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Abstract: This research addresses the power flow analysis in bipolar asymmetric direct current
(DC) networks by applying Broyden’s numerical method. This general successive approximations
method allows for a simple Newton-based recursive formula to reach the roots of multiple nonlinear
equations. The main advantage of Broyden’s approach is its simple but efficient structure which can
be applied to real complex nonlinear equations.The power flow problem in bipolar DC networks is
still challenging, as multiple operating options must be considered, e.g., the possibility of having
a solidly grounded or floating neutral wire. The main goal of this research is to contribute with a
generalization of Broyden’s method for the power flow solution in bipolar DC networks, with the
main advantage that, under well-defined conditions, this is a numerical method equivalent to the
matricial backward/forward power flow, which is equivalent to the successive approximations power
flow method. Numerical results in the 21-, 33-, and 85-bus grids while considering two connections
for the neutral wire (i.e., solidly grounded at any node or floating) show the effectiveness of Broyden’s
method in the power flow solution for bipolar asymmetric DC networks. All numerical simulations
were carried out in the MATLAB programming environment.

Keywords: Broyden’s method; power flow problem; set of nonlinear equations; linear convergence

1. Introduction
1.1. General Context

Bipolar DC networks are emerging technologies that aid in providing electricity in
medium- and low-voltage networks by using three wires associated with the positive (p),
neutral (o), and negative (n) poles [1]. These networks can be considered to be the DC
equivalent of the conventional three-phase AC distribution networks given that multiple
constant power loads can be connected between their poles. These may be monopolar
(connected between the positive or negative pole and the neutral wire) or bipolar (connected
between the positive and negative poles) [2,3]. Figure 1 illustrates the typical configuration
of a bipolar DC network with multiple constant power terminals [4].

The main characteristics shown in Figure 1 are:

i. The operation of a bipolar DC network can be unbalanced due to the presence of
constant monopolar and bipolar power terminals, which implies that no reductions
(monopolar equivalents) must be applied [5].

ii. Concerning purely monopolar configurations, bipolar DC grids imply an increase of
about 34% in construction investments. However, more than two times the power can
be transferred by these grids, including the possible connection of exceptional loads,
i.e., bipolar compositions [2].
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iii. Depending on the operating practices of the distribution company, the neutral wire
can be operated in two main ways: floating in all nodes except the substation bus or
solidly grounded at any network node [6].
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Figure 1. Schematic representation of a bipolar DC network.

1.2. Motivation

Considering the main characteristics of bipolar DC networks, including their unbal-
anced operation and the possible connections of the neutral wire, power flow studies
for multipolar DC networks with constant power terminals can be modeled as a set of
nonlinear equations that must be solved through the application of numerical methods, as
their analytical solution is impossible [7]. This research is motivated by applying Broyden’s
(also known as the secant) method for finding roots in simultaneous sets of nonlinear
equations [8]. The selection of this method is based on its easy formulation and implemen-
tation, as well as on its linear convergence, with the main advantage that infinite possible
initial matrices At (with t = 0) may be selected for its numerical validation.

1.3. Literature Review

Several authors have focused on studying the steady-state operation of bipolar DC
networks with unbalanced conditions while employing power flow analysis.

The authors of [9] proposed a power flow formulation that uses the classical nodal
voltage method in order to compute the voltages and power generation of bipolar DC
distribution networks while including multiple constant power terminals. Furthermore,
this power flow allows considering the neutral wires in grounded or non-grounded modes.
These authors only took a small bipolar DC system (three nodes) into account without
analyzing the scalability of the proposed method.

The authors of study [10] used a current injection model to solve the power flow in a
bipolar DC microgrid. This model was based on the Newton–Raphson power flow, which
used the Jacobian matrix as index sensitivity.

The authors of [1] described a generic power flow algorithm for bipolar DC grids
that employs the Newton–Raphson method. This method classifies the grid nodes into
six types based on their grounding scheme and voltage control mode. This classification
identifies the unknown pole voltages which are used as mismatch equations to solve the
power flow problem. One of the limitations of this generic power flow algorithm is that it
is not possible to establish the non-convergence condition.
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The authors of [11] analyzed a power flow method under different operation modes
and control strategies in bipolar high-voltage DC (HVDC) grids integrated with voltage
source converters (VSCs). The power flow method was based on layers and the admittance
matrix of the bipolar grid.

The authors of study [7] proposed a successive approximations method to solve power
flow in bipolar DC distribution networks. This method allows considering a grounded or
non-grounded neutral wire.

The authors of study [3] demonstrated the exact conditions and necessities for the
convergence and uniqueness of the power analysis solution in bipolar DC grids. This study
also considered the over-current protection scheme of power electronic converters.

The authors of work [6] tackled the power flow problem in bipolar DC grids with
multiple constant power loads by employing a triangular-based power flow formulation.
This formulation is suitable for radial setups and considers whether the neutral wire is
grounded or not at all system nodes.

The authors of study [7] used a successive approximations technique based on the
classical backward/forward method to solve the power flow analysis in bipolar DC grids,
including the possibility of grounding or not grounding the neutral wire. Furthermore,
the convergence of the proposed approximation was demonstrated using the Banach
fixed-point theorem.

The authors of [12] presented a formulation to solve the power flow problem in bipolar
DC networks, which used the Taylor expansion in the bus injection equations, generating a
hyperbolic formulation that can be implemented in both meshed and radial networks.

Previous studies have shown promising results, but some of them struggle to achieve
convergence in their performance. Additionally, some of these studies lack a compre-
hensive framework to address these limitations. This paper presents a solution to the
power flow problem in bipolar DC asymmetric distribution networks using Broyden’s
method. This method is a quasi-Newton method that numerically solves systems of non-
linear equations through iterative processes. In addition, it offers several advantages over
other approaches [13,14]. For example, this method provides greater versatility, making
it applicable to a broader range of problems without requiring additional modifications.
Additionally, Broyden’s method has demonstrated good and rapid convergence. Moreover,
it is robust, as it can be implemented in cases where other techniques, such as Newton’s
method, may encounter difficulties due to ill-conditioned Jacobian matrices.

1.4. Contributions and Scope

Considering the state of the art in numerical methods applied to the solution of
the power flow problem in bipolar DC networks with asymmetric loading, the main
contributions of this research are the following:

i. The application of Broyden’s method to the power flow problem in bipolar DC grids
with the aim to solve the set of Equations ∇ f (x) = 0 by using different At matrices.

ii. The evaluation of the convergence properties of Broyden’s method using random
initialization matrices At with t = 0, as well as an analysis of its equivalence with the
successive approximations method when A0 is selected as part of the conductance
matrix of the system.

iii. A demonstration of the equivalence between the successive approximations power
flow (SAPF) and Broyden’s method, which proves that the former is a particular case
of the latter in the studied problem.

Regarding the scope of our contribution, the following facts are considered during
the numerical validations carried out in the 21-, 33-, and 85-bus grids: (i) two possible
connections for the neutral wire are tested: the first case corresponds to the floating
connection, i.e., the neutral wire is only solidly grounded at the substation terminals, and
the second case assumes that all the nodes are solidly grounded; (ii) the load consumption
values are assumed to be perfectly known, i.e., no uncertainties are considered in the values
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of the constant power terminals; and (iii) the voltage output at the substation bus for all the
poles is fixed as an input parameter.

1.5. Document Structure

The remainder of this document is structured as follows. Section 2 presents the general
formulation of the power flow problem for bipolar DC networks with asymmetric loading.
Section 3 describes the general implementation of Broyden’s method for a general set
of nonlinear equations. Section 4 presents the application of Broyden’s method to the
power flow problem. Section 5 shows the main characteristics of the test feeders, which
correspond to the 21-, 33-, and 85-bus grids. Section 6 presents the numerical validations of
the proposed power flow problem, including the voltage profile performance and the power
losses for each test feeder, as well as some numerical comparisons against the literature
reports. Finally, Section 7 lists the main concluding remarks derived from this work and
some possible future studies.

2. Power Flow Problem in Bipolar DC Networks

The power flow solution for bipolar DC networks with asymmetric loading is a
challenge due to the presence of multiple nonlinear equality constraints associated with
each pole as a function of the connection of multiple constant power loads (monopolar or
bipolar) [15]. This set of constraints requires implementing numerical methods in order
to obtain a solution with an acceptable convergence error [1]. The power flow problem in
a bipolar unbalanced network can be represented with seven equations (three linear and
four nonlinear) per node and pole. These equations are presented below.

Ip
g,k − Ip

d,k − Ip−n
d,k = ∑

r∈P
∑

j∈N
Gpr

jk Vr
k , {∀k ∈ N}, (1)

Io
g,k − Io

d,k − Iground
d,k = ∑

r∈P
∑

j∈N
Gor

jk Vr
k , {∀k ∈ N}, (2)

In
g,k − In

d,k + Ip−n
d,k = ∑

r∈P
∑

j∈N
Gnr

jk Vr
k , {∀k ∈ N}, (3)

Ip
d,k =

Pp
d,k

Vp
k −Vo

k
, {∀k ∈ N}, (4)

In
d,k =

Pn
d,k

Vn
k −Vo

k
, {∀k ∈ N}, (5)

Io
d,k =

Pp
d,k

Vo
k −Vp

k
+

Pn
d,k

Vo
k −Vn

k
, {∀k ∈ N}, (6)

Ip−n
d,k =

Pp−n
d,k

Vp
k −Vn

k
, {∀k ∈ N}, (7)

where Ip
g,k, Io

g,k, and In
g,k represent the current injection in the slack source per pole (i.e.,

positive, neutral, and negative -pon-); Ip
d,k, Io

d,k, and In
d,k are the current demanded by the

monopolar constant power loads, i.e., Pp
d,k and Pn

d,k (note that the monopolar loads refer

to those connected between the positive or negative pole and the neutral pole); Ip−n
d,k

corresponds to the current absorbed by the constant power load Pp−n
d,k connected between

the positive and negative poles, i.e., a bipolar consumption; Iground
d,k means the current

drained from the neutral wire to the physical ground at each node; Vr
k represents the

voltage magnitude at node k in pole r; Gpr
jk , Gor

jk , and Gnr
jk correspond to the conductance

values (obtained from the conductance matrix) that relate nodes j and k and poles pon with
pole r, respectively. Note that P and N denote the sets that contain all the poles and nodes
of the bipolar DC grid under analysis.
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If Equations (4)–(7) are substituted into (1)–(3), the studied problem is reduced to a set
of three nonlinear equality constraints.

Ip
g,k −

Pp
d,k

Vp
k −Vo

k
−

Pp−n
d,k

Vp
k −Vn

k
= ∑

r∈P
∑

j∈N
Gpr

jk Vr
k , {∀k ∈ N}, (8)

Io
g,k −

Pp
d,k

Vo
k −Vp

k
+

Pn
d,k

Vo
k −Vn

k
− Iground

d,k = ∑
r∈P

∑
j∈N

Gor
jk Vr

k , {∀k ∈ N}, (9)

In
g,k −

Pn
d,k

Vn
k −Vo

k
+

Pp−n
d,k

Vp
k −Vn

k
= ∑

r∈P
∑

j∈N
Gnr

jk Vr
k , {∀k ∈ N}. (10)

Remark 1. The set of nonlinear Equations (8)–(10) can be compacted using a matricial representa-
tion with the help of the conductance matrix and its components Ggg, Ggd, Gdg, and Gdd, as defined
in (11) [7]. [

Ig
−Id

]
=

[
Ggg Ggd
Gdg Gdd

][
Vg
Vd

]
, (11)

where, considering that the cardinalities of the sets P andN are 3 and n, Ig ∈ R3×1 and Vg ∈ R3×1

are the vectors that contain the current injection in the slack source (unknown variables) and the
voltage output at the terminals of the slack source, i.e., perfectly known voltages. Id ∈ R3(n−1)×1

is the vector containing the current demanded at each node, which is ordered by node and pole
(unknown variables); and Vd ∈ R3(n−1)×1 is the vector of voltage profiles at each demand node, also
ordered by node and pole (unknown variables).

From the two equations in (11), it can be noted that:

i. The first row of (11) shows that the solution of the current injections at the substation
will be only known when all the demanded voltage profiles are determined. In
addition, this is a linear equation that does not require any iterative process for its
solution.

ii. The second row of (11) is a nonlinear set of equations, as the demanded currents Id
are hyperbolic functions of the demanded voltages, which implies that its solution
requires efficient numerical methods [1].

To determine the set of demanded currents by comparing the second row of (11)
against Equations (8)–(10), note that

Id = IB
d + IM

d ,

where IB
d and IM

d are vectors associated with the currents demanded by the bipolar and
monopolar loads, respectively, which are calculated per node, as follows:

IB
d,k = diag−1(BVd,k)P

B
d,k, {∀k ∈ N}, (12)

IM
d,k = diag−1(M1Vd,k)P

M1
d,k + diag−1(M2Vd,k)P

M2
d,k , {∀k ∈ N}, (13)

where

B =

 1 0 −1
0 1 0
−1 0 1

, M1 =

 1 −1 0
−1 1 0
0 −1 1

, M2 =

0 0 0
0 1 −1
0 0 0

,

PB
d,k =

Pp−n
d,k
0

Pp−n
d,k

, PM1
d,k =

Pp
d,k

Pp
d,k

Pn
d,k

, PM2
d,k =

 0
Pn

d,k
0

, Vd,k =

Vp
d,k

Vo
d,k

Vn
d,k

.
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Remark 2. The solution to the power flow problem in bipolar DC grids with asymmetric loading
corresponds to the solution of the following recursive formula:

GdgVg + GddVd = −IB
d − IM

d (14)

using a numerical method based on the dependence of the vectors IB
d and IM

d on the demanded
voltages Vd.

3. The Secant or Broyden’s Method

The secant or Broyden’s method is a numerical approach developed for solving sets of
nonlinear equations with ∇ f (x) = 0. This is performed without resorting to the implemen-
tation of Newton-based approaches [8,16]. The general successive approximations formula
for the secant method is defined in (6).

xt+1 = xt −
[
At]−1∇ f

(
xt), (15)

where t is the iteration counter and At corresponds to the Jacobian matrix, which is,
however, approximated via secant hyperplanes [17].

Consider the following linear relation:

At
(

xt − xt−1
)
= ∇ f

(
xt)−∇ f

(
xt−1

)
, (16)

which is simplified as (17) by defining st =
(
xt − xt−1) and yt = ∇ f

(
xt)−∇ f

(
xt−1).

Atst = yt. (17)

Now, the following two hyperplanes are defined:

lt−1(x) = ∇ f
(

xt−1
)
+
[
At−1

](
x− xt−1

)
, (18)

lt(x) = ∇ f
(
xt)+ [At](x− xt). (19)

The main idea of the secant method is that, at the solution point, hyperplanes (18)
and (19) must be equal, i.e.,

∇ f
(

xt−1
)
+
[
At−1

](
x− xt−1

)
= ∇ f

(
xt)+ [At](x− xt). (20)

Note that, in (20), if x = xt is defined while considering the definition in (17) and
making some algebraic manipulations, the following result is reached:([

At]− [At−1
])

st = yt −
[
At−1

]
st. (21)

By simplifying (21), the general updating formula for At can be determined as pre-
sented in (22).

At = At−1 −

(
yt −

[
At−1

]
st
)(

st)>
(st)>st

. (22)

Note that, for the general iteration t + 1, the way to update At+1 is obtained from (22),
as defined in (23).

At+1 = At +

(
yt+1 −

[
At]st+1)(st+1)>

(st+1)
>st+1

. (23)
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The general algorithm for solving the set of equations ∇ f (x) = 0 is presented in
Algorithm 1 [18].

Algorithm 1: General implementation of Broyden’s method for solving sets of
nonlinear equations

Data: The set of nonlinear equations under analysis, i.e., ∇ f (x) = 0.
Result: The solution vector x∗.

1 Make t = 0 and define an initial estimation of A0 ;
2 Define the maximum number of iterations tmax and the convergence error ε;
3 for t = 0 : tmax do
4 Solve Atst+1 = −∇ f

(
xt) for st+1;

5 Obtain xt+1 = xt + st+1;
6 if max

∣∣∣∣xt+1
∣∣− ∣∣xt

∣∣∣∣ ≤ ε then
7 Report x∗; Break;
8 else
9 Obtain yt+1 = ∇ f

(
xt+1)−∇ f

(
xt);

10 Update At+1 = At +
(yt+1−[At]st+1)(st+1)

>

(st+1)
>

st+1
;

4. Application of Broyden’s Method to the Power Flow Problem

This section presents the general application of Broyden’s method to the problem
regarding the power flow of bipolar DC networks with asymmetric loading, which is based
on Algorithm 1. As presented in Section 2, this work deals with a complex nonlinear
problem, where the main idea is to efficiently obtain its roots via numerical methods [1].
For the application of Broyden’s method, as described in Section 3, using the compact
representation in Equation (14) is recommended. Note that this Equation is necessary as
the equivalent gradient function ∇ f

(
Vt

d
)

is defined from it, as follows [18]:

∇ f
(
Vt

d
)
= GdgVg + GddVt

d + It,B
d + It,M

d = 0, (24)

where the components of the demanded currents in It,B
d and It,M

d are defined from (12)
to (13).

Considering the structure of Algorithm 1, Algorithm 2 presents the application of Broy-
den’s method to solve the power flow problem in asymmetric bipolar DC distribution grids.

Remark 3. The main characteristic of Algorithm 2 is the selection of the initial value of matrix A0,
as it has multiple alternatives. Depending on this selection, the number of iterations required to
reach the desired convergence varies.
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Algorithm 2: Application of Broyden’s method for solving the power flow
problem in bipolar DC networks

Data: The bipolar DC distribution network with asymmetric loading
Result: The solution vector V∗d

1 Make t = 0 and define an initial estimation of A0 ;
2 Obtain the per-unit equivalent of the bipolar DC network;
3 Construct the nodal admittance matrix Gbus;
4 Obtain the components Gdg and Gdd from Gbus;

5 Define Vg =
[
1 0 − 1

]>;
6 Make Vd,k = Vg, ∀k = 1, 2, . . . , n, k 6= s;
7 Define the maximum number of iterations tmax;
8 Define the convergence error ε;
9 for t = 0 : tmax do

10 Construct the current vectors in (14) by using (12) and (3)
∀k = 1, 2, . . . , n, k 6= s;

11 Obtain the gradient vector ∇ f
(
Vt

d
)

in (24) Solve Atst+1 = −∇ f
(
Vt

d
)

for st+1;
12 Obtain Vt+1

d = Vt
d + st+1;

13 if max
∣∣∣∣∣∣Vt+1

d

∣∣∣− ∣∣Vt
d

∣∣∣∣∣ ≤ ε then
14 Report V∗d ;
15 Break;
16 else
17 Obtain yt+1 = ∇ f

(
Vt+1

d

)
−∇ f

(
Vt

d
)
;

18 Update At+1 = At +
(yt+1−[At]st+1)(st+1)

>

(st+1)
>

st+1
;

5. Test Feeders

To validate the effectiveness of Broyden’s method in addressing the power flow
problem in bipolar asymmetric distribution grids, three test feeders composed of 21, 33,
and 85 nodes with unbalanced structures were considered.

5.1. Bipolar DC 21-Bus Network

The 21-bus grid corresponds to a radial distribution network composed of 21 buses
and 20 lines, as depicted in Figure 2 [6]. The main characteristics of this feeder are the
following: (i) the substation bus is located at bus 1, and the voltage outputs in the positive
and negative poles are ±1 kV with respect to the neutral point, which is solidly grounded;
and (ii) the total monopolar consumption is 554 kW in the positive pole and 445 kW in the
negative pole, while the bipolar power consumption is 405 kW.

The information regarding branches and monopolar and bipolar power consumptions
is presented in Table 1.

Table 1. Parametric information regarding branches and constant power loads in the bipolar DC
21-bus network (all powers in kW).

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
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Table 1. Cont.

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

ac
dcslack (v)

12

34

5

6 8

9

1011

12

13
14

1516

17

18

19

20

21

7

Figure 2. Schematic of nodal connections in the bipolar DC 21-bus network.

5.2. Bipolar DC 33-Bus System

This bipolar DC network is a modification of the original single-phase distribution
network originally proposed by the authors of [19]. The schematic single-line representation
of this system is presented in Figure 3. The main characteristics of this distribution network
are the following: (i) the substation bus is located at bus 1, and the voltage outputs in the
positive and negative poles are ±12.66 kV with respect to the neutral point, which is solidly
grounded; and (ii) the total monopolar consumption is 2615 kW in the positive pole and
2185 kW in the negative pole, while the bipolar power consumption is 2350 kW.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 3. Schematic of the nodal connections in the bipolar DC 33-bus network.
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The information regarding branches and monopolar and bipolar power consumptions
is presented in Table 2 [20].

Table 2. Parametric information regarding branches and constant power loads in the bipolar DC
33-bus network (all powers in kW).

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

1 2 0.0922 100 150 0
2 3 0.4930 90 75 0
3 4 0.3660 120 100 0
4 5 0.3811 60 90 0
5 6 0.8190 60 0 200
6 7 0.1872 100 50 150
7 8 1.7114 100 0 0
8 9 1.0300 60 70 100
9 10 1.0400 60 80 25
10 11 0.1966 45 0 0
11 12 0.3744 60 90 0
12 13 1.4680 60 60 100
13 14 0.5416 120 100 200
14 15 0.5910 60 30 50
15 16 0.7463 110 0 350
16 17 1.2890 60 90 0
17 18 0.7320 90 45 0
2 19 0.1640 90 150 0
19 20 1.5042 150 50 115
20 21 0.4095 0 90 0
21 22 0.7089 0 90 145
3 23 0.4512 90 110 35
23 24 0.8980 120 0 40
24 25 0.8960 150 100 100
6 26 0.2030 60 80 0
26 27 0.2842 60 0 225
27 28 1.0590 0 0 130
28 29 0.8042 120 75 65
29 30 0.5075 100 100 0
30 31 0.9744 50 150 125
31 32 0.3105 175 100 75
32 33 0.3410 95 60 120

5.3. Bipolar DC 85-Bus Network

The bipolar DC 85-network is a radial distribution network composed of 85 nodes and
84 branches, as depicted in Figure 4. The main characteristics of this distribution network
are the following: (i) the substation bus is located at bus 1, and the voltage outputs in the
positive and negative poles are ±11 kV with respect to the neutral point, which is solidly
grounded; and (ii) the total monopolar consumption is 1745.48 kW in the positive pole and
2682.19 kW in the negative pole, while the bipolar power consumption is 2258.58 kW.

The information regarding branches and monopolar and bipolar power consumptions
is presented in Table 3 [21].
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Table 3. Parametric information regarding branches and constant power loads in the bipolar DC
85-bus network (all powers in kW).

Node j Node k Rjk (Ω) Pp
dk Pp

dk Pp−n
dk Node j Node k Rjk (Ω) Pp

dk Pp
dk Pp−n

dk

1 2 0.108 0 0 10.075 34 44 1.002 17.64 17.995 0
2 3 0.163 50 0 40.35 44 45 0.911 50 17.64 17.995
3 4 0.217 28 28.565 0 45 46 0.911 25 17.64 17.995
4 5 0.108 100 50 0 46 47 0.546 7 7.14 10
5 6 0.435 17.64 17.995 25.18 35 48 0.637 0 10 0
6 7 0.272 0 8.625 0 48 49 0.182 0 0 25
7 8 1.197 17.64 17.995 30.29 49 50 0.364 18.14 0 18.505
8 9 0.108 17.8 350 40.46 50 51 0.455 28 28.565 0
9 10 0.598 0 100 0 48 52 1.366 30 0 15
10 11 0.544 28 28.565 0 52 53 0.455 17.64 35 17.995
11 12 0.544 0 40 45 53 54 0.546 28 30 28.565
12 13 0.598 45 40 22.5 52 55 0.546 38 0 48.565
13 14 0.272 17.64 17.995 35.13 49 56 0.546 7 40 32.14
14 15 0.326 17.64 17.995 20.175 9 57 0.273 48 35.065 10
2 16 0.728 17.64 67.5 33.49 57 58 0.819 0 50 0
3 17 0.455 56.1 57.15 50.25 58 59 0.182 18 28.565 25
5 18 0.820 28 28.565 200 58 60 0.546 28 43.565 0
18 19 0.637 28 28.565 10 60 61 0.728 18 28.565 30
19 20 0.455 17.64 17.995 150 61 62 1.002 12.5 29.065 0
20 21 0.819 17.64 70 152.5 60 63 0.182 7 7.14 5
21 22 1.548 17.64 17.995 30 63 64 0.728 0 0 50
19 23 0.182 28 75 28.565 64 65 0.182 12.5 25 37.5
7 24 0.910 0 17.64 17.995 65 66 0.182 40 48.565 33
8 25 0.455 17.64 17.995 50 64 67 0.455 0 0 0
25 26 0.364 0 28 28.565 67 68 0.910 0 0 0
26 27 0.546 110 75 175 68 69 1.092 13 18.565 25
27 28 0.273 28 125 28.565 69 70 0.455 0 20 0
28 29 0.546 0 50 75 70 71 0.546 17.64 38.275 17.995
29 30 0.546 17.64 0 17.995 67 72 0.182 28 13.565 0
30 31 0.273 17.64 17.995 0 68 73 1.184 30 0 0
31 32 0.182 0 175 0 73 74 0.273 28 50 28.565
32 33 0.182 7 7.14 12.5 73 75 1.002 17.64 6.23 17.995
33 34 0.819 0 0 0 70 76 0.546 38 48.565 0
34 35 0.637 0 0 50 65 77 0.091 7 17.14 25
35 36 0.182 17.64 0 17.995 10 78 0.637 28 6 28.565
26 37 0.364 28 30 28.565 67 79 0.546 17.64 42.995 0
27 38 1.002 28 28.565 25 12 80 0.728 28 28.565 30
29 39 0.546 0 28 28.565 80 81 0.364 45 0 75
32 40 0.455 17.64 0 17.995 81 82 0.091 28 53.75 0
40 41 1.002 10 0 0 81 83 1.092 12.64 32.995 62.5
41 42 0.273 17.64 25 17.995 83 84 1.002 62 72.2 0
41 43 0.455 17.64 17.995 0 13 85 0.819 10 10 10
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Figure 4. Schematic of the nodal connections in the bipolar DC 85-bus network.
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6. Numerical Validations

To validate Broyden’s method, all the bipolar DC networks were simulated in the
MATLAB programming environment via the researchers’ own scripts. For this implemen-
tation, version 2021b was used on a PC with an AMD Ryzen 7 3700 2.3-GHz processor and
16.0 GB RAM, running on a 64-bit version of Microsoft Windows 10 Single language.

6.1. Number of Iterations and Convergence Behavior

In this section, the A0 matrix is generated using the conductance matrix Gdd with the
following rule: A0 = γGdd, where γ = α + rand(1)(β− α). rand(1) is a random number
generated using a uniform distribution, and the parameters α and β are set as 0.5 and 2.0,
respectively. In addition, to test the variations in the number of iterations required to reach
the power flow solution while considering a convergence error of about ε = 1× 10−10, for
these simulations, it is assumed that the neutral wire is floating in all nodes except in the
substation bus. The number of iterations required for solving the power flow problem with
Broyden’s method in each one of the test feeders is depicted in Figure 5.
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Figure 5. Behavior of the iterations as a function of the initial matrix A0: (a) bipolar DC 21-bus
network, (b) bipolar DC 33-bus network, and (c) bipolar DC 85-bus network.

The main characteristics of the behavior shown in Figure 5 allow stating that:

i. The number of iterations after 100,000 repetitions exhibits a Gaussian distribution,
with a mean value of about 11 iterations for all the test feeders. This is due to the
fact that the Gaussian distribution carried most of the γ-factor around its center, i.e.,
α+β

2 = 1.25, which is the region where 11 iterations are the most probable result.
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ii. Depending on the γ-factor, for all the test feeders, a minimum number of iterations of
about seven was observed. The average values of the γ-factor were 0.9750, 0.9659, and
0.9783, for the bipolar DC 21-, 33-, and 85-bus networks, respectively. These values
imply that in order to reach a better numerical performance with Broyden’s method,
the γ-factor must be tuned for each test feeder.

iii. The maximum number of iterations for the 21-bus grid was about 14, whereas for the
33- and 85-bus grids it was 13. For these results, the γ-factor is when this parameter is
located near the α of β values, i.e., near the extreme values used in simulations.

To determine the convergence properties of Broyden’s method in all the test feeders
under analysis, a logarithmic error graph is presented in Figure 6. Equation (25) presents
the function that defines the error’s evolution.

e(t) = log
(∣∣∣∣∣∣Vt+1

d

∣∣∣− ∣∣Vt
d
∣∣∣∣∣). (25)
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Figure 6. Convergence behavior of Broyden’s method for all the tested feeders: (a) when the γ-factor
is selected to ensure the minimum number of iterations, and (b) when the γ-factor is selected to
ensure the maximum number of iterations.

The convergence behavior exhibited by Broyden’s method in Figure 6 for all the tested
feeders when the γ-factor was selected to ensure the minimum or the maximum number
of iterations within the range assigned for α and β shows that, in general, this algorithm
has a linear tendency to solve the power flow problem, with some oscillations. However,
these oscillations are caused by the updating of the At matrix, which is carried out by using
the information of the previous iteration. Still, this does not compromise the stability of
this method.

Remark 4. The γ-factor is a key parameter in the implementation of Broyden’s method. However, as
observed for all the test feeders, the recommended value to ensure the minimum number of iterations
must be contained in the 0.90–1.10 interval.

6.2. Comparative Analysis

To demonstrate the effectiveness of the proposed secant method to deal with the power
flow problem in bipolar DC asymmetric distribution networks, the power flow was solved
while considering the two connection modes of the neutral wire (i.e., solidly grounded or
floating) in the tested feeders. A comparison was made with the hyperbolic approximations
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power flow (HAPF) approach reported in [6], the successive approximations power flow
(SAPF) method proposed by [7], and the triangular-based power flow (TBPF) approach
reported in [12]. Table 4 lists the results for all the test feeders, including the two connections
applicable to the neutral wire. For the sake of simplicity, the gamma factor was selected to
ensure minimal iterations in Broyden’s power flow method.

Table 4. Comparative analysis between Broyden’s method and literature reports.

Neutral Wire Floating Neutral Wire Solidly Grounded

Bipolar DC 21-Bus Network

Method Losses (kW) Iterations Time (ms) Losses (kW) Iterations Time (ms)

SAPF 95.4237 13 0.5275 91.2701 10 0.4911
TBPF 95.4237 13 0.8340 91.2701 10 0.7672
HAPF 95.4237 13 1.5542 91.2701 4 1.0212

Proposed 95.4237 7 1.1593 91.2701 11 0.8776

Bipolar DC 33-bus network

SAPF 344.4797 11 1.2537 334.4168 9 1.0594
TBPF 344.4797 11 2.1875 334.4168 9 2.0171
HAPF 344.4797 11 5.5386 334.4168 4 3.4675

Proposed 344.4797 7 2.5657 334.4168 11 1.9950

Bipolar DC 85-bus network

SAPF 489.5759 13 6.4419 452.2981 10 6.3261
SAPF 489.5759 13 8.4913 452.2981 10 8.3822
HAPF 489.5759 13 15.1654 452.2981 4 10.5698

Proposed 489.5759 7 12.4023 452.2981 11 8.7853

The numerical results in Table 4 show that:

i. In all simulation cases, Broyden’s method reaches the same numerical solution re-
garding power losses in the tested feeders for both neutral wire operating conditions.
Nevertheless, when the neutral wire is floating, this approach takes 7 iterations; other-
wise, 11 iterations are needed. These values were independent of the number of nodes
of the test feeder under analysis.

ii. Contrary to the behavior of the comparison methods, the number of iterations increases
when the neutral wire is considered to be solidly grounded. However, this behavior
can be attributed to the fact that Broyden’s recursive formula is general and does not
depend on the nonlinear set of equations under analysis, which implies that, under
some particular conditions (i.e., the connection of the neutral wire), its evolution
differs from that of specialized methods for power flow studies. On the other hand,
the increase in the number of iterations is not directly related to that of the required
processing times.

iii. The main characteristic of the simulations in the three test feeders is that (as expected)
when the neutral wire is solidly grounded, the power losses are lower than in the
floating operation scenario. These differences are 4.1536, 10.0629, and 37.2778 kW, for
the 21-, 33-, and 85-bus networks, respectively.

On the other hand, the behavior of the voltage profiles in the tested feeders shows
voltage regulations of 11.1740%, 9.4264%, and 7.9629% for the neutral floating case in the
21-, 33-, and 85-bus networks, as well as 10.9898%, 9.3176%, and 8.1086% when the neutral
wire is solidly grounded. As expected, voltage regulation improves when the neutral wire
is solidly grounded, which is a direct consequence of the reduction in the number of power
losses evidenced in Table 4.
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6.3. Demonstration of the Equivalence between the SAPF and Broyden’s Method

The main characteristic of Broyden’s method is that it can reduce the number of
calculations (iterations) required to solve the power flow problem in bipolar DC networks
under floating operating conditions. However, the time taken by Broyden’s method is
superior to that of the SAPF method, as the former needs to update the At matrix. Although
it is feasible under some particular conditions, Broyden’s method is equivalent to the SAPF
approach. This equivalence is demonstrated below.

Lemma 1. The SAPF method is an iterative procedure to solve the power flow problem in electrical
networks which can be obtained from Equation (14), as demonstrated in [7], which takes the
following form:

Vt+1
d = −G−1

dd

(
GdgVg + It,B

d + It,M
d

)
, (26)

which converges if the Gdd is a diagonally dominant matrix and the bipolar DC network operates
far from the voltage collapse point [22].

To demonstrate that Broyden’s method is equivalent to the SAPF approach, let us
consider the following assumptions:

Assumption 1. The γ-factor is selected as the unity, which implies that A0 = Gdd.

Assumption 2. No updating is implemented for the At+1 matrix, i.e., At+1 = At = A0.

Proof. Considering Assumptions 1 and 2, the general evolution rule of Broyden’s method
in Equation (15) takes the following form:

xt+1 = xt −
[
A0
]−1
∇ f
(
xt). (27)

Now, considering that, for the bipolar DC power flow problem f
(
xt) = f

(
Vt

d
)
, and

given the definition in (24), Equation (27) takes the following form:

Vt+1
d = Vt

d −
[
A0
]−1
∇ f
(
Vt

d
)
,

= Vt
d −

[
A0
]−1(

GdgVg + GddVt
d + It,B

d + It,M
d

)
. (28)

If the definition of A0 is taken into account, Equation (28) can be simplified as follows:

Vt+1
d = Vt

d −G−1
dd

(
GdgVg + GddVt

d + It,B
d + It,M

d

)
,

= Vt
d −G−1

dd

(
GdgVg + It,B

d + It,M
d

)
−Vt

d,

= −G−1
dd

(
GdgVg + It,B

d + It,M
d

)
, (29)

which allows noting that Equation (29) is identical to the SAPF formula in Equation (26),
thus completing the proof.

Remark 5. It is important to highlight that this proof considers that the SAPF method is a particular
case of Broyden’s method for analyzing bipolar DC asymmetric networks.

7. Conclusions

This research applied Broyden’s method to solve the power flow problem in bipolar
DC asymmetric distribution networks while considering two possible connections for the
neutral pole, i.e., solidly grounded or floating case. Numerical results demonstrated that:
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i. The number of iterations required by the proposed numerical method to solve the
studied problem highly depends on the γ factor selection. This parameter must be
tuned for each test feeder and neutral wire connection, with its recommended values
being between 0.90 and 1.10. Note that the γ-coefficient can be considered to be the
equivalent value of the α-coefficient in the classical Gauss–Seidel method implemented
for AC power systems.

ii. The convergence behavior, i.e., the evolution of e(t), exhibits a linear behavior as a
function of the selected γ-factor, with slight oscillations attributed to the updating rule
applicable to Broyden’s method, which adds the effect of the difference between two
consecutive nonlinear function evaluations to the calculation of At. In addition, after
100 thousand consecutive evaluations of Broyden’s method for different values of the γ-
factor, it was observed that the highest probability in the expected number of iterations
was 11, regardless of the test feeder, with a minimum value 7 for all test systems, as
well as a maximum of 14 for the 21-bus grid and 13 for the remaining grids.

iii. Numerical comparisons with the literature reports showed that the processing times
in the solution of the power flow increase with the number of nodes of the network,
as expected. However, regarding the number of iterations, the opposite behavior was
evidenced in the methods used for comparison (SAPF, TBPF, and HAPF): in the case
of the floating neutral wire, the number of iterations was lower for our method, and,
when the neutral wire was solidly grounded, the number of iterations increased. This,
however, was inversely related to the average processing times.

iv. A demonstration of the equivalence between the SAPF approach and Broyden’s
method under Assumptions 1 and 2 confirmed the generality of the proposed tech-
nique in dealing with power flow problems in bipolar DC networks with asymmetric
loads, with the main advantage that the number of iterations or processing times
can be prioritized as a function of the γ-factor and the selection and adapting of the
At+1 matrix.

The main advantage of Broyden’s method for addressing the power flow problem in
bipolar DC networks with asymmetric loading is that it can apply to radial and meshed
networks as an equivalent to the SAPF and the HAPF approaches given that its formulation
is based on a conductance matrix that is constructed without considering the tree configura-
tion of the network under analysis. However, numerical tests were only conducted in three
radial distribution networks since these configurations correspond to the worst possible
case regarding power losses and voltage regulation indicators.

In regard to future works, the following studies can be conducted: (i) extending the
proposed power flow method to three-phase asymmetric distribution networks; (ii) in-
cluding, in Broyden’s formulation, the possibility of having multiple voltage-controlled
nodes and distributed energy resources; and (iii) demonstrating the equivalence between
the SAPF method and the proposed approach.
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Nomenclature

Indices
p, o, n Superscripts associated with poles
0 Superscripts associated with the initial value
t Superscripts associated with the iteration counter
j, k Subscripts associated with nodes
g Subscripts associated with the generators
d Subscripts associated with the demands
Parameters

Gjk
pr Value of the conductance matrix that associates nodes j and k between

poles p and r (S)
Ggg Value of the conductance matrix associated only with generators (S)

Ggd, Gdg
Value of the conductance matrix associated with generators and
demands (S)

Gdd Value of the conductance matrix associated only with demands (S)

Pp−n
d,k

Bipolar constant power consumption connected between the positive and
negative poles and node k (W)

Pp
d,k

Monopolar constant power consumption at node k for the positive pole
p (W)

Pn
d,k

Monopolar constant power consumption at node k for the negative pole
n (W)

Vnom Nominal voltage at the substation terminal (V)
∇ f (x) Gradient of the function f (x)
Sets
P Set that contains all the poles in the network, i.e., {p, o, n}
N Set that contains all nodes in the network
Variables
Vr

k Voltage value at node k for the rth pole (V)
Ip
g,k Current injection in the slack source at node k for the positive pole p (A)

Io
g,k Current injection in the slack source at node k for the neutral pole o (A)

In
g,k Current injection in the slack source at node k for the negative pole n (A)

Ip
d,k Current consumption at node k for the positive pole p (A)

Io
d,k Current consumption at node k for the neutral pole p (A)

In
d,k Current consumption at node k for the negative pole p (A)

Iground
d,k Current consumption at node k for the ground (A)

vg Vector that contains the voltage in the slack source (V)
Ig Vector that contains the current injection in the slack source (A)
Vd Vector that contains the voltage in the demands (V)
Id Vector that contains the current consumptions (A)
IB

d Vector that contains the current in bipolar loads (A)
IM

d Vector that contains the current in monopolar loads (A)
At Jacobian matrix in iteration t
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