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Abstract: Ensuring the quality of color contact lenses is vital, particularly in detecting defects during
their production since they are directly worn on the eyes. One significant defect is the “center
deviation (CD) defect”, where the colored area (CA) deviates from the center point. Measuring the
extent of deviation of the CA from the center point is necessary to detect these CD defects. In this
study, we propose a method that utilizes image processing and analysis techniques for detecting such
defects. Our approach involves employing semantic segmentation to simplify the image and reduce
noise interference and utilizing the Hough circle transform algorithm to measure the deviation of the
center point of the CA in color contact lenses. Experimental results demonstrated that our proposed
method achieved a 71.2% reduction in error compared with existing research methods.

Keywords: computer vision; image segmentation; DeepLabV3+; Hough circle transform; deep
learning; data augmentation; color contact lens; center deviation

1. Introduction

With the recent emphasis on digital transformation (DX) following the fourth indus-
trial revolution [1], new approaches and changes are taking place via the construction
of smart factories. Particularly, various defects arising from image-based products are
gaining attention as representative technologies [2]. Notable related studies include a deep
learning-based auto-sorting system by Wang et al. [3], Convolutional Neural Network
(CNN)-based [4] defect inspection by Ha et al. [5], shipyard painting defect detection by
Ma et al. [6], and steel-plate surface defect detection by Sharma et al. [7]. Similar defects
can also occur in the production process of color contact lenses. Given that contact lenses
are directly attached to the eyes, ensuring their quality is highly important [8]. However,
research on defect detection during the production process remains insufficient. Therefore,
this study aims to propose a method for detecting defects in contact lenses.

In this study, we discuss the injection molding [9] process of color contact lenses
produced using the sandwich method [10,11]. During this process, the colored area (CA),
which provides a cosmetic effect to the eye, is printed on the contact lens (as shown in
Figure 1a,b). However, various defects can occur simultaneously in the printing process [12].
One such phenomenon is “center deviation (CD) defects”, as shown in Figure 1c, where
the CA deviates from the center point of the frame. Other defects include “colored defects”
(incomplete coloration), “line defects” (scratches), “partial design defects” (misprinted
pattern parts), and “dot defects” (missing dots within the CA). We aimed to propose an
accurate and efficient method for measuring the degree of CD of the CA in color contact
lenses, as shown in Figure 1c. To achieve this, we utilized the semantic segmentation
model [13] and the Hough circle transform (HCT) [14], which are tailored to the unique
characteristics of color contact lenses, and detected defects based on this deviation.
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Figure 1. (a) An eye with a color contact lens, in (b), the area inside the red circle is the colored area
(CA) of a color contact lens, and (c) possible center deviation (CD) defects that can occur during
the manufacturing process. The figure demonstrates a CD defect that is skewed to the bottom right
corner. In (c), the blue circle represents the CA, and the green circle represents the frame area (FA),
which serves as a reference for measuring the displacement of the center point of the CA.

Our proposed method aims to enhance production efficiency and product quality by
detecting defects in advance and enabling precise adjustments in the production machinery
based on the measured CD. This solves the CD defect problem in the manufacturing process
of color contact lenses, thus ensuring the production of safer and higher-quality products.
The results of this study can be utilized not only in the color contact lens industry but also
in defect detection and quality control in various manufacturing industries.

In real-world applications, on-site workers need to assess the degree of deviation
in the printed CA and adjust the machine printing of the CA accordingly. They also
need to understand the causes of success or failure in detecting the CD defects for rapid
problem identification. Therefore, this study employed a semantic segmentation model
as an intermediate step in image analysis. Through the model’s predicted results, we
assessed the degree of CD defects using the HCT. Although this method hinders a direct
understanding of how deep learning predicts, it enables an indirect comprehension of
the CD defects through the visualized outputs of DeepLabV3+. Subsequently, the HCT is
employed to provide a quantitative assessment of the degree of CD.

To accurately measure the center point deviation of the color contact lens, a specific area
within the image is initially defined. The evaluation of the color contact lens manufacturing
process relies on the distance between the centers of two crucial circles: the CA and frame
area (FA), as depicted in Figure 2. In this method, rather than relying on the center of the
acquired image, the center coordinates of FA, represented by the green circle, are preferred
as the reference point for measuring the deviation distance of the CA as the image capture
may not always accurately capture the center of the lens. This approach ensures precise
measurements and evaluations, facilitating a more reliable assessment of lens quality.

Figure 2. The blue and green circles indicate the boundaries of CA and FA, respectively. In this figure,
the blue circle represents the CA, and the green circle represents the frame area (FA), which serves as
a reference for measuring the displacement of the center point of the CA.
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2. Related Work

Previous studies, such as those conducted by Raghavendra et al. [15] and Choudhary et al. [16],
have primarily focused on detecting and classifying contact lenses, determining whether they
are present, and categorizing them accordingly. Other studies, such as Kimura et al. [17] and
Parzianello et al. [18], researched iris recognition while contact lenses were worn.

Kim et al. [12] and Kim et al. [19] discussed the defect detection in color contact lenses
from the injection molding process. However, these studies focused only on classifying the
presence of defects, not on measuring the deviation distance of the center point. Another
study by Kim et al. [20] presented a method for measuring the deviation distance of the
center point using HCT.

As shown in Figure 3, Kim et al. [20] proposed a method for center deviation measure-
ment using HCT, which is one of the famous traditional techniques in image processing.
However, the method has certain limitations that can be susceptible to noise caused by
variations in brightness from surrounding environments, changes in lens types, and in-
complete image data or edge detectors [21]. And also, it can lead to the omission of curves
or the occurrence of false data pixels, requiring HCT parameter adjustments to address
these issues.

Figure 3. Overall flow diagram of the research method by Kim et al. [20].

Therefore, this paper proposes a method that can handle variations in shooting en-
vironments and lens types when measuring the deviation distance of the center point in
color contact lenses. Additionally, we propose a method to classify defects based on the
measured distance. The proposed method employs a semantic segmentation model to
simplify images and resolve errors caused by noise during circle detection using HCT.

3. Proposed Method for Computing Center Deviation (CD) of Color Contact Lenses

In this section, we present our proposed method for computing the two circles, CA
and FA, as shown in Figure 4. First, we utilize DeepLabV3+ [22], a semantic segmentation
model, to segment the predicted results into the FA and CA. Next, the segmented image is
split into separate images for CA and FA. The HCT algorithm is then applied to each of
these split areas to calculate the center coordinates and the radii of the circles for FA and
CA. Finally, using the calculated center coordinates, we measure the deviation distance
between the centers. The following subsections provide further details of this process.

3.1. Semantic Segmentation of Color Contact Lenses Using DeepLabV3+

Calculating CA and FA in color contact lens images was performed by applying
DeepLabV3+ as shown in Figure 5. DeepLabV3+ is a semantic segmentation model that
combines fully convolutional networks (FCNs) [23] and residual networks [24], enabling
pixel-level classification of input images. In this study, DeepLabV3+ is utilized to perform
pixel-wise segmentation of the lens image into the background, CA, and FA. As shown
in Figure 6, the pre-trained DeepLabV3+ model receives an image like that shown in
Figure 6a and predicts the image as shown in Figure 6b. The semantic segmentation
result shows black, white, and gray parts, where gray (white) represents CA (resp. FA).
This segmentation process ensures a more accurate localization of the circles by reducing
interference due to noise and minimizing computational complexity in the HCT process.
Such segmentation enhances the overall precision in determining the positions of the
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circles compared with direct processing of the original image. The basic architecture of
DeepLabV3+ is as follows:

Figure 4. Overall flow diagram of the proposed method.

Figure 5. DeepLabV3+ model structure for segmenting FA and CA from an original color contact
lens image.

Figure 6. Original color contact lens image (a); ground truth image for segmentation of FA and
CA (b).

Encoder: The encoder in DeepLabV3+ is a pivotal component responsible for generat-
ing feature maps from input images. It leverages the Xception architecture and incorporates
the Atrous Spatial Pyramid Pooling (ASPP) module. ASPP plays a critical role in capturing
features across various scales and aggregating contextual information from multiple scales.
It is composed of parallel dilated convolutions with distinct dilation rates. Smaller dilation



Sensors 2023, 23, 6533 5 of 18

rates capture finer details, while larger dilation rates enable a wider context understanding.
This diverse range of dilation rates proves instrumental in accurately segmenting different
regions within an image. Notably, the ASPP module used in DeepLabV3+ integrates a
global average pooling layer to better capture global context information. Therefore, the
encoder in DeepLabV3+ encompasses the ASPP module, enabling the extraction of features
and comprehensive contextual understanding across different regions of the image. Built
upon the Xception architecture, it employs depth-wise separable convolutions to generate
high-dimensional feature maps, resulting in enhanced precision for image segmentation.

Decoder: The decoder module in DeepLabV3+ takes the low-resolution feature maps
generated by the encoder and restores them to the original high resolution. This restora-
tion process is achieved through a technique called upsampling or deconvolution. The
upsampling operation enlarges the low-resolution feature maps and brings them to a size
comparable to the original image. Then, these upsampled features are combined with
corresponding high-resolution features from the original image (a procedure often called
“skip-connections”), which helps the model recover detailed spatial information lost during
the downsampling in the encoder. This is critical for pixel-level tasks like segmentation,
where accurate localization of objects is needed.

Output: The output of DeepLabV3+ is a pixel-wise classification map, where each
pixel is assigned a specific class label indicating the class to which it belongs. This enables
precise segmentation of objects in the input image.

3.2. Data Augmentation for DeepLabV3+ Model Training

Figure 7 showcases the variations in image data distribution of color contact lenses
influenced by various elements such as working conditions, camera brightness, and foreign
substances on the camera. Issues related to data bias also arise. To mitigate these, data
augmentation techniques were employed, as elaborated below:

Figure 7. Differences in image brightness caused by external factors such as site lighting, camera
lighting, and foreign substances on the camera.

In augmenting the training dataset: Images collected from manufacturing environ-
ments are subject to variations in brightness due to external factors such as workplace
lighting, camera lighting, and foreign substances on the camera lens. These variations
distort the image distribution, posing constraints when a deep learning model is trained
on limited data. Consequently, predictions for subsequently collected images might not
be accurate. To address this, we introduced variability in brightness levels by adding
different random values to each RGB (red, green, and blue) channel of the image. This
process, termed as “random brightness augmentation”, aids in mimicking different lighting
conditions, thereby ensuring the model’s robustness to changes in illumination.

Furthermore, to avert overfitting due to the specific location of features in the image,
we employed a “random flip augmentation” technique. Here, the image was randomly
flipped left–right or up–down. This augmentation simulates situations where the objects of
interest appear at different locations, effectively making the model invariant to the position
of these objects. The resulting augmented data were then used as the training dataset.
Figure 8 shows an example of augmenting multiple data from a single training data.
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Figure 8. Augmented images using Algorithm 1 (training dataset).

Algorithm 1 presents a method to augment image data for our training set. The
algorithm operates on an original image (img) over a specified number of iterations, thereby
creating a set of augmented images. To begin, it creates an empty list for the augmented
images and retrieves the dimensions of the original image. For each iteration, it follows the
subsequent steps:

First, it creates a copy of the original image. Then, it generates four random integers.
The integer “rand_flip” determines the type of image flip, and the other three integers,
namely, “rand_red”, “rand_green”, and “rand_blue”, are used to apply a random brightness
adjustment to the respective RGB channels of the image. Depending on the value of
“rand_flip”, the copied image is flipped either up–down or left–right.

Subsequently, for each color channel, the algorithm modifies the brightness by adding
the respective random value (“rand_red”, “rand_green”, or “rand_blue”) to each pixel,
ensuring the pixel values stay within the valid range of 0 to 255 using a clip operation. The
augmented image is then appended to the list.

After completing the iterations, the algorithm returns this list of augmented images,
which provide a diverse set of training data generated from a single original image.

In augmenting the test dataset: While different random values were added to the R, G,
and B channels in the training dataset, the same random value was added to the R, G, and B
channels of the original image in the test dataset. This is to simulate the potential variability
in image brightness caused by external factors. Additionally, image flip was not performed
on the test dataset to maintain consistency with real-world scenarios where images are
typically not flipped. It also allows us to fairly evaluate the model’s ability to generalize the
patterns learned from the training dataset to new data. Algorithm 2 describes the method
in detail, with the augmentation results shown in Figure 9.

Figure 9. Augmented images using Algorithm 2 (test dataset).

Algorithm 2 depicts a procedure to augment an image from the test set. The algorithm
operates on a single original image (img) and produces one augmented image. Initially, it
creates a copy of the original image. Then, it generates a single random integer, “rand_ch”,
which will be used for a global brightness adjustment across all RGB channels of the image.
This random integer is drawn from the range of −25 to 25. Subsequently, for each pixel
in the copied image, the algorithm adds “rand_ch” to the pixel’s value. A clip operation
is used to ensure the resulting pixel values remain within the valid range of 0 to 255. The
resulting image, which is now the augmented image, is then returned by the algorithm.
As a result, we get an augmented test image with a uniformly adjusted brightness level,
aiding in evaluating the robustness of the model against varying brightness conditions.
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Algorithm 1: AugmentTrainSet(img, iteration, augmented_images)

//Augment train images from an original image
Input
(1) img: Original image in RGB channel
(2) iteration: The number of iterations to perform
Output
(3) augmented_images: List of augmented images
Begin
1. augmented_images← emptylist
2. n← heightofimg
3. m← widthofimg
4. For i = 1 toiteration do
5. imgcopied ← copy of img
6. rand f lip ← random integer in the range − 1 to 1
7. randred, randgreen, randblue ← random integer in the range − 10 to 10
8. If rand f lip is − 1 then
9. imgcopied ← img[n− i, m− j] for all i in 1 to n and j in 1 to m
10. Else if rand f lip is 0 then
11. imgcopied ← img[i, m− j] for all i in 1 to n and j in 1 to m
12. Else if rand f lip is 1 then
13. imgcopied ← img[n− i, j] for all i in 1 to n and j in 1 to m
14. For each pixel p in red channel of imgcopied
15. p← clip(p + randred, 0, 255)
16. End for
17. For each pixel p in green channel of imgcopied
18. p← clip

(
p + randgreen, 0, 255

)
19. End for
20. For each pixel p in blue channel of imgcopied
21. p← clip(p + randblue, 0, 255)
22. End for
23. augmented_images.append

(
imgcopied

)
24. End for
25. Return augmented_images
END

Algorithm 2: AugmentTestSet(img, augmented_image)

//Augment test images from an original image
Input
(1) img: An original image in RGB channel
Output
(2) augmented_image: An augmented image
Begin
1. imgcopied ← copy of img
2. randch ← random integer in the range − 25 to 25
3. For each pixel p in imgcopied
4. p← clip(p + randch, 0, 255)
5. augmented_image = imgcopied
6. End for
7. Return augmented_image
End

3.3. Computing the Center Coordinates and Radii of FA and CA Using HCT

After splitting the segmented FA and CA areas obtained through DeepLabV3+ into
separate images (as shown in Figure 10), the HCT algorithm is employed for calculating the
center coordinates and radii. The HCT algorithm is commonly used for circle detection in
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images. The prior segmentation achieved by DeepLabV3+, which provides distinct FA and
CA regions, partitions the image effectively, reducing noise interference and improving the
accuracy of circle detection during the subsequent HCT process.

Figure 10. Flowchart of calculating center coordinates and radii using HCT after separating CA and
FA from the segmented image.

The HCT algorithm proceeds as follows:
Preprocessing: First, the input image is converted to grayscale and then smoothed

using Gaussian blur to reduce noise. Subsequently, the canny edge detection algorithm is
utilized to identify the edges associated with the circular shapes.

Circle detection: Next, the HCT generates a set of potential circle centers by considering
various combinations of edge points and radii. For each edge point and radius, the
algorithm calculates all possible circle centers and accumulates them in the Hough space.
During this process, the accumulator is incremented at the corresponding pixel positions
that intersect with the circle centers.

Circle selection: After the accumulation process, the Hough space is analyzed to
determine the most prominent circle centers. The centers with the highest votes are
considered as potential circle centers. Finally, the algorithm calculates the corresponding
radii for these centers.

In summary, the HCT detects circles by performing preprocessing steps such as
grayscale conversion and edge detection, generating potential circle centers through ac-
cumulation in the Hough space, and selecting the most prominent circle centers based
on votes. By determining the circle centers and radii, this algorithm accurately identifies
circles within the image.

In the evaluation metrics, we measure the CD depending on the parameter param1 of
the HCT. The HCT algorithm (Algorithm 3) is as follows:

3.4. Measurement of Center Deviation

Let (xColored, yColored) and (xFrame, yFrame) represent the center coordinates of CA (gray
area in Figure 11a) and FA (white area in Figure 11a), respectively, as calculated using HCT.
The intersection point of the vertical and horizontal green lines (blue lines) corresponds to
the center of FA (resp. CA), as shown in Figure 11a. Figure 11b shows an enlarged area of
the cross-rectangular region.

The CD is determined separately as the center deviation for each of the x-axis and
y-axis, with the formula given as follows:

Center Deviation(CD) = (|xFrame − xColored|, |yFrame − yColored|) (1)
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Algorithm 3: CalculatingHCT(img, dp, minDist, param1, param2, minRadius, maxRadius,
centerx, centery, radius)

//Detecting a circle to calculate the center of both CA and FA using HCT
Input
(1) img: an input image
(2) dp : The inverse ratio of the accumulator resolution to the image resolution
(3) minDist: Minimum distance between the centers of the detected circles
(4) param1 : The higher threshold of the two passed to the Canny edge detector
(5) param2 : Accumulator threshold for the circle centers at the detection stage
(6) minRadius : Minimum circle radius
(7) maxRadius : Maximum circle radius
Output
(8) centerx : x coordinate of the first circle′s center
(9) centery : y coordinate of the first circle′s center
(10) radius : radius of the first circle
Begin
1. gray← ConvertToGrayscale(img)
2. blured← ApplyGaussianBlur(gray)
3. edges← ApplyCannyEdgeDetection(blurred, param1)
4. h, w← get the height and width of ‘edges′

5. accumulator ← create a 3D zero array of size (h, w, maxRadius − minRadius)
6. For each edge point

(
xedge, yedge

)
in ‘edges′ do

7. For r in range(minRadius, maxRadius) do
8. For theta in range(0, 360) do
9. a← xedge − r ∗ cos(theta)
10. b← yedge − r ∗ sin(theta)
11. If a and b are within the image boundaries then
12. accumulator[a, b, r−minRadius]← accumulator[a, b, r−minRadius] + 1
13. End for
14. End for
15. End for
16. max_accumulator_value← find the maximum value in ‘accumulator′

17. circles← find the (a, b, r) such that accumulator[a, b, r] > param2 ∗
max_accumulator_value
18. centerx, centery, radius← circles[0]
19. Return centerx, centery, radius
END

Figure 11. (a) Center points of CA and FA in segmented image and (b) an enlarged area of the
cross-rectangular region. In this figure, the blue line represents the central axis of the CA, and the
green line represents the central axis of the FA.
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4. Experimental Results
4.1. The Number of Datasets

In our study, we used the dataset consisting of a total of 2440 original images. As
shown in Table 1, the distribution of images across different lens types was highly skewed,
with Lens2 and Lens4 having 1194 and 632 images, respectively, while Lens3 and Lens8
had only 6 and 21 images, respectively. This imbalance in data distribution poses a chal-
lenge when dividing the data into training, validation, and testing sets, as it may lead
to a lack of learning opportunities for certain lens types and increase uncertainty in real-
world predictions.

Table 1. The number of lens datasets.

Lens Type The Number of Images
in Original Dataset

The Number of Images
in Training Dataset

Augmented by
Algorithm 1 (Original
Dataset × Iterations)

The Number of
Images in Validation Dataset

The Number of Images
in Test Dataset
Augmented by

Algorithm 2

Lens 1 41 205 ( 41× 5) 41 41
Lens 2 1194 1194 ( 1194× 1) 1194 1194
Lens 3 6 198 ( 6× 33) 6 6
Lens 4 632 632 ( 632× 1) 632 632
Lens 5 193 193 ( 193× 1) 193 193
Lens 6 72 216 ( 72× 3) 72 72
Lens 7 51 204 ( 51× 4) 51 51
Lens 8 21 210 ( 21× 10) 21 21
Lens 9 32 192 ( 32× 6) 32 32

Lens 10 51 204 ( 51× 4) 51 51
Lens 11 50 200 ( 50× 4) 50 50
Lens 12 97 194 ( 97× 2) 97 97

Total 2440 3842 2440 2440

To improve our model’s predictive reliability for potential variations in image dis-
tributions due to internal influences such as lens types and lens position, and external
influences such as the working environment, camera brightness, and camera contamination,
we implemented an augmentation process for the datasets. This augmentation process in
the training set, executed via Algorithm 1, enhanced the original images by adding unique
random values to each RGB channel individually and conducted numerous random flips.
The “iterations” in Table 1 indicate the number of times augmentation was performed per
original image.

The original dataset was chosen as the validation set to verify our model’s general-
ization capabilities, assessing the augmented training data’s predictive accuracy on actual,
unmodified images. This approach was taken to ensure that the model could effectively
handle real-world data, which may not always be perfectly balanced or free from noise.

Lastly, we augmented the testing set using Algorithm 2, in which the same random
value was added to the RGB channels of the original images. This step was taken to assess
our model’s resilience and performance when predicting potential future data influenced
by internal and external factors.

As emphasized by Bianco et al. [25], it’s crucial to ensure that the pixel distribution
of images remains unchanged due to different lighting conditions during training. In
our study, we adopted this principle but used it to enhance diversity. We augmented
the training and testing sets from the original images by randomly transforming pixel
values and generating noise through random rotations. This process created distinct
pixel distributions for the training, validation, and testing sets, allowing us to train and
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evaluate our model on datasets with various characteristics that may occur in future real
manufacturing environments.

As shown in Figure 12, we used a total of 12 distinct types of lenses in this study.
Table 1 outlines the number of images per dataset. Additionally, Figure 13 represents the
distribution of the L2 distance (Euclidean distance) for the x and y axes of the CD (‖CD‖)
from the original images. Most data points fall within the ‖CD‖ interval of 0~5, with
the subsequent substantial frequencies found within the ‖CD‖ ranges of 5~10 and 10~15,
constituting the second and third most prevalent distributions, respectively.

Figure 12. Lens type (original images).

Figure 13. Histogram of the ‖CD‖ from the original dataset.

4.2. DeepLabV3+ Training Parameters and Prediction Evaluation Results

In this study, we utilized the DeepLabV3+ model for semantic segmentation of the
input images. The training settings outlined in Table 2 were selected based on empirical
data, hardware constraints, and the default settings of the DeepLabV3+ model. To avoid
GPU memory exhaustion, the batch size was set to eight, and the number of epochs
was set to 30. This setting was chosen as the performance plateaued with no significant
improvements in both the training and validation losses, and as shown in Figure 14, it was
sufficiently trained by this epoch count. The learning rate and the upsampling interpolation
method followed the DeepLabV3+ model’s default settings, which have been proven to
provide satisfactory results in numerous semantic segmentation tasks. The optimizer was
chosen based on its proven efficacy and compatibility with the DeepLabV3+ model.



Sensors 2023, 23, 6533 12 of 18

Table 2. DeepLabV3+ training settings.

Epoch 30
Optimizer Adam
Batch size 8

Learning rate 0.007
Image size Width: 512, height: 512, channel: 3 (RGB)

Preprocessing Min–Max scaling
Kernel initialization HeNormal

Upsampling interpolation Bilinear interpolation

Figure 14. (a) Shows the training and validation losses per epoch, and (b) shows the training and
validation MmIoU per epoch.

The mean intersection over union (mIoU) is a prevalent metric in semantic segmen-
tation tasks. It quantifies the overlap between the predicted and ground truth regions
for each class, and is computed as the mean of Intersection over Union (IoU) scores per
class. The IoU is the ratio of the intersection to the union of the predicted and ground truth
regions. In this study, the weights of the model were evaluated based on when the mean of
the mIoU (MmIoU) of the validation dataset was the highest during the training process.
The formula for the MmIoU is as follows:

MmIoU =
1
N

N

∑
i=1

(
1
M

M

∑
j=1

TPj

TPj + FPj + FNj

)
i

(2)

In this formula, N represents the number of images, i represents the i-th image, M
represents the number of pixels, and j represents the j-th pixel of an image. TP represents
the number of pixels that are correctly predicted as belonging to a class, FP represents the
number of pixels that are incorrectly predicted as belonging to a class, and FN represents
the number of pixels that are incorrectly predicted as not belonging to a class.

Table 3 presents the MmIoU for the training, validation, and test datasets at the point
during the model’s training process when the MmIoU was highest for the validation dataset.
In Figure 14, we present two distinct plots: (a) illustrates the trend of loss per epoch, while
(b) graphically depicts the evolution of MmIoU across the epochs.

Table 3. MmIoU results obtained from the deep learning model.

Dataset MmIoU
Training dataset 0.9723

Validation dataset 0.9675
Test dataset 0.9660
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4.3. Evaluation Results for CD Prediction

The center coordinates of the CA and FA predicted by our proposed method may
not perfectly match the ground truth of centers. Moreover, in cases where the predicted
location has no direct relation with the measured location, the accuracy of the prediction
may not be precisely reflected by the CD alone. Therefore, we aim to validate the accurate
prediction of the center coordinates along with the evaluation based on CD.

In the evaluation formula and metrics, the hat symbol (ˆ) represents the predicted
value, and its absence indicates the ground truth value. Additionally, the bar symbol ( ) in
evaluation metrics represents the average.

For the center coordinates of the CA and FA, defined as (xCA, yCA) and (xFA, yFA),
respectively, we evaluate the following error metrics ExCA, ExFA, EyCA, and EyFA. The
formulas are as follows:

Error o f x axis in CA (Ex CA) = |xCA − x̂CA|
Error o f x axis in FA (Ex FA) = |xFA − x̂FA|
Error o f y axis in CA (Ey CA) = |yCA − ŷCA|
Error o f y axis in FA(Ey FA) = |yFA − ŷFA|

(3)

The mean of the following formulas represents the L2 norm (Euclidean distance) of
the mean colored area error (MCE) and mean FA error (MFE) used as evaluation metrics
for the predicted and actual values in a two-dimensional coordinate system for both the
CA and FA. The detailed formulas are as follows:

‖MCE‖ = 1
N ∑

√
ExCE

2 + EyCE
2

‖MFE‖ = 1
N ∑

√
ExFE

2 + EyFE
2

(4)

The following formulas represent the mean center deviation error (MCDE), which is
the average difference between the predicted CD and the actual CD of the sampled data.
The detailed formulas are as follows:

xMCDE = ||xCA − xFA| − |x̂CA − x̂FA||
yMCDE = ||yCA − yFA| − |ŷCA − ŷFA||

‖MCDE‖ = 1
N ∑ |

√
(xCA − xFA)

2 + (yCA − yFA)
2

−
√
(x̂CA − x̂FA)

2 + (ŷCA − ŷFA)
2 |

(5)

In this study, we compared our proposed method, which utilized the weights achiev-
ing the highest MmIoU on the validation dataset, solely with the approach proposed by
Kim et al. [20]. Kim et al.’s study is the only work that specifically addresses the mea-
surement of lens centroid deviation akin to our research objective and uses the same lens
dataset, thereby making it an ideal benchmark for our study. While we appreciate the
merits of a broader comparative evaluation, the specificity of our research focus and data
constraints have led us to use Kim et al.’s method as the sole point of comparison.

To conduct the comparison of these two methods, we used the test dataset. The results
are presented in Table 4. Both “p1(param1)” and “p2(param2)” in the table are parameters
of the HCT, and the evaluation metric values remain unchanged with any variation in “p2”.
Their definitions can be referenced in Algorithm 3 discussed earlier. The rationale behind
this exclusive comparison lies in the unique focus of our research.

Table 4 demonstrates that the proposed method outperformed the method by Kim et al. [20]
in terms of lower errors across all evaluation metrics, with the lowest error rate for the Kim et al.
method observed at p1 = 40. Furthermore, the ‖MCDE‖ of the proposed method decreased
by 71.2% compared with the Kim et al. [20] method at p = 40. This can be attributed to the
effective noise reduction in the original images using DeepLabV3+ in the proposed method,



Sensors 2023, 23, 6533 14 of 18

leading to more accurate predictions of the center coordinates of the CA and FA during the
HCT process.

Table 4. Evaluation metrics (unit: pixels).

x and y Axis Error CA and FA Error CD Error
Method p1 Image

Size
—
ExCA

—
EyCA

—
ExFA

—
EyFA ‖MCE‖ ‖MFE‖ –

xMCDE
–
yMCDE ‖MCDE‖

Proposal method 1

512

1.329 2.639 1.373 1.358 3.314 2.101 1.592 2.766 2.902
80 7.083 8.491 4.06 4.003 12.018 6.097 8.295 9.557 12.993
70 5.6 7.212 4.808 4.727 9.974 7.182 7.922 9.102 12.378
60 4.242 5.929 5.139 5.009 8.02 7.619 7.277 8.227 11.168
50 2.735 4.536 5.775 5.778 5.885 8.639 6.563 7.948 10.414
40 2.161 3.89 6.293 6.101 4.976 9.23 6.552 7.676 10.075
30 2.364 4.106 10.955 11.205 5.297 16.273 11.131 12.475 16.93
20 2.847 4.536 23.842 24.137 6.013 34.596 23.304 24.576 34.178

Kim et al. [20]

10 4.998 5.918 34.81 35.495 8.792 50.856 33.325 34.662 48.911

4.4. Extension of CD Prediction: Classification of Defects and Normal

The criteria for CD defects in color contact lenses are defined as follows: The CD along
the x-axis or y-axis is 0.4 mm or more, as shown in Formula 6, with the radius (r f rame) of
the FA being 21 mm. The formula for converting the 0.4 mm criteria for CD defects into
pixel units is depicted in (7).

Center deviation de f ects = max
(∣∣∣x f rame − xcolored

∣∣∣, ∣∣∣y f rame − ycolored

∣∣∣)
≥ Criteria f or center de f ects(pixel)

(6)

Criteria f or center de f ects(pixel) =
0.4 mm
21 mm

× r f rame × 2 (7)

In Section 4.3, we addressed the regression problem of CD and compared our results
with the research conducted by Kim et al. [20]. In this part of the study, where we extend our
research, we aim to carry out the classification of center deviation defects. For the sake of
comparison, we will consider not only the work of Kim et al. [20], but also a different study
by the same author, Kim [12], that dealt with defective classification of color contact lenses.
Kim [12] used various CNNs to classify the defects of color contact lenses, and we intend
to make our comparison using the three models that yielded the best results in that study,
namely, GoogLeNetV4 [26], ResNet101 [24], and DenseNet121 [27] in our datasets. The
learning configuration of the models is the same as in the previous study [12]. The results
of classifying defects based on center deviation criteria in pixel units are given in Table 5.
Furthermore, Figure 15 depicts the loss values according to epochs for GoogLeNetV4,
ResNet101, and DenseNet121. Upon review, it can be inferred that each of these models
has been adequately trained in validation dataset.

Table 5. Evaluation metrics for CD defects classification from test dataset.

Method Accuracy Precision Recall F1 Score
Proposal method 0.9298 0.7853 0.8712 0.826

Kim et al. [20] (p1 = 40) 0.6672 0.3568 0.9277 0.5147
GoogLeNetV4 0.8445 0.8812 0.9335 0.9066

ResNet101 0.8683 0.9192 0.9178 0.9185
DensNet121 0.8732 0.9416 0.899 0.9198
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Figure 15. Losses per epoch for each model: (a) GoogLeNetV4, (b) ResNet101, and (c) DenseNet121.

As indicated in Table 5, although our proposed method shows the highest accuracy, it
does not yield the highest values for precision, recall, and F1-score. However, it is worth
noting that the classification in our method is based on measuring the L2 distance of the
center deviation (CD). In the actual manufacturing process of color contact lenses, the need
to adjust the machines that print the colored area is as significant as defect classification.
Therefore, the measurement of CD becomes indispensable. Furthermore, considering the
importance of CD measurement for machinery adjustment, it becomes apparent that the
value of our method extends beyond mere classification accuracy and offers practical utility
in real-world scenarios.

5. Concluding Remarks
5.1. Summary

In this study, we proposed a method for measuring the CD of color contact lenses using
HCT after reducing image noise using DeepLabV3+ trained on augmented original images.
This approach created a training dataset by augmenting the original images, allowing our
model to learn from a variety of cases and predict images with potential distributions
that have not yet been observed. The MCDE of our method showed a 71.2% reduction
compared with Kim et al. [20], suggesting that our proposed method could provide an
effective solution for measuring the CD of color contact lenses.

5.2. Discussion and Future Work

Furthermore, we introduced the concept of center deviation error (CDE) as the differ-
ence between the predicted CD and the actual CD. This measure was particularly helpful
to gauge the performance of our method under different scenarios. Let the center coordi-
nates of the CA and FA be (xCA, yCA) and (xFA, yFA), respectively, with (x̂CA, ŷCA) and
(x̂FA, ŷFA) being the predicted results of CA and FA, respectively. The CDE is defined
as follows:

CDE =

∣∣∣∣√(xCA − xFA)
2 + (yCA − yFA)

2 −
√
(x̂CA − x̂FA)

2 + (ŷCA − ŷFA)
2
∣∣∣∣ (8)

However, there were certain limitations observed in our method. In some cases, the
segmentation process via DeepLabV3+ was not successful. As can be seen in Figure 16,
the CDE tended to be higher when the CA was divided into two separate areas rather
than being composed of a single area. These limitations suggest that our method might
encounter difficulties in dealing with more complex or unexpected scenarios.



Sensors 2023, 23, 6533 16 of 18

Figure 16. Four cases that had the highest CD error (CDE) predicted using the proposed method on
the original dataset. (a) CDE: 27.664; (b) CDE: 11.416; (c) CDE: 12.245; (d) CDE: 17.443.

In our future work, we first aim to minimize the CD by improving our proposed
method, employing post-processing techniques, and optimizing the predicted image from
DeepLabV3+ to more closely resemble a perfect circle. This would be particularly beneficial
in handling images where CA is segmented into multiple areas, thereby enhancing the
effectiveness of our CD measurement approach. By considering the results of Jin et al. [28]
and Zhao et al. [29], subsequently, we plan to address the learning challenges in new
domains by leveraging the powerful techniques of deep learning, namely, transfer learning
and domain adaptation. These methods effectively transfer and apply the knowledge
learned from existing source domains to new target domains, enhancing performance even
when learning in specific domains is challenging. Based on the successful outcomes of these
studies, we anticipate that these methods will significantly contribute to solving learning
problems in new domains.
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