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Abstract: Over the past decade, deep learning (DL) has been applied in a large number of optical
sensors applications. DL algorithms can improve the accuracy and reduce the noise level in optical
sensors. Optical sensors are considered as a promising technology for modern intelligent sensing
platforms. These sensors are widely used in process monitoring, quality prediction, pollution,
defence, security, and many other applications. However, they suffer major challenges such as the
large generated datasets and low processing speeds for these data, including the high cost of these
sensors. These challenges can be mitigated by integrating DL systems with optical sensor technologies.
This paper presents recent studies integrating DL algorithms with optical sensor applications. This
paper also highlights several directions for DL algorithms that promise a considerable impact on
use for optical sensor applications. Moreover, this study provides new directions for the future
development of related research.

Keywords: deep learning; optical sensors; deep neural network; convolutional neural network;
autoencoders

1. Introduction

Modern digital development is the combination of sensors (hardware) and artificial
intelligence (AI) (software) to perform intelligent tasks, now a key component in machine
learning (ML). ML, a branch of AI, has a significant impact on optical sensors. This
new model takes a data-driven approach without focusing on the underlying physics
of the design. It also brings forth new advancements to conventional design tools and
opens up numerous opportunities. Sensing has a significant impact on a broad range
of scientific and engineering problems [1–3]. There are many types of sensors, one of
them being optical sensors. Optical sensors have many useful features, including their
light-weight, low-cost, small size, flexible deployment, and ability to operate at high
pressures [4], high/low temperatures [5,6], and in high electromagnetic fields [7] without a
reduction in their performance. Due to these advantages, optical sensors have been used in
many applications such as intrusion detection [8], the monitoring of railways and general
transport [9], pipelines [10], and bridge structures [11]. They also are used in the detection
and localization of seismic events [12], human event recognition [13], healthy tasks [14],
building structure [15], and landslide detection [16].

The use of multiple sensors generates huge raw datasets, causing serious challenges
in processing and managing the data. Furthermore, conventional processing techniques
in traditional sensing devices are not suitable for labelling, processing, or analysing the
data [17]. Moreover, the collected data require a long time to be processed. The cost
is another problem, where some applications require the deployment of many sensors.
Deep learning (DL), a branch of ML, is incorporated with optical sensors to solve the
aforementioned challenges [18–21]. Deep neural networks (DNNs) are a modern and
promising technology that can be used with various optical sensors applications. The main
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advantage of DNNs is their ability to dynamically extract features from the collected raw
data with high accuracy, often outperforming the capability of humans [22,23].

In the state-of-the-art research in this field, some previous survey papers have reviewed
the use of DL in specific applications for optical sensors. As an example, the authors in [24]
presented an extensive review of the recent advances in the estimation of multiphase fluid
flows. The distributed optical fibre sensors and their working mechanism were addressed.
The article provided some recent works which were used to characterize multiphase fluid
flows in the production optimization of the oil and gas industry. It also included traditional
methods, such as estimation of the sound speed and Joule–Thomson coefficient, in addition
to data-driven ML techniques such as CNN, ensemble Kalman filter (EnKF) and support
vector machine (SVM) algorithms. Some related papers that used CNN and ANN models to
perform flow regime classification and multiphase estimation are mentioned in [10,25]. The
LSTM algorithm was adopted by other related papers to estimate fluid flow rate [26–29].
Another survey includes ref. [30], in which the authors presented the latest advancements
in pattern recognition models utilized in distributed optical fibre vibration sensing systems
(DOVS). The main issues presented were feature extraction, the structure of the model,
and the model performance. Some applications were introduced, including railway safety
monitoring, perimeter security and pipeline monitoring. The authors also provided the
pattern recognition prospects for DOVS in addition to some related references which
realized the pattern recognition of vibration signals using ML and DL. In [15], the authors
reviewed the current state of optical sensors and the application of DL for the structural
health monitoring of civil infrastructures. The review considered the past five years and
found that optical fibre sensors were applied to the measurement of concrete properties,
leakage monitoring, corrosion, and fatigue responses.

The objective of this work is to review DL for optical sensor applications. This review
comprehensively covers all published optical sensor types that have been utilized in
conjunction with DL techniques. DL can benefit optical sensors in many directions such
as processing huge datasets, pre-processing noisy data, automating feature extraction,
predicting the results with high accuracy and reliability, and reducing the number of optical
sensors required for the deployment in any system. To the best of our knowledge, this is
the first study that discusses DL applications for optical sensors.

This paper is organized as follows. In the Section 2, we introduce the operating
principles of optical sensors. In the Section 3, we present a brief discussion on DL. A survey
of the application of DL on optical sensors is presented in the Section 4. A discussion and
future perspectives are given in the Section 5.

2. Optical Sensor Technologies

Since the 1900s, plasmonic sensors have been widely used in many areas for numerous
applications [31–35]. Since then, they have been utilized in a diverse range of fields,
including biology and medical diagnosis [36–40], chemistry [41], food safety [42,43], and
environmental monitoring and evaluation [44–48]. In addition, plasmonic sensors are
being used in negative refractive index materials [49–51], optical meta-surfaces [52–54],
and integrated circuits [55–57]. Consequently, the effects caused by the surface plasmon
resonance (SPR) or localized surface plasmon resonance (LSPR) have been proven to have
an astounding sensitivity needed in those applications [58]. To design plasmonic sensors,
the appropriate selection of the operating wavelength in addition to the type and thickness
of the metal film to be used is required to achieve optimum sensitivity [59]. If the sensors
are used in the visible range and the near-infrared range of the electromagnet spectrum,
the most typical metals used are gold, copper, silver, and aluminium since they have the
sharpest resonance compared to other metals [60]. Among these metals, gold is mostly
preferred since it is the most chemically stable when exposed to the atmosphere. However,
gold does not show SPR when the wavelength used is less than 0.5 µm [61,62].

The SPR functions when photons from the incident light directed onto a metal surface
layer excite the conductive electrons on its surface at a specific angle to undergo collective
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oscillations and then be propagated parallel to the surface [63]. This occurs since the surface
of the SPR is highly sensitive due to the SPR-generated evanescent field, occurring at the
interface between the metal and the dielectric while undergoing total internal reflection.
The point of interface is considered the strongest part at which the evanescent field happens
because of the resonance coupling between the incident rays and the surface plasmon
wave [64]. As the evanescent field infuses into the dielectric media and the metal film, it
decreases exponentially. The greatest decay of the field makes the SPR sensors significantly
sensitive to the thickness of the material and the refractive index alterations of the dielectric
film affixed to the metal-based surface [65–69]. The binding occurring at the surface of the
metal and the thickness of the dielectric film affect the signal measured by the plasmonic
sensor [70]. This happens since the resonance of the surface plasmon wave shifts with any
changes in the thickness of the material, observed when the SPR curve shifts [64]. There
is a linear relationship between the SPR signal and the dielectric film thickness and the
refractive index, which facilitates SPR spectroscopy of the interaction happening to be
quantitatively analysed. Hence, studying the SPR signal as a function of time explains
the binding kinetics and interactions occurring at the plasmonic sensors to be measured
in real-time [70].

The measurement of the reflective index changes along with the binding of the sample
for recognition of the immobilized molecules on the SPR sensor, as shown in Figure 1.
Hence, the structures’ size, shape, and composition along with the dielectric properties
of the neighbouring environment, utterly determines the intensity and position of the
SPR, which are key components in creating an optical sensor [71,72]. Hence, any minor
adjustment to the reflective index of the sensing medium would alter the SPR occurrence
which is used for detecting the analyte or chemical [73,74]. The numerous variables in-
volved in the analysis of the SPR certify high sensitivity, making it highly important to
be utilized in various applications [69]. Another sensor is nanoparticle-based plasmonic
biosensors, which have high sensitivity and low LOD so they have been employed in
pathogen detection, allowing for the detection of various diseases due to the wide spec-
trum of antibody binding. They are especially crucial for POCT because, when employed
as biosensors, they are non-intrusive, quick, and accurate. The sensitivity of plasmonic
biosensors can be further increased by adding metamaterials, enabling the biosensor to be
reliable and reproducible. Recently, some researchers have been focusing on improving
biosensors so that they might be created as a lab-on-a-chip diagnostic tool, making them
ubiquitous. Additionally, it is being used by other researchers to look for airborne illnesses
in the environment. Metamaterial-based plasmonic biosensors would enable highly accu-
rate and rapid detection of pathogens that could improve human well-being and shield
humanity from any pandemic in the future, regardless of their physical or airborne modes
of transmission [36].

Figure 1. Cont.
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Figure 1. (a) A diagram of the mechanism of plasmonic optical sensors, and (b) stages of the SPR
sensor from detecting analytes to detachment to be reused [36].

3. Deep Neural Networks Overview

DL, a subset of ML, has a great advantage due to its ability to automatically learn
representative features from input data, identified as “feature learning”. DL has shown
outstanding success due to having large datasets, partaking ongoing advances in com-
puting power, and having an enduring opportunity in algorithm improvements. DL uses
several DNNs to carry out intricate computations on enormous volumes of structured and
unstructured data. There are three types of learning in DNNs. The first type is a supervised
algorithm which works with labelled data. At this point, the model is trained to reduce
the cost function which reflects the difference between the model’s predictions and the
actual values.

CNN [75] and LSTM [76,77] are examples of this type. The second type is a semi-
supervised algorithm where a small part of the sample has the annotations necessary
to train the model. This form of algorithm constructs a self-learning strategy where it
generates its own annotations [78]. Examples of this type include generative adversarial
networks (GAN) [79] and deep reinforcement learning (DRL) [80]. The third type of DNN
is an unsupervised algorithm where the model finds the structure or relationship between
the input data without labels or annotations. Restricted Boltzmann machines (RBM) [81]
and AE [82] are examples of this type of DNN and they perform dimensionality reduction
functions or clustering.

In optical sensor applications, the most commonly adopted learning architectures are
CNN, AEs, and multiple layer perceptron (MLP) [83].

3.1. Convolutional Neural Network (CNN)

The CNN has three types of layers, including the convolutional layer, which works as a
feature extractor from the input image, the pooling layer, which reduces the dimensionality
of features maps [84], and the fully connected layer, which is located near the output
layer. A SoftMax classifier is usually used as the final output layer as shown in Figure 2.
In synchronization, these layers enable a learning scheme that links the map features to
predict the output and minimize the cost function. By employing a shared kernel in the
convolution operation, DL models are able to learn space-invariant features. Furthermore,
in comparison with fully connected neural networks, CNNs are good at capturing local
dependencies. As for LSTMs, they are employed to make time-series predictions as they
resolve the issue of the vanishing gradient which arises in conventional recurrent neural
networks (RNNs) [76].
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Figure 2. CNN architecture.

3.2. Autoencoders (AE)

An AE is a neural network designed with the objective of learning a representation
that closely mirrors the input data when presented as an output [82,85]. As shown in
Figure 3, the AE consists of two components, the encoder and the decoder. The input and
output layers have the same number of neurons while all the layers are interconnected.
However, the network incorporates a bottleneck to encourage the learning of the essential
features only. To create a bottleneck effect in the AE, the number of nodes in the connecting
layer, located between the encoder and the decoder parts, are reduced in comparison
to nodes in the input layer. Similar to other neural networks, the training process of
the AE involves learning the weights and biases of the network by minimizing the loss
functions. This ensues as the encoder component learns a compact representation of the
input data, while the decoder component reconstructs the original input from the learned
representation provided by the encoder. The process of learning and reconstruction in the
AE has been used in a range of applications, including anomaly detection. By leveraging
the learned representation and reconstruction capability, the AE can effectively identify
anomalies or deviations from the normal patterns in the input data. This enables the AE to
serve as a valuable tool for detecting and flagging unusual or anomalous occurrences in
various domains.

Figure 3. Diagram of the autoencoder.

3.3. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) is a complement of the feedforward artificial neural
network. It comprises three layers, including the input layer, the output layer, and the
hidden layer, as shown in Figure 4. The input layer is responsible for receiving the input
signal, which needs to be processed. The output layer is responsible for performing the
desired task, such as prediction or classification. The true computational engine of the
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MLP lies within an arbitrary number of hidden layers, positioned between the input
and the output layers. These hidden layers carry out the complex computations and
transformations that enable the MLP to learn and extract meaningful patterns from the
input data. In an MLP, data follows a similar flow to a feedforward network, progressing
from the input layer to the output layer in a forward direction. The neurons within the MLP
are trained via the usage of the backpropagation learning algorithm. MLPs are specifically
designed to approximate any continuous function and are capable of solving problems
that are not linearly separable. Some of the most significant applications of MLP include
pattern classification, recognition, prediction, and approximation.

Figure 4. Schematic representation of an MLP with two hidden layers.

4. DL Applications for Optical Sensors

DL development is a highly iterative and empirical process. It can be implemented in
three steps, including choosing the initial weights and hyperparameter values, coding, and
experimenting. These steps are interconnected through an interactive process.

For optical sensor applications, the first step is to figure out the current problem with
those applications such as the processing of vast data, noisy data, missing data, and the
delay in data processing. Then, an innovative idea needs to be formed to integrate DL
into the optical sensor to solve these complications. The next step is to code the proposed
solution using related and modern frameworks or toolkits, such as TensorFlow, Keras,
PyTorch, CNTK, etc. After this, training and evaluating the model needs to be conducted
by having raw data gathered, pre-processed, and fed into the proposed DL model. Based
on the results, the developer should refine the proposed model cyclically and apply any
required amendments in the model to obtain better accuracy. The overall view of these steps
is depicted in Figure 5. Optical sensor applications based on DL techniques are surveyed
here to provide interested researchers and readers with the elementary knowledge for
developing high-performance optical sensors. Furthermore, this work introduces and
discusses the most recent, related applications, which is mainly focusing on some factors
and issues such as motivation, strategy, and effectiveness. The content of the survey is
further expanded according to the used DL model to which each work belongs.
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Figure 5. General view of DL with optical sensor applications.

4.1. CNN-Based Applications

CNN-based applications are attracting interest across a variety of domains, including
optical sensor applications. In this section, some of the recent works that have been
applying this model for optical sensors will be briefly presented

In [86], a CNN model was developed to comprehend an optical fibre curvature sensor.
A large number of specklegrams have been automatically detected from the facet of multi-
mode fibres (MMFs) in the experiments. The detected specklegrams were pre-processed
and fed to the model for training, validation, and testing. The dataset was collected in the
form of a light beam by designing an automated detecting experimental setup as shown in
Figure 6. The light beam was detected by a CCD camera with a resolution of 1280 × 960
and a pixel size of 3.75 × 3.75 µm2. As shown in Figure 7, the architecture of VGG-Nets
was adopted to build the CCN. The mean squared error (MSE) was then used as the loss
function. The predicted accuracy of the proposed CNN was 94.7% of specklegrams with
an error of curvature prediction within 0.3 m−1. However, the learning-based scheme
reported has the capability to only predict a solitary parameter and does not fully utilize
the potential of DL.

Figure 6. Experimental setup for the detection of fibre specklegrams under different curvatures.

In [9], the authors proposed semi-supervised DL to detect a track. An experimental
setup was created using a portion of a high-speed railway track and installing a distributed
optical fibre acoustic system (DAS). In the proposed model, an image recognition model
with a specific pre-processed dataset and an acquisitive algorithm for selecting hyperpa-
rameters was used.
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Figure 7. The adopted VGG-Nets architecture to build the CCN.

The considered events supposed to be recognized in this model are shown in Table 1.

Table 1. Events distribution.

Event Location

Crevice 120 m, 790 m, 830 m, 1010 m, 1270 m

Beam Gap 400 m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m, 1200 m,
1300 m, 1400 m

Cracking 100 m, 480 m, 730 m, 1030 m, 1420 m

Bulge 420 m, 560 m, 730 m, 1030 m, 1420 m

Switches 200 m, 350 m, 450 m, 1350 m

Highway Below 300 m, 750 m, 1250 m

In addition, the hyperparameters were selected based on an acquisitive algorithm.
The obtained dataset after the augmentation process is shown in Table 2.

Table 2. Dataset obtained after augmentation and the training dataset.

Size Channels Event Dataset Training Data

5 × 6 3 Crevice 6853 2708

5 × 6 3 Beam gap 6853 2788

5 × 6 3 Cracking 6853 2735

5 × 6 3 Bulge 6853 2558

5 × 6 3 Switches 6853 2776

5 × 6 3 Highway below 6853 2736

5 × 6 3 No event 6853 2716
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Four structural hyperparameters were used in this work as shown in Table 3. The
obtained accuracy of the proposed model was 97.91%. However, it is important to highlight
that the traditional methods have proven to execute improved spatial accuracy. Some other
related works can be found in [87–94].

Table 3. Structural hyperparameters.

Hyperparameters Options

Structure of the deep
learning network VGG-16, ResNet, Inception-v3, AlexNet, Mobilenet-v3, LeNet

Data balance method SMOTE-TL, S-ENN, Border-1, MWMOTE, Safe-level

SSL model Fix-match, Tri-training, UDA

Time interval (t) [0, 54]

In [95], a distributed optical fibre sensor using a hybrid Michelson–Sagnac interferom-
eter was proposed. The motivation of the proposed model was to solve the complications
of the incapability of the conventional hybrid structure to locate in the near and flawed
frequency response. The proposed model utilized basic mathematical operations and a
3 × 3 optical coupler to obtain two phase signals with a time difference that can be used for
both location and pattern recognition. The received phase signals were converted into 2D
images. These images were used as a dataset and fed into the CNN to obtain the required
pattern recognition. The dataset contained 5488 images with six categories, and the size
of each image was 5000 × 5000 in .jpg format. The description of the dataset is shown in
Table 4. The structural diagram of the used CNN is shown in Figure 8. The accuracy of the
proposed model was 97.83%. However, the sensing structure employed is relatively simple
and does not consider factors such as the influence of backward scattered light.

Figure 8. Structural diagram of the CNN used in [95].

Table 4. Dataset details.

Type Amount

Cutting 948

Impacting 737

Knocking 1235

Rocking 550

Trampling 849

Wind 1169

Total 5488

In [96], a DL model was proposed to extract time–frequency sequence correlation from
signals and spectrograms to improve the robustness of the recognition system. The authors
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designed a targeted time attention model (TAM) to extract features in the time–frequency
domain. The architecture of the TAM model comprises two stages, namely the convolution
stage for extracting features and the time attention stage for reconstruction. The process
of data streaming, domain transformation and features extraction to output is shown in
Figure 9. The knocking event is taken as an example. The convolution stage is used to
extract characteristic features. Here, the convolutional filter established a local connection
in the convolution and shared the weights between receiving domains. The pooling layers
emphasized the shift-invariance feature. In addition, a usual CNN model was used as
the backbone. As shown in Figure 9, in the left stage, information was extracted from the
spectrogram and transformed into a feature map (1 × 128 × 200), where 1 represents the
number of input channels (the grey image has one channel), while 128 and 200 represent
the height and width of the input, respectively. The authors collected and labelled a large
dataset of vibration scenes including 48,000 data points with eight vibration types. The
experimental results indicated that this approach significantly improved the accuracy with
minimal additional computational cost when compared to the related experiments [97,98].
The time attention stage was designed for the reconstruction of the features in which TAM
was used to serve two purposes. The first purpose was to extract the sequence correlation
by a cyclic element. The second purpose was to assign the weight matrices for the attention
mechanism. F1 and F2 were unique in their emphasis on investigating the "where" and
"what" features of time. An F-OTDR system was constructed to classify and recognize
vibration signals. The F-OTDR system contained a sensing system and a producing system.
This study was verified using a vibration dataset including eight different scenarios which
were collected by an F-OTDR system. The achieved classification had an accuracy of 96.02%.
However, this method did not only complicate the data processing procedure, but it also
had the potential to result in the loss of information during the data processing phase.

Figure 9. The structure of vibration-sensing system working with F-OTDR.

In [99], a real-time action recognition model was proposed for long-distance oil–gas
PSEW systems using a scattered distributed optical fibre sensor. They used two methods to
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calculate two complementary features, a peak and an energy feature, which described the
signals. Based on the calculated features, a deep learning network (DLN) was built for a
new action recognition. This DLN could effectively describe the situation of long-distance
oil–gas PSEW systems. The collected datasets were 494 GB with several types of noise at the
China National Petroleum Corporation pipeline. The collected signal involved four types
of events containing background noise, mechanical excavation, manual excavation, and
vehicle driving. As shown in Figure 10, the architecture of the proposed model consisted of
two parts. The first part dealt with the peak, while the second part dealt with the energy.
Each part consisted of many layers, including ConvD1, batch normalization, maxpool,
dropout, Bi-LSTM, and a fully connected layer. Any damage event could be allocated and
identified with accuracies of 99.26 and 97.20% at 500 and 100 Hz, respectively. Nonetheless,
all the aforementioned methods consider an acquisition sample as a singular vibration
event. However, for dynamic time-series identification tasks, the ratio of valid data within
a sample relevant to the overall data was not constant. This means that the position of the
label in relation to the valid portion of the input sequence remained uncertain. Further
related research can be reviewed in [100–102].

Figure 10. The architecture of the proposed model used in [99].

In [103], the authors presented the application of signal processing and ML algorithms
to detect events using signals generated based on DAS along a pipeline. ML and DL
approaches were implemented and combined for event detection as shown in Figure 11.
A novel method to efficiently generate training dataset was developed. Excavator and
none-excavator events were considered.
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Figure 11. Two methods to detect events by DAS: classic ML approach (left) and DNN approach
(right). Note the role of human knowledge [103].

The sensor signals were converted into a grey image to recognize the events depending
on the proposed DL model. The proposed model was evaluated in real-time deployment
within three months in a suburban location as shown in Figure 12.

Figure 12. CNN to detect an excavator. (a) Input image, (b) convolutional layer, (c) max pooling
layer, and (d) fully connected layer [103].

The results showed that DL is the most promising approach due to its advantages over
ML as shown in Table 5. However, the proposed model only differentiated between two
events, namely ‘excavator’ and ‘non-excavator’, while there are multiple distinct events.
Additionally, the system was evaluated in a real-time arrangement for a duration of three
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months in a suburban area. Yet, for further validation and verification, it is crucial to
conduct tests in different areas and over an extended period of time.

Table 5. Performance comparison of the CNN and MLP algorithms .

ML Algorithm Accuracy 99% Exec. Time (µs)

MLP + feature extraction 99.88% 554.63

CNN 99.91% 34.33

In [104], an improved WaveNet was applied to recognize manufactured threatening
events using distributed optical fibre vibration sensing (DVS). The improved WaveNet is
called SE-WaveNet (squeeze and excitation WaveNet). WaveNet is a 1D CNN (1D-CNN)
model. As a deep 1D-CNN, it can quickly achieve training and testing while also boasts a
large receptive field that enables it to retain complete information from 1D time-series data.
The structure of the SE functions in synchronization with the residual block of WaveNet in
order to recognize 2D signals. The SE structure functions using an attention mechanism,
which allows the model to focus on channel features to obtain more information. It can also
suppress insignificant channel features. The structure of the proposed model is shown in
Figure 13. The input of the SE-WaveNet is an n × m matrix, synthesized from the n-points of
spatial signals and the m-groups of time signals. The used dataset is shown in Table 6. The
results showed that the SE-WaveNet accuracy can reach approximately 97.73%. However,
it is important to note that the model employed in this study was only assessed based on
a limited number of events, and further testing is necessary to evaluate its performance
in more complex events, particularly in engineering-relevant applications. Additionally,
further research is needed to validate the effectiveness of the SE-WaveNet in practical,
real-world settings.

Figure 13. The structure of the model proposed in [104].

Table 6. The number of each event in dataset.

Event Type Climbing Violent
Demolition Net Digging Electric Drill

Damage
Total
Number

Training set 4319 3616 3713 3825 17,564

Validation set 539 542 562 549 2192

Testing set 539 542 562 549 2192

Total number 5397 5428 5625 5498 21,948
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In [14], a CNN and an extreme learning machine (ELM) were applied to discriminate
between ballistocardiogram (BCG) and non-BCG signals. CNNs were used to extract
relevant features. As for ELM, it is a feedforward neural network that takes the features
extracted from CNN as the input and provides the category matrix as an output [105]. The
architecture of the proposed CNN-ELM and the proposed CNN are shown in Figure 14
and Table 7, respectively.

Figure 14. The CNN architecture proposed in [14].

Table 7. The proposed CNN architecture.

Event Type Climbing Violent
Demolition Net Digging Electric Drill

Damage Total Number

Layer No of
filters

Activation
function

Kernel
size Strides Output size

Input (50, 1)

Conv1D 50 ReLU 5 1 (46, 40)

Maxpooling1D Max 2 2 (23, 50)

Conv1D 50 ReLU 4 1 (20, 50)

Maxpooling1D Max 2 2 (10, 50)

Conv1D 50 ReLU 4 1 (7, 50)

Maxpooling1D Max 2 2 (3, 50)

Flatten (None, 150)

FC1 ReLU (None, 50)

FC2 Softmax (None, 2)

BCG signals were obtained with a micro-bend fibre optical sensor based on IoT,
taken from ten patients diagnosed with obstructive sleep apnoea and submitted for drug-
induced sleep endoscopy. To balance the BCG (ballistocardiogram) and non-BCG signal
samples, three techniques were employed: undersampling, oversampling, and generative
adversarial networks (GANs). The performance of the system was evaluated using ten-fold
cross-validation. Using GANs to balance the data, the CNN-ELM approach yielded the
best results with an average accuracy of 94%, a precision of 90%, a recall of 98%, and an
F-score of 94%, as shown in Table 8. Inspired by [106], the architecture of the used model
is presented in Figure 15, showing balanced BCG and non-BCG chunks. Other relevant
works were presented in [107,108].
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Figure 15. The model architecture of the BCG and non-BCG chunks.

Table 8. Results of the proposed CNN-ELM.

Data-balancing method

Undersampling

Accuracy 0.89

Precision 0.9

Recall 0.87

F-score 0.88

Oversampling

Accuracy 0.88

Precision 0.93

Recall 0.81

F-score 0.87

GAN

Accuracy 0.94

Precision 0.9

Recall 0.98

F-score 0.94

In [11], the efficiency and accuracy enhancements of the bridge structure damage
detection were addressed by monitoring the deflection of the bridge using a fibre optic
gyroscope. A DL algorithm was then applied to detect any structural damage. A supervised
learning model using CNN to perform structural damage detection was proposed. It
contained eleven hidden layers constructed to automatically identify and classify bridge
damage. Furthermore, the Adam optimization method was considered and the used
hyperparameters are listed in Table 9. The obtained accuracy of the proposed model was
96.9% which was better than the random forest (RF), which was 81.6%, the SVM which
was 79.9%, the k-nearest neighbor (KNN) which was 77.7%, and the decision trees (DT).
Following the same path, comparable work was performed in [109,110].
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Table 9. Hyperparameters.

Bath Size Epoch Patience in Early Stopping
Adam

α β1 β2 ε

128 5000 500 0.001 09 0.009 1.0× 10−8

The authors in [111] proposed an intrusion pattern recognition model based on a
combination of Gramian angular field (GAF) and CNN, which possessed both high speed
and accuracy rate in recognition. They used the GAF algorithm for mapping 1D vibration-
sensing signals into 2D images with more distinguishing features. The GAF algorithm
retained and highlighted the distinguishing differences of the intrusion signals. This was
beneficial for CNN to detect intrusion events with more subtle characteristic variation
differences. A CNN-based framework was used for processing vibration-sensing signals
as input images. According to the experimental results, the average accuracy rate for
recognizing the three natural intrusion events, light rain, wind blowing, and heavy rain,
and the three human intrusion events, impacting, knocking, and slapping, on the fence
was found to be 97.67%. With a response time of 0.58 seconds, the system satisfied the
real-time monitoring requirements. By considering both accuracy and speed, this model
achieved automated recognition of intrusion events. However, the application of complex
pre-processing and denoising techniques to the original signal presented a challenge for
intrusion recognition systems when it came to effectively addressing emergency response
scenarios. Relevant work following a similar pattern was presented in [112].

A bending recognition model using the analysis of MMF specklegrams with diameters
of 105 and 200 µm was proposed and assessed in [113]. The proposed model utilized a
DL-based image recognition algorithm. The specklegrams detected from the facet of the
MMF were subjected to various bendings and then utilized as input data. Figure 16 shows
the used experimental setup to collect and detect fibre specklegrams.

Figure 16. The experimental schematic setup. (a) Fibre specklegram detection. (b) A graphical
depiction of the moving distance x and bending radius R of the translation stage.

The architecture of the model was based on VGG-Nets as shown in Figure 17.
The obtained accuracy of the proposed model for two multimode fibres is shown

in Table 10.

Table 10. Results of the average accuracy.

Fibre Number of Training Data Number of Testing Data Average Accuracy

105 6300 2100 92.8%

200 6300 2100 96.6%
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Figure 17. The model structure of the CNN proposed in [113].

More related research can be found in [113–121].
The authors in [122] used a CNN to demonstrate the capability for the identification of

specific species of pollen from backscattered light. Thirty-core optical fibre was used to col-
lect the backscattered light. The input data provided to the CNN was from camera images
which were further divided into two sets, distance prediction and particle identification. In
the first type, the total number of collected images was 1500, by which 90% of them were
used as a training set and 10% were used as a validation set of the CNN. In the second
type, 2200 images were collected and 90% of them were used as a training set and 10%
were used as a validation set. The training procedure of the proposed model is depicted in
Figure 18. The second version of ResNet-18 ([123,124]) was used to propose the required
model with batch normalization [125] with a mini-batch size of 32 and a momentum of
0.95. The output was a single regression (single output). The neural network, trained to
identify pollen grain types, achieved a real-time detection accuracy of approximately 97%.
The developed system can be used in environments where transmission imaging is not
possible or suitable.

Figure 18. The training procedure of the model proposed in [122].
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In [13], a DL-based distributed optical fibre-sensing system was proposed for event
recognition. A spatio-temporal data matrix from an F-OTDR system was used as the input
data served to the CNN. The proposed method had advantageous characteristics, such
as grey-scale image transformation and bandpass filtering, which were needed for pre-
processing and classification instead of the usual complex data processing, small size, and
high training speed, and excessive requirements for classification accuracy. The developed
system was applied to recognize five distinct events involving background, jumping,
walking, digging with a shovel, and striking with a shovel. The collected data were split
into two types as shown in Table 11. The combined dataset for the five events consisted of
5644 instances.

Table 11. The number of each data type .

Event Type I II III IV V

Training Set 307 1122 1101 1237 748

Validation Set 77 280 275 310 187

Total Number 384 1402 1376 1547 935

Some common CNNs were examined, and the results are shown in Table 12.

Table 12. The common CNNs performance.

Model Name
Training

Model Size
(MB) Speed (step/s) Classification

Accuracy (%) Top 2 (%)

LeNet 39.3 90.9 60 86.5

AlexNet 554.7 19.6 94.25 99.08

VggNet 1638.4 2.53 95.25 100

GoogLeNet 292.2 4.1 97.08 99.25

ResNet 282.4 7.35 91.9 97.75

The considered training parameters for all CNNs were the same. The total training
steps were 50,000, the learning rate was 0.01, and the adopted optimizer was the root mean
square prop (RMSProp) [126]. This work concluded that the VGGNet and GoogLeNet
obtained better classification accuracy (greater than 95%) and GoogLeNet was selected
to be the basic CNN structure due its model size. For further improvement of the model,
Inception-v3 of GoogLeNet was used. Table 13 shows the classification accuracy achieved
for the five events. The authors also optimized the network by tuning the size of some layers
of the model. Table 14 shows the comparison between the optimized model and Inception-
v3. However, it is important to note that this study trained the network using relatively
small datasets consisting of only 4000 samples. Moreover, traditional data augmentation
strategies employed in image processing, such as image rotation, cannot be directly applied
to feature maps generated from fibre optic-sensing data.

Table 13. The classification accuracy achieved for the five events.

Type of Accuracy I II III IV V

Accuracy (%) 98.02 98.67 100 92.1 95.5

Top 2 Accuracy (%) 100 100 100 99 100
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Table 14. The comparison between the optimized model and the Inception-v3.

Network Accuracy % Top 3 Accuracy % Training Speed Model Size (MB)

The Optimized
Network 96.67 99.75 35.61 20

Inception-v3 97.08 99.25 4.35 292.2

In [8], the authors designed a DNN to identify and classify external intrusion signals
from a 33 km optical fibre-sensing system in a real environment. In that article, the time-
domain data was located directly into a DL model to deeply learn the characteristics of
the destructive intrusion events and establish a reference model. This model included two
CNN layers, one linear layer, one LSTM layer, and one fully connected layer as shown
in Figure 19. It was called the convolutional, long short-term memory, fully connected
deep neural network (CLDNN). The model effectively learned the signal characteristics
captured by the DAS and was able to process the time-domain signal directly from the
distributed optical fibre vibration-monitoring systems. It was found to be simpler and more
effective than feature vector extraction through the frequency domain. The experimental
results demonstrated an average intrusion event recognition rate exceeding 97% for the
proposed model. Figure 20 shows the DAS system using the F-OTDR and the pattern
recognition process using the CLDNN. However, the proposed model was not evaluated as
a prospective solution for addressing the issue of sample contamination caused by external
environmental factors, which can lead to a decline in the recognition accuracy. Other related
work can be viewed in [127].

Figure 19. The CLDNN architecture.

Figure 20. The architecture of the intelligent alarm system proposed in [8].

A novel method was developed in [12] to efficiently generate a training dataset using
GAN [128]. End-to-end neural networks were used to process data collected using the DAS
system. The proposed model’s architecture utilized the VGG16 network [23]. The purpose
of the proposed model was to detect and localize seismic events. One extra convolutional
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layer was added to match the image size then a fully connected layer was added at the
end of the model. Batch normalization for regularization and an ReLU activation function
were used. The model was tested with experimentally collected data with a 5 km long DAS
sensor, and the obtained classification accuracy was 94%. Nevertheless, achieving a reliable
automatic classification using the DAS system remains computationally and resource-
intensive, primarily due to the demanding task of constructing a comprehensive training
database, which involves collecting labelled signals for different phenomena. Furthermore,
overly complex approaches may render real-time applications impractical, introducing
potential processing-delay issues. Other works in the same direction have been presented
in [129,130].

In [127], the authors presented a DL model to recognize six activities, including
walking, digging with a shovel, digging with a harrow, digging with a pickaxe, facility
noise, and strong wind. The DAS system based on F-OTDR was presented along with
novel threat detection, signal conditioning, and threat classification techniques. The CNN
architecture used for the classification was trained with real sensor data and consisted of
five layers, as illustrated in Figure 21. In this algorithm, an RGB image with dimensions
257 × 125 × 3 was constructed. This image was constructed for each detection point on
the optical fibre, helping determine the classification of the event through the network.
The results indicated that the accuracy of the threat classification exceeded 93%. However,
increasing the depth of the network structure in the proposed model will unavoidably
results in a significant slowdown in the training speed and potentially lead to overfitting.

Figure 21. Structure of an F-OTDR and a CNN used for threat classification in [127].

In the study published in [131], the authors proposed an approach to detect defects in
large-scale PCBs and measure their copper thickness before the mass production process
using a hybrid optical sensor HOS based on CNN. The method involved combining mi-
croscopic fringe projection profilometry (MFPP) with lateral shearing digital holographic
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microscopy (LSDHM) for imaging and defect detection by utilizing an optical microscopic
sensor containing minimal components. This allowed for more precise and accurate identi-
fication of diverse types of defects on the PCBs. The proposed approach had the potential
to significantly improve the quality control process in PCB manufacturing, leading to more
efficient and effective production. The researchers’ findings demonstrate a remarkable
success rate with an accuracy of 99%.

4.2. Multilayer Perceptron (MLP)-Based Applications

In [132], MLP was proposed to achieve a specific event measurement in the existence of
various noises without shielding the sensor against undesired perturbations. The proposed
model was used for temperature sensing based on a sapphire crystal optical fibre (SOF).
MMF interference spectra inclusive were used as the input of temperature changes and
noise. The trained DNN was able to recognize the relationship between the temperature
and transmission spectra, as shown in Figure 22. The proposed model consisted of four
hidden layers. An Adam optimizer with a learning rate of 10−3 was utilized alongside
an ReLU activation function for each output. However, due to the restrictions of the
demodulation terminal, the demodulation speed was slow, and as a result, it had a limited
scope for application.

Figure 22. The multilayer perceptron architecture proposed in [132].

In [133], MLP and CNN were used to demonstrate DL for improving the analysis
of specklegram analysis for sensing air temperature and water immersion lengths. A
comparison was made between the CNN and a traditional correlation technique. The
input of the MLP was a 60 × 60 input image fed into 3600 nodes as the input layer. On
the other hand, the output layer comprised a single node, representing a value of either
temperature or immersion length. An ReLU activation function was also used after each
hidden layer. The total number of trainable parameters was 9,752,929. On the other hand,
VGG-16 architecture was used for the CNN model with 2014 input images. In the CNN
model, the total number of trainable parameters was 29,787,329. The architecture of both
models is shown in Figure 23. Both models obtained better accuracy in terms of their
average errors.
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Figure 23. (a) Schematic of the DNN. (b) Schematic representation of the CNN used in [133].

4.3. Autoencoder (AE)-Based Applications

In [134], a novel deep AE model was proposed to detect water-level anomalies and
report abnormal situations. Time-series data were collected from various sensors to train
the proposed model, consisting of steps that included pre-processing data, training the
model, and evaluating the model using normal and abnormal data, as shown in Figure 24.
Combinations of hyperparameters were tuned to obtain the best results from the config-
uration of each experiment. Different architecture models were used (models through
models). These model architecture models differed from each other by the number of
units at each layer within the five layers. The studies concluded that the model with
600 × 200 × 100 × 200 × 600 achieved the best result with an F1-score of 99.9% and an area
under the curve (AUC) of 1.00 when a window size of 36,000 was used.

Figure 24. AEs used for the detection of abnormal temperature changes.

In [135], a DL model based on a distributed optical fibre sensor (DOFS) was proposed
to collect data concerning the temperature data along the optic fibre and identify the
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anomaly detected temperature in the early phase. The proposed model had the potential to
be used for monitoring abnormal temperatures in crude oil tanks. The structured network
used is shown in Figure 25 and Tables 15–18.

Figure 25. A pipeline for anomaly detection using a DNN model based on AEs in [135].

Table 15. Structures of the MLP-AE.

Composition Type Input Size Output Size

Encoder
Linear 140 32

Linear 32 4

Decoder
Linear 4 32

Linear 32 140

Table 16. Structures of the MLP-VAE.

Composition Type Input Size Output Size

Encoder
Linear 140 64

Linear Reparametrization 64 4

Decoder
Linear 4 64

Linear 64 140
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Table 17. Structures of the LSTM-AE.

Composition Type Input Output

Encoder LSTM Repeat 1 32

Decoder
LSTM 32 32

Dense 32 1

Table 18. Structures of the CNN-AE.

Composition Type Input
Channels

Output
Channels

Kernel Size/Stride/
Padding

Encoder

Conv. 1 16 5/2/1

ReLU

Maxpool 2/2/0

Conv. 16 8 5/2/1

ReLU

Maxpool 2/2/0

Conv. 8 2 3/1/1

ReLU

Maxpool 2/2/0

Decoder

Conv-Transpose 2 16 5/4/0

ReLU

Conv-Transpose 16 8 5/4/0

ReLU

Conv-Transpose 8 1 3/2/1

The temperature collected by the DOFS was used as the normal temperature (NT) and
used as a training set. The threshold value for anomaly detection was set using NT and
a small amount of artificially added ambient temperature (AAT). The test set comprised
self-heating temperature (ST) and AAT and NT collected from the experimental apparatus.
Furthermore, the proposed model achieved an accuracy of 98%.

Table 19 provides a summary of the DL techniques used with optical sensor appli-
cations in this article. The CNN was used in applications from 1 to 16, MLP was used in
application 17, and AE was used in the remaining applications. The table also shows the
applications and their findings in terms of accuracy. However, the most common limitation
of all the previous applications includes the methods to collect and pre-process the data. In
addition, there are few DL models shown to be appropriate to be used with optical sensors.
Moreover, the used methods for identifying anomalies are very simple, focusing solely
on the impact of ambient temperature changes on the detection of sulphurized rust and
self-heating anomalies. This method did not consider diverse weather conditions, such
as intense winds, rainfall, or temperature variations resulting from seasonal changes or
daily fluctuations.
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Table 19. A summary of the surveyed DL for optical sensor applications.

No Applications Finding References

1
• Realizing an optical fibre curvature sensor.
• A large number of specklegrams were detected from the facet
of a multimode fibre (MMF) automatically in the experiments.

94.7% [86]

2 Detection of a high-speed railway track 97.91% [9]

3
Solving the problems of the inability of a conventional hybrid
structure to locate in the near field and flawed frequency
responses.

97.83% [95]

4
Extracting the correlation of a time–frequency sequence from
signals and spectrograms to improve the robustness of the
recognition system.

96.02% [96]

5 Describing the situation of long-distance oil–gas PSEW systems.
99.26%
and
97.20%

[99]

6 Event detection. 99.91% [103]

7 Discriminate between ballistocardiogram (BCG) and non-BCG
signals.

94%, 90%,
98%, and
94%

[14]

8 Recognize a man-made threat event 97.73% [104]

9 Bridge structure damage detection. 96.9% [11]

10 An intrusion pattern recognition model 97.67% [111]

11 Bending recognition model using the analysis of MMF
specklegrams with diameters of 105 and 200 µm.

92.8%
and
96.6%

[113]

12 Demonstrate the capability for the identification of specific
species of pollen from backscattered light. 97% [122]

13 Event recognition. 99.75% [13]

14 Identification and classification of external intrusion signals in a
real environment using a 33 km optical fibre-sensing system. 97% [8]

15 Detection and localization of seismic events. 94% [12]

16
Identification of six activities, walking, digging with a shovel,
digging with a harrow, digging with a pickaxe, strong wind and
facility noise.

93% [127]

17 Temperature sensing based on a sapphire crystal optical fibre
(SOF). 99% [132]

18 Sensing water immersion length measurements and air
temperature. N/A [133]

19 Detecting water-level anomalies and reporting abnormal
situation. 99.9% [134]

20 Collection of temperature data along an optic fibre set and
identify the anomaly detected temperature in the early phase. 98% [135]

21 Detection of defects on large-scale PCBs and measure their
copper thickness before the mass production process [131]

5. Conclusions and Future Perspectives

This study summarized the applications of DL in integration with optical sensors.
The necessity and significance of DL in optical sensor applications were demonstrated
first by presenting the merit of DL, and then by presenting some past and present related
works summarized and discussed to provide a wide view of the recent development in this
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field. This study was based on the type of DL model used. It was concluded that the most
commonly used models were the CNN, MLP, and AE models due to the fact that they are
suitable for most optical sensor applications. It was also noted that the main challenges in
combining DL with optical sensor devices concern the type of data used and how it could
be collected and pre-processed before feeding it into the DL model. The treatment of an
image classification problem using MLP requires converting a 2D image into a 1D vector
before training the model. Two key issues are faced with this approach, the number of
parameters increases significantly as the image size increases, and the MLP ignorance of
the spatial arrangement, or spatial features, of the pixels in an image. For these reasons, it
is better to use CNNs to deal with image classification models. Furthermore, since the data
of optical sensors can be modelled as 2D arrays or images, CNNs have become dominant
models in various optical sensor applications.

Finally, there are some promising applications that can be considered when DL is
combined with some optical sensor applications, such as detecting viruses and bacteria,
environmental pollutants, smart city, and optical communication systems. In addition,
upon our research, it was apparent that there was a noticeable gap in the literature regarding
the application of some modern networks, such as graphical neural networks (GNN) and
spiking neural networks (SNN) using optical sensors. Therefore, this article brings attention
to this gap and highlights the potential for future research in exploring the utilization of
GNN and SNN in optical sensor applications.
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