflect the effectiveness of generating offspring individuals in the Pareto
optimal subspace.

As for the hidden-layer size K, it should decrease with the population convergence to
better balance exploration and exploitation. The K value is determined as follows:

K = N −
[

2N
3
· t

tmax

]
(12)

where tmax is the maximum number of iterations, and [ ] is the rounding function.
Step 6: Determine whether the termination condition is met. For specific details, please

refer to Deb’s literature [37]. If the termination condition is not satisfied, then t = t + 1, and
we repeat Step 2. If it is satisfied, we output the final population.
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6. Test Verification and Analysis of Results

As mentioned above, we have developed an evolutionary multi-objective algorithm,
referred to as NSGAIII-DAE, which aims to find better traffic efficiency indicator values
for an ISTP with high-dimensional decision variables. To verify the effectiveness of our
method, the proposed algorithm and the designed optimization model are applied to
four signalized intersections in the main urban area of Jinzhou City, China. Its layout is
shown in Figure 1. The specific phase configuration of each intersection is shown in Table 1.
The investigated traffic flow at intersections including motor vehicles and non-motor
vehicles is shown in Table 2. In this paper, the ISTP (see Formula (6)) for these intersections
is modeled as a multi-objective optimization problem. It mainly involves a signal control
delay model, conflict delay model and traffic capacity model (see Formulas (1), (2), and (5),
respectively). It is considered that there is no dedicated right-turn phase in our case
study. Conflict delays due to conflicts between right-turning motor vehicles and non-motor
vehicles going straight are common in the areas studied. Our ISTP considers this situation
through Formula (2) discussed in Section 4. In addition, the decision variable dimensions
in our ISTP are relatively high, with 21 dimensions. To this end, improvement ideas were
discussed in Section 5.2, and the NSGAIII-DAE algorithm was proposed. In this section,
numerical experiments are carried out from the following aspects to verify the performance
of the proposed method. The optimization method was developed and solved in MATLAB
(version R2020a). The experimental comparison and discussion conducted in this section
are presented in the form of tables and charts.
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• Analysis of Pareto solutions

The proposed NSGAIII-DAE algorithm learns the feature compression of solutions in
high-dimensional spaces through a DAE, which enables the NSGA-III to perform genetic
operations in low-dimensional spaces and then map back to high-dimensional spaces.
By reducing the dimensions of the search space during the iteration process, the goal of
improving performance is achieved. In order to verify the effectiveness of the NSGA-III
algorithm embedded with a DAE, it is necessary to compare and analyze the Pareto solutions
obtained by the proposed NSGAIII-DAE algorithm and the classical NSGA-III algorithm.

In order to make a comparison, it is usually necessary to consider the determination
of the appropriate population size and the number of iterations. For a 4-dimensional
multi-objective problem at a single intersection [16], the authors set the population size
to 50 and 100 and the number of iterations to 50 and 100 to test the proposed algorithm.
In addition, a population number of 50 and an iteration number of 300 has been set up to
solve the timing problem of adjacent intersections [45]. Considering the dimensions of the
ISTP model, we set the population size to 50 and 100 and the number of iterations to 1000.
The Pareto solutions obtained at the 1000th iteration before and after the introduction of the
DAE are shown in Figures 4 and 5, respectively. To facilitate the visual observation of the
Pareto solutions involving three objectives obtained by the two algorithms, Figures 4 and 5
each have three subgraphs, each displaying the values of each of the two performance
indicators. In Figure 5, to further demonstrate the improvement in the algorithm with
the number of iterations, the Pareto solutions obtained at the 50th and 200th iteration
are also shown. In Figure 5, when the number of iterations is 50 and 200, it is easy to
observe that the dots obtained after introducing the DAE are closer to the ideal points in its
subgraphs, indicating that the performance of proposed NSGAIII-DAE algorithm is better.
Based on the previous work on hyperparameter settings, we will continue to pay detailed
attention to the performance of the algorithm at the 1000th iteration in Figures 4 and 5. The
explanations related to Figure 5, unless otherwise specified, refer to the situation at the
1000th iteration.

Considering that the convergence and diversity of the algorithm are quantitatively de-
scribed in combination with Figures 4 and 5, we adopt the Hyperarea (abbreviated as H) [46]
and Pareto Spread (abbreviated as Di) [47] as the performance indicators. Hyperarea (H)
is a convergence indicator and Pareto Spread (Di) is a diversity indicator. Let vi be the
non-dominant solution point in NDSknown, and ai represent the high-dimensional space
formed by the ideal point and vi. NDSknown represents the obtained approximate Pareto
solution set, and Di represents the spread of the approximate Pareto solution set over the
ith object space. H and Di can be explained as follows:

H =

{
∪
i
ai|vi ∈ NDSknown

}
(13)

Di =
∣∣∣max|NDSknown |

k=1 fi(xk)−min|NDSknown |
k=1 fi(xk)

∣∣∣ (14)

For example, as shown in Figure 4a, the signal control delay values of all individual
solutions obtained by the NSGAIII-DAE are better than those of the NSGA-III. Observing
the traffic capacity indicator values in Figure 4a,c, although the proposed NSGAIII-DAE
obtains a certain proportion of smaller traffic capacity values, the distribution range of
capacity values is wider than that of the NSGA-III. Figure 4b shows the Pareto solutions of
two delay performance indices. Except for a few red dots on the right side, the values of
the two delay indicators corresponding to the vast majority of solutions obtained by the
proposed NSGAIII-DAE are significantly better than those of the NSGA-III.
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vs. signal control delay; (b) signal control delay vs. conflict delay; (c) conflict delay vs. traffic capacity.

Figure 5 shows the Pareto solutions of the performance index values obtained by the
two algorithms when the population size is 100. From each subgraph in Figure 5, it can be
intuitively observed that the dots of the NSGA-III are more concentrated than those of the
NSGAIII-DAE. However, for Figure 5a,b, at least some of the red dots are closer to the ideal
point than all the blue dots. As shown in Figure 5c, the solutions obtained by the NSGA-III
with better quality are almost surrounded by the solutions of the NSGAIII-DAE, but at the
same time, it is obvious that some red points are closer to the ideal points.
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Figure 5. Pareto solutions between three objectives obtained with a 100 population size at tth
iterations: (a) traffic capacity vs. signal control delay; (b) signal control delay vs. conflict delay;
(c) conflict delay vs. traffic capacity.

In summary, it can be seen that the proposed NSGAIII-DAE has a more significant
improvement in convergence or diversity compared to the NSGA-III. Figures 4 and 5
provide an intuitive defense of this, and Table 4 provides a quantitative defense of this.
Rows 2 to 7 of Table 4 list the D-values of the non-dominated solutions obtained before and
after the introduction of the DAE by the NSGAIII (calculated according to Formula (14)).
For the same optimization objective, the larger the pair of D-values to be compared, the
wider the distribution range of the Pareto solution set on the objective. The last two columns
of Table 4 list the H-value (calculated according to Formula (13)) of the non-dominated
solution set obtained before and after the introduction of the DAE by the NSGAIII. The
smaller the value is, the better the convergence performance is. In Table 4, most of the H
values and all the D values show that the NSGAIII performs better after the introduction of
the DAE. These values indicate that after introducing the DAE, populations of the same
size can explore more promising spaces, which is conducive to better solving our ISTP.

Table 4. The H - and D -values of the NDSknown shown in each subgraph of Figures 4 and 5. The best
results in each of the two rows to be compared are bolded.

H or D Figure 4a Figure 4b Figure 4c Figure 5a Figure 5b Figure 5c

DNSGA−I I I (delay 1) 198.54 × × 465.62 × ×
DNSGAII I−DAE (delay 1) 842.17 × × 924.94 × ×

DNSGA−I I I (Capacity) 166.27 × × 618.34 × ×
DNSGAII I−DAE (Capacity) 1049.28 × × 1388.86 × ×

DNSGA−I I I (delay 2) × 4.701 × × 18.765 ×
DNSGAII I−DAE (delay 2) × 15.223 × × 30.851 ×

HNSGA−I I I 5.231 × 105 3.390 × 104 4.798 × 103 9.347 × 105 1.043 × 104 9.003 × 103

HNSGAII I−DAE 3.008 × 105 4.732 × 103 4.270 × 103 5.601 × 105 7.451 × 103 1.228 × 104

1 signal control delay; 2 conflict delay; ‘×’ indicates a value that does not need to be repeated, so it is not repeated here.

• Influence of the conflict delay

Based on the characteristics of the traffic environment in the studied area, this ar-
ticle not only considers the signal control delay and the traffic capacity as optimization
objectives but also includes the conflict delay based on the traffic flow of right-turning
vehicles and straight-going non-motor vehicles. In order to test the impact of introduc-
ing conflict delay as an optimization objective in our ISTP on the overall performance
indicator of intersections, experiments were designed, and the results were recorded, as
shown in Table 5. The third column in Table 5 provides the performance indicator value
corresponding to the current scheme. The fourth and fifth columns are the corresponding
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performance indicator values obtained after the algorithm optimization proposed in this
article, and their results are significantly better than the current scheme. The difference is
that for intersection I1, the fourth column uses the corresponding real traffic flow in Table 2,
which is recorded as ‘actual’ in Table 5. The fifth column assumes that the traffic flow of
straight-going non-motor vehicles and right-turning vehicles at intersection I1 has doubled
and is recorded as ‘assumed’ in Table 5.

Table 5. Details of the results of a case study on a sudden change in traffic at intersection I1.

PI 4 Current Scheme
The Proposed Method

Actual Assumed

delay 1 525.95 180.13 244.10
I1 capacity 524.00 704.00 400.00

delay 2 5.48 2.14 0.93

delay 1 471.54 263.24 214.94
I2 capacity 528.00 400.00 760.00

delay 2 3.5900 0.61 0.61

delay 1 379.14 160.78 209.09
I3 capacity 756.25 1015.00 515.00

delay 2 4.59 0.47 0.98

delay 1 393.08 214.38 135.75
I4 capacity 493.42 300 890.00

delay 2 4.24 0.32 3.26

delay 1 1769.71 818.53 803.88
Itotal

3 capacity 2301.67 2419.00 2565.00
delay 2 17.9 3.54 5.78

1 signal control delay; 2 conflict delay; 3 represents the four intersections within the area as a whole; 4 perfor-
mance index.

In addition to the two total delay and capacity results, the absolute percentage ratio
(APR) of the results for the intersection where a sudden change in traffic occurred was also
calculated in both cases. The formula for calculating APR is as follows:

APRkm =
Akm

Totalkm
× 100% (15)

when k is taken as 1 or 2, it represents the corresponding ‘actual’ and ‘assumed’ cases.
Take m as 1, 2, and 3 to represent the signal control delay value, traffic capacity value, and
conflict delay value, respectively. Totalkm represents the absolute value of the mth indicator
for all intersections under scenario k, while Akm is the absolute value of the subintersection
with sudden flow changes. For the ‘actual’ case, the ratios of the various indicator values
of I1 to their total are 22.01% (APR11), 29.10% (APR12), and 60.45% (APR13), respectively.
In the case of “assumed”, the proportions of various indicators of I1 are 30.37% (APR21),
15.59% (APR22), and 16.09% (APR23), respectively.

Next, compare the changes in the APR values of the three indicators under the ‘actual’
and ‘assumed’ cases. Taking the delay1 of intersection I1 as an example, the APR value
increased by 8.36%. Similarly, it can be seen that the APR value of capacity decreased
by 13.51%, and the APR value of delay2 decreased by 44.36%. This indicates that when
there is a significant increase in conflict delay at intersection I1, by reducing the delay1

indicator value by 8.35%, the capacity indicator by 13.53%, and the delay2 indicator by
43.41%, the overall performance of the intersections (ITotal) in the region remains basically
unchanged. In order to quantify the credibility of the experimental results, we conducted
16 experiments as described in Table 5. Figure 6 shows a columnar representation of the
average change in APR values obtained from these 16 experiments with sudden changes in
traffic flow and displays the 95% confidence intervals for the change in APR values of each
of the three indicators, as shown in the blue line segment in Figure 6. These can help us
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reach the following conclusion: when there is a significant increasing trend of conflict delay
at a certain intersection, the results obtained by our strategy increase the control delay of
the intersection by about −0.97% to 7.31%, reduce traffic capacity by 1.84% to 15.43%, and
increase conflict delay by 20.36% to 51.83%, keeping the overall performance index values
of the four intersections basically unchanged.
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Figure 6. The average value and confidence interval of the APR before and after a sudden change in
traffic volume at a single intersection. ‘delay1’ means signal control delay; ‘delay2’ means conflict delay.

• Comparison of performance indices with another algorithm

In this subsection, in order to test whether the NSGAIII-DAE is competitive in solving the
ISTP, we compare the proposed algorithm with an existing algorithm. The HCNSGA-III [19]
is a method to improve the NSGA-III by using a constraint processing strategy. Therefore,
it is relatively reasonable to compare the proposed algorithm with the HCNSGA-III. In
Table 6, the signal control delay, traffic capacity, and conflict delay of the intersections are
listed, and the HCNSGA-III is verified and compared with the proposed NSGAIII-DAE.
In addition to the two total delay and capacity results, the relative percentage deviation
(RPD) between the performance index values obtained from each algorithm to be compared
and the values obtained from the current scheme (CS) was calculated. The formula for
calculating RPD is as follows:

RPD(k) =
Rk − RCS

RCS
× 100% (16)

where RCS is the result of the fixed signal timing currently in use, and Rk is the result from
the kth algorithm to be compared. Regarding the results, a better delay value corresponds
to a smaller RPD value, while a better capacity value, corresponds to a larger RPD value.

Table 6 shows the optimal and average values obtained by the two algorithms,
HCNSGA-III and NSGAIII-DAE, for the three optimization objectives of the ISTP and
the corresponding RDP values. The bold font represents where the algorithm has the best
result on the corresponding index. It can be seen from Table 6 that compared with the
CS, the RPD value of the optimal value and average value of the NSGAIII-DAE method
has an increase of 56.1% and 53.3%, respectively, in signal control delay, and an increase
of 88.3% and 76.2%, respectively, in conflict delay, which is significantly better than the
HCNSGA-III method. For the capacity index, compared to the CS method, its optimal
value has also increased by 11.5%, and the average situation may reduce the capacity by
0.4%. However, the HCNSGA-III performs best in the capacity index. Through the analysis
of the numerical results in Table 6, it can be concluded that the strategy proposed in this
paper can significantly improve the signal control delay and conflict delay compared to the
current scheme, while at least not reducing the traffic capacity.
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Table 6. Comparisons of the HCNSGA-III and NSGAIII-DAE on three objectives.

PI 3 CS HCNSGA-III NSGAIII-DAE RPD(%)
HCNSGA-III

RPD(%)
NSGAIII-DAE

Opt Ave Opt Ave Opt Ave Opt Ave

delay 1 1769.7 1372.7 1889.2 776.2 826.3 −22.4 6.8 −56.1 −53.3
capacity 2301.7 2998.7 2698.9 2566.8 2292.8 30.3 17.3 11.5 −0.4
delay 2 17.9 7.7 13.7 2.1 4.26 −57.0 −23.5 −88.3 −76.2

1 signal control delay; 2 conflict delay; 3 performance index.

To further verify the effectiveness of the proposed algorithm, Figure 7 presents more
illustrative graphs for the H- and D-values obtained by the HCNSGA-III and NSGAIII-DAE
algorithms under several different iterations. In addition to the 500th iteration in Figure 7a,
it can be seen that the whole H-value of the proposed algorithm is smaller compared to the
others. Similarly, it can be observed from Figure 7b that the D-value of the algorithm in this
paper is relatively larger, except for in the 500th iteration case. Overall, for the evaluation
indicators mentioned in Figure 7, the proposed NSGAIII-DAE also exhibits better diversity
and convergence compared to the HCNSGA-III. Thus, it is evident from the results of the
current study that the proposed algorithm is more capable of solving the ISTP.
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HCNSGA-III and NSGAIII-DAE algorithms at the 50th, 200th, 500th, and 1000th iterations.

7. Conclusions

This article studies the multi-objective optimization problem of signalized intersections
and establishes a mathematical model for the ISTP based on the traffic environment of
the studied area. In the proposed model, in addition to the usual signal control delay and
traffic capacity, the conflict delay is specially considered as an optimization objective. An
effective evolutionary algorithm based on the NSGA-III has been proposed to handle this
high-dimensional model. In response to the challenges of diversity and convergence faced
by the NSGA-III algorithm in solving the model presented in this paper, a DAE model is
adopted to learn the high-dimensional space features for a dimensionality-reduction search.
The algorithm was tested through actual cases, and the results showed that the proposed
algorithm can obtain a better Pareto solution for the optimization objective within the
reasonable number of iterations considered. In addition, the effectiveness of this algorithm
was verified by comparison with the recent HCNSGA-III. In this work, the application
of the proposed method will significantly improve the traffic conditions of urban road
intersections. The combination of conflict delay issues and traffic control strategies can
provide technical support for improving the service level of the entire road traffic system
and promoting the flow regulation capacity of urban traffic.

Although the developed method exhibits good potential, there are still some limita-
tions. In terms of the algorithm itself, we will try to apply the DAE model to the other



Sensors 2023, 23, 6303 17 of 19

improved MOEAs, and further study the effect of the model on a series of MOEAs. In
practical traffic engineering applications, it may be necessary to use prior traffic information
to reduce the search space for high-dimensional decision variables and combine traffic
knowledge to study and determine the reasonable timing parameters. In addition, for
further application in a vehicle–road collaborative environment and wider control range,
using a distributed model based on edge intelligence [48] and a lightweight model based
on a knowledge distillation framework [49] to design traffic signal control methods may be
very promising. All of these are directions for our future efforts.
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