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Abstract: As an important computer vision technique, image segmentation has been widely used
in various tasks. However, in some extreme cases, the insufficient illumination would result in a
great impact on the performance of the model. So more and more fully supervised methods use
multi-modal images as their input. The dense annotated large datasets are difficult to obtain, but the
few-shot methods still can have satisfactory results with few pixel-annotated samples. Therefore, we
propose the Visible-Depth-Thermal (three-modal) images few-shot semantic segmentation method. It
utilizes the homogeneous information of three-modal images and the complementary information
of different modal images, which can improve the performance of few-shot segmentation tasks.
We constructed a novel indoor dataset VDT-2048-5i for the three-modal images few-shot semantic
segmentation task. We also proposed a Self-Enhanced Mixed Attention Network (SEMANet), which
consists of a Self-Enhanced module (SE) and a Mixed Attention module (MA). The SE module
amplifies the difference between the different kinds of features and strengthens the weak connection
for the foreground features. The MA module fuses the three-modal feature to obtain a better feature.
Compared with the most advanced methods before, our model improves mIoU by 3.8% and 3.3% in
1-shot and 5-shot settings, respectively, which achieves state-of-the-art performance. In the future,
we will solve failure cases by obtaining more discriminative and robust feature representations, and
explore achieving high performance with fewer parameters and computational costs.

Keywords: multi-modal images; few-shot semantic segmentation; three-modal registration

1. Introduction

In recent years, many computer vision tasks have promoted dramatic advances, includ-
ing salient object detection [1–5], object detection [6–8], and semantic segmentation [9–11].
Among them, semantic segmentation is gradually becoming a research hotspot. Based on
the deep convolutional neural networks, many methods such as dilated convolutions [12]
were proposed. With the iterative development of these methods, the semantic segmenta-
tion performance is further improved.

Fully supervised semantic segmentation works [13–17] based on deep learning have
achieved satisfactory results, even if they only use single-modal image as their model’s
input. Despite the structure of deep networks being effective, it still has some limitations
that the model needs a large number of annotated examples. Especially for pixel-level
prediction tasks like semantic segmentation, the cost of data is heavy, and it requires
substantial human effort. To reduce the dependence on data, many methods have been
proposed that do not require all images to be labeled [18–21]. These approaches alleviate the
data-hunger issue effectively, but the models do not have enough generalization capability
with the limited annotated training images. The few-shot semantic segmentation methods

Sensors 2023, 23, 6612. https://doi.org/10.3390/s23146612 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146612
https://doi.org/10.3390/s23146612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7636-3460
https://orcid.org/0000-0001-7121-2367
https://doi.org/10.3390/s23146612
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146612?type=check_update&version=2


Sensors 2023, 23, 6612 2 of 18

still can develop the generalization capability with limited examples and achieve state-of-
the-art results [22,23].

However, under insufficient illumination or complex working conditions, the visible
image cannot provide enough information. Without enough information, the performance
of the model to be not satisfactory as we expected. To deal with this challenge, many
works proposed using Visible-Depth/Visible-Thermal (two-modal) images as their model’s
input [24–28]. The input of other modality provides complementary information to the
visible images (V) so that the model can tackle the more difficult scenarios. To accommodate
the limited number of two-modal images, the two-modal few-shot methods [11,29,30] are
proposed. They not only propose the method, but also produce the corresponding dataset,
respectively. Unfortunately, their datasets also have some flaws. Usually, the dataset
should contain 20 categories. But the dataset of [31] only has 9 categories, and [12] set
up the dataset with 16 categories. There are still some problems with the previous work.
Depth images (D) can provide depth information, but fail when objects stay close together.
Thermal infrared images (T) can provide greater support in nighttime scenes, but struggle
to provide valuable information when objects are at a similar temperature.

To capture as much information as possible in the same scene, we construct our dataset
VDT-2048-5i. The original dataset VDT-2048 [32] has 2048 sets of three-modal images. We
select 1037 sets images of original dataset and divide it into 20 categories as usual settings.

In the process of shooting the dataset, we find that there is no three-modal camera
available directly, so we build a shooting platform ourselves using two cameras. Because
the two cameras do not have the same field of view, we perform registration work on
them. Before that, there is a lot of good work on two-modal calibration [33,34] and camera
registration [35,36]. We also gained a lot of help from these methods.

For the problem setting, we keep in line with the existing methods. Support images
are images with annotations, while query images are images without annotations. We
present our model with 1-shot scenario, each query image from the novel class has only
one support image (images with annotations).

We propose a novel Self-Enhanced Mixed Attention Network (SEMANet), which
consists of a backbone network, a self-enhanced module, and a mixed attention module as
shown in Figure 1. We use the same backbone network as HSNet [37], the network first
extract features from different convolution layers, then exploits diverse semantic/geometric
information representations through 4D correlation calculation. We use multi-scale convolu-
tion layers to process high-level semantic information and low-level geometric information,
finally output predictions in a top–down manner.
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Figure 1. This is a brief diagram of the overall structure of SEMANet proposed by us.

The self-enhanced module amplifies the difference between the foreground feature
and the background feature of the single modality and strengthens the weak connection
for the foreground features at the same time. Then, the feature of three single modality
is concatenated and fed into the mixed attention module. In SE module, the foreground
feature is further enhanced and the noises of the feature are filtered. The SE module also
obtains the core information and overlay the information on the original feature, which
can strengthen the three-modal feature. When the features are processed from the mixed
attention module, a better feature representation is obtained based on the complementary
information between the three modalities. The decoder of the system uses the better feature
obtained by the MA module to obtain the prediction.
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Extensive comparative experiments are conducted on the novel three-modal dataset,
VDT-2048-5i, which can verify the validity of our model. The dataset contains many images
under insufficient illumination, and most of the foreground objects do not account for a
large percentage, which is a great challenge to the model.

The main contributions of this paper are summarized as follows:

(1) As far as we know, it is the first time that three-modal images are used as input
for few-shot semantic segmentation. The effectiveness of the three-modal fusion
mechanism designed by us is proved by ablation experiments.

(2) We make a novel V-D-T few-shot semantic segmentation dataset VDT-2048-5i and
conduct many comparison experiments with the existing methods. We also prove
that the effectiveness and necessity of three-modal few-shot semantic segmentation.

(3) We design a novel Self-Enhanced Mixed Attention Network (SEMANet). It includes
an SE (Self-Enhanced) module for enhancing three-modal features and a MA (Mixed
Attention) module for fusing three-modal features. The experimental results prove
that the proposed SEMANet achieves the state-of-the-art performance.

The rest of this article is organized as follows. In Section 2, we review the related work
of natural image segmentation and small sample semantic segmentation based on CNN. In
Section 3, we elaborate on our method. In Section 4, we describe the construction process
of data set. In Section 5, we present experiments, ablation studies, and visual analysis. In
Section 6, we summarize this conclusion.

2. Related Work
2.1. Single-Modal Segmentation

Semantic Segmentation is an important task in the field of computer vision, which aims
to assign each pixel in an image to a predefined semantic category, so as to realize pixel-
level understanding and segmentation of an image. In recent years, semantic segmentation
methods have made great progress based on deep learning technology [38]. Rehman
et al. [39] proposed an encoder–decoder-based model named BrainSeg-Net to solve the
problem of deep information loss. The 3D U-Net [40] provides faster, higher accuracy, and
more consistent segmentation across GAs. RAAGR2-Net [41] aims at minimizing the loss of
information during depth feature extraction. A novel DE-ResUnet based on texture features
and background knowledge is proposed by Wu et al. [42] for brain tissue segmentation.
Because thermal infrared information [43] is not affected by illumination changes and
extreme weather, semantic segmentation using thermal images has attracted great attention.
Maheswari et al. [44] presented a top–down attention and gradient alignment-based graph
neural network (AGAGNN) to discover the crucial semantic information. EdgeFormer
was proposed by Wang et al. [45] to promote the segmentation performance in electrical
equipment’s edges and interiors. CEKD [46] transfers the edge detection capability of an
RGB-T teacher network to a thermal-only student network.

2.2. Multi-Modal Segmentation

The introduction of multi-modal images into semantic segmentation has gradually
become the main means. Yadav et al. [47] segmented the RGB-D images using Random
Henry gas solubility optimization-fuzzy clustering (RHGSO-FC). Zhang et al. [48] proposed
a multi-scale network for multi-level feature fusion of two-stream inputs to perform the final
segmentation. At the same time, high-level features are used to output the corresponding
loss function to help the model identify the differences between different modes, which
achieved great results in the same dataset as MFNet [49]. PST900 [34] proposed a dataset
based on underground scenarios, and proposed a multi-stream input network to add
additional sources of information to the model, achieving good results. HeatNet [50]
proposed a teacher–student network to reduce parameters, and introduced a dataset based
on street view. Lan et al. [51] proposed a two-stage network, which first extracts single-
mode features, and then merges and improves them in the second stage. Experiments
on two RGB-T image segmentation datasets [49,51] show that this method can effectively
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extract cross-pattern features to complete interaction, and significantly reduce the number
of model parameters.

For the methods which use depth images as auxiliary information, Wang et al. [52]
introduce a deconvolutional neural network to model specific features, which greatly
improved the segmentation accuracy of the model. Jiang et al. [53] propose an encoder–
decoder network structure that uses a residual block to avoid the model degradation
problem. They also carry out separate supervised learning of different layers of the decoder
to better optimize the parameters of the model. They achieve good results on indoor RGB-D
semantic segmentation. Wu et al. [54] propose a network that can integrate the geometric
constraint into the conventional receptive field. With a depth-aware contextualized atten-
tion module, the network can improve the convolution and not introduce extra learning
parameters. It obtains satisfactory results on both indoor and outdoor RGB-D semantic
segmentation benchmarks.

2.3. Few-Shot Semantic Segmentation

In recent years, few-shot learning has been used to solve the problem of the limited
samples in semantic segmentation, and has significantly improved the performance of the
model. OSLSM [31] proposed the rule of few-shot semantic segmentation and introduces
a double-branch structure to transfer the knowledge of the support sets to the query sets.
CANet [55] proposed a double-branch network, which uses the shared weights backbone
to extract features, and finally uses iterative modules to improve the segmentation results
step by step. PGNet [56] proposed a graph network based on the attention mechanism,
which establish an effective long-range context relationship. The model can more effectively
extract the knowledge from the support set to guide the model. PFENet [57] leverages high-
level features and introduces the prior acknowledgment to improve the accuracy of the
model and retain high generalization. ASGNet [58] uses the superpixel-guided mechanism
to cluster the prototype feature and use the prototype to guide the model to allocation.
HSNet [37] proposed a center-pivot 4D Conv kernel and stacked the kernels to deal with
the correlation of different scales. It achieves real-time inference. ASNet [59] proposed the
attentive squeeze network which uses stridden global self-attention to squeeze semantic
correlations into a foreground map. It creates state-of-the-art performance.

In addition, Zhang et al. [29] introduce depth images into the model to provide addi-
tional information, and uses late fusion to improve the segmentation accuracy.
V-TFSS [11] proposed a network for visible and thermal images. The network analyzes the
difference between visible and thermal images, and proposes different prototypes to guide
segmentation. These works have a great inspiration for our work.

3. Methods
3.1. Problem Setting

According to the rules set by Shaban et al. [31], few-shot semantic segmentation task
consists of two datasets: the base class dataset Dbase and the novel class dataset Dnovel . Our
model is trained on the base class dataset Dbase, obtains the corresponding knowledge, and
tests on the novel class dataset Dnovel on this basis. All the samples are divided into two
parts, Cbase and Cnovel . Cbase only appear in the base class dataset Dbase, while Cnovel only
appear in novel class dataset Dnovel , which mean Cbase ∩ Cnovel = . The specific settings of
the dataset are as follows:

(1) Dbase =
(

xrgb
i , xth

i , xd
i , y(C)i

)N

i=1
, xrgb

i represents the visible image, and xth
i represents

the infrared image, xd
i represents the depth image, and all three are pixel-level cor-

responding pictures of the same scene. y(C)i represents the corresponding mask of
the base class images. C(C ⊂ Cbase) represents the base class in the training, and N
represents the number of base images.
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(2) Dnovel =
(

xrgb
j , xth

j , xd
j , y(C)j

)n

j=1
, n represents the number of sets of visible, infrared,

and depth image pairs. By comparing the predicted results of the model with its
corresponding ground truth image, we can test the performance of the model.

To sum up, the goal of few-shot semantic segmentation is to train the segmentation
and generalization ability of the model on the base class dataset Dbase, so as to perform
the segmentation of novel class dataset Dnovel that have never been seen before. In the
process of training, the model will randomly divide the samples of the same category into
support set and query set. According to the corresponding settings, the model assigns a
corresponding number of support images to each query image. During the testing phase,
the model performs semantic segmentation tasks on novel class that has never been seen
before to test the performance of training on the base class.

In general, if K annotated support set images are assigned to each query image, we
describe this type of problem as K− shot segmentation task, usually the few-shot methods
employ 1− shot and 5− shot. If there are C semantic categories in a single image, then
we describe this type of problem as C− way segmentation task. This paper uses 1− way
segmentation task.

3.2. The Proposed Model

As shown in Figure 2, we propose a novel network for three-modal few-shot semantic
segmentation tasks. We use images of three modalities in the same scene to compensate for
the lack of information in single-modal scenes and to further improve the performance of
two-modal scenes. We present two main modules, the self-enhanced module, and the mixed
attention module. The former uses different convolutional layers to enhance the similar
feature information of the same modality, it also amplifies the differences between the
foreground feature and the background feature. The latter uses a dual attention mechanism
to fuse the information among the three modalities, thus enhancing the representativeness
of the correspondence between the query samples and the support samples. So, it can
provide a better feature representation for the decoder of the network.
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Figure 2. The overall architecture of our SEMANet, which includes the self-enhanced module (SE)
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3.3. Feature Extraction

In the process of extracting the features of the three modalities, we consider that there
is no large variability, so we use the same encoder for feature extraction. For the images
of support set and query set, we use a decoder with shared weights (because the features
of the support images and the query images are highly correlated). Here, we use the
pre-trained ResNet-50 [60] to extract the feature. During the process of training, in order to
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reduce the number of learnable parameters of the model, we freeze the parameter updates
of the backbone network.

As mentioned in HSNet [37], we compute the similarity between features by using
deeply stacked 4D convolutional layers to gradually aggregate the relevant information
from the input into a global context. We gradually compress its dimensionality, and then
process the correlation to derive more representative features for subsequent operations.
We use the same backbone network to extract the features of the three modalities, then let
the features interact with their corresponding mask to activate the foreground region.

We obtain the enhanced support set features, and compute the correlation with the
query set features which obtained from the decoder. Because of the large differences
between the three modalities, the support image and the query image features are computed
between the same modality, and the cross-modal correlation is not involved here.

3.4. Self-Enhanced Module

The self-enhanced module is mainly used to obtain the corresponding feature matrix
by aggregating and searching the features in different directions. The matrix is used as a
parameter to enhance the features of the model. The features of the three modalities will be
handled separately at this stage. The following is a brief introduction of the single-modal
features as an example.

The corresponding relationships between the support images and the query images
are processed by the meta-learner, which we call enhanced features. It will be fed into
the convolutional layer through the linear layer. The features will pass through two
gating layers. The two convolutional layers will perform an aggregated search in different
directions of the features using conv1d and conv2d to obtain the corresponding feature
matrices α1 and α2. We adjust the parameters of the convolutional layer; they can effectively
cover all positions of the original features without missing the relevant information at
the edges.

α1 = (θ1x + b), (1)

α2 = (θ2x + c), (2)

After obtaining the corresponding feature matrices, α1 and α2 are put through different
activation functions, Sigmoid activation function is used to strengthen the weak connection
among the foreground feature, Tanh activation function is used to amplify the gap between
the foreground feature and the background feature. Then, we obtain two parameter
matrices, assign different weight coefficients m1 and m2 to the two matrices, and obtain the
corresponding parameter matrices β1 and β2.

β1 = m1 × (tanh(α1)), (3)

β2 = m2 × (Sigmoid(α2)), (4)

After that, the obtained β1 and β2 are multiplied at the element level to obtain the
final parameter matrix δ. Because the foreground region and the background region are
relatively distinct in our dataset, we assign the same weights to two feature matrices in our
experiments, m1 and m2 are set to 1.0.

δ = β1 × β2 (5)

Finally, unlike the previous work [61], we abandon the graph convolution layer to
avoid the excessive amount of model parameters, it can also avoid the convolution layer that
cannot converge better because of the few samples. We add δ with the features convolved
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with residual convolution, elemental multiplication is not used to avoid excessive damage
to the original features, which affects the effect of cross-modal fusion in the next stage.

F = δ + Residual(x), (6)

Residual(·) represents the residual convolution, + represents the summation at the
element level. After this series of operations, we amplify the difference between the
foreground feature and the background feature of the single modality. We also strengthen
the weak connection for the foreground features at the same time, which can prevent the
feature from missing in the subsequent fusion process.

After passing the self-enhanced module, we obtain the enhanced feature representa-
tions of the three different modalities. We concatenated them in the channel dimension and
used them as input for the next stage.

3.5. Self-Enhanced Module

The features F obtained from the self-enhanced module will pass through two sub-
modules of the mixed attention module, respectively, for the further fusion of features.

In the spatial attention module, the feature F will pass through the mean and the
maximum operation, respectively, the former is used to filter out the noises and obtain the
overall situation of the features, while the latter enhances the foreground features. We con-
catenate them and send them to the convolutional layer for further information extraction,
Sigmoid activation function is used to sparse the distance between the foreground feature
and the background feature, then obtain the weight coefficient γ1.

γ1 = Sigmoid(Cat(Mean(F), Max(F))), (7)

Cat(·) represents concatenate, and the obtained weight coefficients are multiplied
with the original features at the element level, then they are superimposed on the original
features to obtain the feature F1.

The feature F is more focused on the core information in the channel attention module.
We use Avgpool function to obtain the prominent representation of the features and use
function to transform the four-dimensional features into two dimensions. The information
is extracted by two consecutive linear layers with different activation functions, which are
later expanded to the same dimension as feature F. We obtain the weight coefficient γ2.

γ2 = expand( f c2( f c1(Avg(F)))), (8)

expand(·) represents the expand operation on the features, and the obtained weight
coefficients are processed in the same way as in the spatial attention module to obtain the
feature F2.

Ff inal = Conv(Cat(F1, F2)) = Conv(Cat(γ1 × F + F, γ2 × F + F)), (9)

The features F1 and F2 obtained from the two sub-modules are concatenated, then
send to the attention decoder to process the features.

The attention decoder makes the edge of the foreground feature smoother and acceler-
ates the convergence of the model to obtain the final feature Ff inal . Then, send it to the final
decoder to output the prediction.

3.6. Our Network

The decoder of the system decodes the features obtained from the self-enhanced mod-
ule and the mixed attention module to obtain the prediction output logit_mask. logit_mask
is calculated with the target image’s mask target to obtain the loss of the training process,
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then use it for backpropagation to update the model parameters. logit_mask pass through
the argmax function to obtain the final prediction map Pred.

Pred = argmax(logit_mask) (10)

The core of few-shot semantic segmentation task is to find similar relations between
the query sets and the support sets, so we propose our network to enhance and fuse the
representation of similar relations between different modalities. First is the self-enhance
of single-modal features, using a series of operations to strengthen the weak connections
between similar features, it also amplifies the gap between the foreground feature and
the background feature. After that, send it into the mixed attention module to fuse the
information between different modalities. It uses coefficient matrices with a different
emphasis to strengthen the features. It also extracts the complementary information
between different modalities to further enhance the feature. The features are improved
gradually until the final feature representation is obtained. In Section 5, the results of
experiments further prove our point of view.

4. Dataset

For few-shot semantic segmentation tasks, high-quality data are especially important,
because the number of samples is too low. Currently, there is a gap in three-modal semantic
segmentation datasets both at home and abroad.

To do multi-modal few-shot semantic segmentation, we constructed a multi-modal
semantic segmentation dataset VDT-2048-5i and conducted subsequent experiments based
on it. The final dataset contains 20 categories, 1037 sets of three-modal images, and their
corresponding mask in total. The image sizes are all set to 480 × 640. The dataset and code
are available at: https://github.com/VDT-2048/SEMA (accessed on 17 July 2023).

4.1. Composition of the Hardware

For RGB-D data acquisition, we use Microsoft’s Kinect V2 camera. Kinect V2 camera
can collect the projected infrared reflection and use the Time of Flight (TOF) method to
obtain depth information. During the shooting process, RGB images and highly aligned
NIR images, and depth images are produced, respectively, which is an important basis for
subsequent registration work. Depth, RGB, and NIR images are acquired by installing ROS
under Linux and calling iai_kinect2 and libfrekinect packages under ROS.

For the acquisition of thermal infrared images, we use a FLIR thermal imaging camera.
This is because the FLIR A655 thermal imaging camera has considerable advantages in
temperature measurement accuracy, stability, image quality, and function settings. In
addition, the image acquisition method of this camera is relatively simple and can be used
by installing the drivers and software from the official website of the FILR camera.

During the processing of V-D-T data, the depth data are more difficult to handle
because it is difficult to display the corner points of the checkerboard under normal cir-
cumstances. This makes it impossible to use a uniform process for registration directly
with V-D-T, which greatly increases the difficulty of the registration process. In this paper,
we find that for the Kinect V2 camera’s image generation mode, the NIR images and
depth images generated by it can be considered to be fully calibrated, so that the V-D-T
registration process can be transformed into a Visible-NIR-TIR registration process, further
simplifying the task by such a transformation. When the two cameras are calibrated and
registered, the two cameras and the relative position relationship with the collected object
are fixed.

The two cameras were mounted and kept fixed in the experimental position as shown
in Figure 3, including the relative position between the cameras (fixed by the camera stand),
the position of the cameras to the robot (fixed by the robot head), and the distance between
the cameras and the shooting target (which was indicated by ensuring the position of the
robot and the shooting platform), where the shooting distance was set to 2 m by repeated
experiments.

https://github.com/VDT-2048/SEMA
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4.2. Construction of the Dataset

After the registration parameters are obtained, the image data of the three modes of
the target are collected without changing the overall position of the hardware. The process
flow of this project is as follows:

First, place the hardware in an indoor scene. The object is photographed by category.
Then, the multi-modal image is intercepted using the screenshot frame position obtained
during the preprocessing process. It does not need to be recalculated because the shooting
position and the distance from the lens to the target object remain unchanged. Finally, the
thermal infrared and visible images are reconstructed using the previously calculated align-
ment parameters. Since the relative camera positions remain unchanged, the processing
yields highly aligned images.

Specifically, we set up different lighting and different backgrounds for shooting various
objects. Three levels of normal light, low light, and dark light are used to imitate the
working scenes of the robot in different lighting environments, and different backgrounds
are set or blocked to simulate the cluttered working scenes in domestic environments.

In this paper, a total of 20 categories of common items are photographed under dif-
ferent illumination and backgrounds. According to the way the task of few-shot semantic
segmentation, to facilitate cross-validation of the algorithm performance, the images are di-
vided the 20 different categories into 4 different folds (sets of subclasses) without repetition
as shown in Table 1.

Table 1. Composition of each fold of the VDT-2048-5i dataset.

Fold Test Classes

Fold-0 Beverage Cup Facial cleanser Liqueur Shampoo
Fold-1 Apple Cigarette Cosmetic Dragon fruit Orange
Fold-2 Book Keyboard Ping pong paddle Power strip Router
Fold-3 Banana Electric drill Hammer Mouse Stapler

The number of each category and the corresponding percentages are shown in Figure 4.
The annotation aspect of the dataset is similar to the semantic segmentation dataset, all
pixels of each image need to be annotated. For the few-shot task, it is considered that only
one class of foreground exists for each image, so the final mask image obtained is a binary
image with the foreground region being 1 and the background region being 0, as shown in
Figure 5. Finally, it should be noted that since the dataset is constructed with insufficient
illumination and complex background temperature, so the NIR images are used for image
annotation.
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5. Experiment
5.1. Setup Details

We adopted ResNet-50 [60], which pre-trained on ImageNet [62], as the backbone net-
work to extract features. During training phase, we freeze the parameters of the backbone
network to reduce the number of parameters and to avoid category bias in the knowledge
learned by the model. The network uses the cross-entropy between the prediction image
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and the ground truth image to generate the loss function, which is used to back propagate
to update parameters. The network is implemented in PyTorch [63] and optimized using
Adam [64] with learning rate of 1 × 10−3. Under the Ubuntu system, we used Nvidia
RTX3060TI(8G) for training, and unified the input image size into 400 × 400.

5.2. Evaluation Metrics

We use mean intersection over union (mIoU) as our main evaluation metrics, which
represents the average IoU value of all categories in each fold. It can well reflect the
segmentation capability of the model.

The relationship between the ground truth image and the predicted image of can be
divided into four types: True Positive (TP), False Negative (FN), False Positive (FP), and
True Negative (TN), in which True and False represent whether the prediction is correct
or not, Positive and Negative represent the foreground and background of the object,
respectively.

So, TP represents the intersection of real value and predicted value, FN + FP + TP part
is the union of real value and predicted value, and IoU is the ratio of intersection and union,
which can be expressed as follows:

IoU =
TP

FN + FP + TP
, (11)

The specific calculation formula of mIoU can be determined as in the following
Equation (12), where K presents the number of classes in a fold.

mIoU =
1
K

K

∑
i=1

TP
FN + FP + TP

, (12)

We also use foreground-background IoU (FB-IoU) as an auxiliary metric, which calcu-
late the mIoU of the foreground-background for all categories.

5.3. Results and Analysis

We compare our proposed method with relevant methods in recent years [11,37,55–59]
in the proposed dataset, VDT-2048-5i. Table 2 summarizes the results of the 1-shot and
5-shot comparative experiment on VDT-2048-5i. Compared with other methods using
ResNet-50, it is clear that our model set a new state-of-the-arts result. Compared with
the results of 1 shot and 5 shot in [59], our model increases the mIoU by 3.8% and 3.3%,
respectively, which proves the effectiveness of the model.

Table 2. Performance on VDT-2048-5i in mIoU and FB-IoU.

Method
1-Way 1-Shot 1-Way 5-Shot

50 51 52 53 mIoU FB-IoU 50 51 52 53 mIoU FB-IoU

CANet 55.0 55.9 30.4 49.6 47.7 72.6 58.7 59.2 41.0 49.8 52.2 74.6
PGNet 54.2 56.4 33.6 45.2 47.4 71.8 59.7 59.7 34.4 48.5 50.5 73.7
PFENet 46.2 45.3 31.8 29.4 38.2 67.7 56.5 56.2 43.7 30.7 46.8 72.2
ASGNet 40.2 36.2 29.7 36.0 35.5 66.5 55.4 51.3 43.8 40.7 47.8 72.3
V-TFSS 55.6 53.5 31.0 29.4 42.4 72.6 60.6 57.3 45.2 48.5 52.9 75.2
HSNet 46.1 45.9 43.3 39.7 43.8 71.1 62.0 59.2 48.6 45.0 53.7 75.6
ASNet 62.9 57.4 41.0 41.9 50.8 73.8 68.5 64.2 48.9 48.5 57.5 76.1
Ours 68.9 58.2 49.8 41.3 54.6 75.8 74.9 62.2 58.9 47.2 60.8 78.9

In order to ensure the fairness of the comparative experiment, all experiments use
the same parameter settings on VDT-2048-5i and all experiments are performed with the
ResNet-50 backbone.

To test the three-modal effect of the single-modal few-shot semantic segmentation
method, we performed the original method on the visible image, the depth image, and the
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thermal infrared image, respectively. After that, we superimpose the results of the three
modalities and feed them into the system’s decoder for prediction, as mentioned in [29].

5.4. Ablation Study

In this section, we recombine all the proposed modules with the baseline to verify their
effectiveness. All ablation experiments are performed on the VDT dataset with ResNet-50
as the backbone network in 1-shot way. We also discuss the influence of three-modal data.

5.4.1. Ablation Study on Three-Modal Data

To demonstrate the effectiveness of three-modal data, we test different combinations
of three modalities six cases in total, three sets of single modality experiments, two sets of
two modalities experiments, and one set of three modalities experiments.

To verify the necessity and superiority of the three-modal method, we use the number
of parameters to measure the model size and the frames per second (FPS) to measure the
running speed of the model. We implement experiments in 1-shot way and report the mean
intersection over union over the four folds.

As shown in Table 3, we used several metrics to test the model when using different
modalities data as input. We can see that the best result is obtained using RGB images
when using single-modal data as input.

Table 3. Ablation study on three-modal data.

Method Data mIoU FBIoU Parameter (M) Time (FPS)

Single modality
RGB 49.2 73.2 31 M 25 FPS

Depth 30.5 50.8 31 M 25 FPS
Thermal 37.6 55.2 31 M 25 FPS

Two modalities
RGB-T 51.2 74.5 42 M 17 FPS
RGB-D 52.2 75.1 42 M 17 FPS

Three modalities RGB-D-T 54.6 75.8 46 M 14 FPS

The performance of the model improves significantly when an additional modality is
added to the input to form two-modal data. The RGB-D combination works slightly better
than the RGB-T combination.

The best performance of the model is achieved when three-modal data are used, while
the model size is not substantially increased, while the operation time still maintains a
better result. In this way, it can be proved that the necessity and superiority of introducing
three-modal data into few-shot semantic segmentation task.

5.4.2. Ablation Study on the Proposed Module

For our proposed self-enhanced module and mixed attention module, we set several
experiments to prove the efficiency of each module. Specially, we divide the mixed atten-
tion module into two parts, spatial attention mechanism module, and channel attention
mechanism module.

We implement experiments in 1-shot and report the mean intersection over union
over the four folds. In Table 4, the baseline is the backbone of our model, SE is the self-
enhanced module, SA is spatial attention mechanism module, and CA is the channel
attention mechanism module.
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Table 4. Ablation study on the proposed module.

Baseline SE SA CA 50 51 52 53 mIoU FB-IoU
√

46.1 45.9 43.3 39.7 43.8 71.1√ √
61.7 55.9 49.3 40.3 51.8 74.3√ √
54.3 49.7 48.5 39.6 48.0 72.3√ √
57.3 50.7 48.8 39.9 49.2 73.3√ √ √
54.0 56.7 49.0 41.8 50.4 73.3√ √ √
65.5 57.0 50.0 37.7 52.4 74.9√ √ √
64.0 56.3 52.1 37.5 52.5 74.9√ √ √ √
68.9 58.2 49.8 41.3 54.6 75.8

It increases 8.0% mIoU by using the SE module over baseline, which mean the pro-
cessing of foreground–background features in this module makes it easier for the model to
complete the segmentation task.

It increases by 4.2% mIoU by using the SA module. It increases by 5.4% mIoU by
using the CA module. And it increases by 6.6% mIoU by using both SA and CA modules,
indicating that both SA and CA modules have a reinforcing effect on features and that
they can effectively complement each other’s information to better enhance features when
used together.

It increases 8.6% mIoU by using SE and SA modules, and it increases 8.7% mIoU by
using SE and CA modules, indicating that SA and CA modules can be well compatible
with the SE module, and enable better representation of features.

In total, our model improves performance by 10.8% over baseline, which can demon-
strate the effectiveness of all proposed modules.

5.5. Visualization Results

As shown in Figure 6, we measured the effect of our model in a normal illumination
scenario. The eighth row are the predicted result of our model which are painted red.

It can be seen from the figure that HSNet and ASNet can only predict part of the
target or mistakenly segment the shadow in the background as a part of the target. On the
contrary, our model has a good performance in the segmentation results, which shows that
our model is valid.

5.6. Challenging Scenes

As shown in Figure 7, we conducted a series of experiments in challenging scenes, such
as insufficient lighting and tiny objects. The eighth line is the prediction result of our model.
Our model can still capture the most discriminating part of the object, even if the supporting
image does not provide enough information. This strongly proves the effectiveness of our
model. HSNet and ASNet do not perform as well as our model under the condition of
insufficient illumination, and they cannot distinguish the boundary between the target and
the background well, resulting in a lot of false positives. But, at the same time, we find
that the proposed framework is still insufficient in describing pixel-level subtle information
such as boundaries or edges, especially in extremely dark small objects. This also provides
a direction for our next optimization work.
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6. Conclusions

In this paper, we introduce three-modal (V-D-T) data into a few-shot semantic seg-
mentation task to improve the performance of the method. As far as we know, our method,
SEMANet, is the first and only one. Our SEMANet effectively exploits the complementary
information between the three modalities to guide the segmentation, and we achieve excel-
lent performance even with the limited samples. In addition to that, a novel three-modal
few-shot dataset is proposed in this paper, VDT-2048-5i. Compared with the most advanced
methods before, our model improves mIoU by 3.8% and 3.3% in 1-shot and 5-shot settings,
respectively, which achieves state-of-the-art performance. The results shows that its effec-
tiveness in the V-D-T FSS task, but, meanwhile, it still has some shortcomings in segmenting
the contour of small target objects under dark illumination. In the future, we will optimize
for SEMANet by obtaining more discriminative and robust feature representations, and
explore achieving high performance with fewer parameters and computational costs.
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