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Abstract: Calcium ions (Ca2+) are abundantly present in the human body; they perform essential
roles in various biological functions. In this study, we propose a highly sensitive and selective
biosensor platform for Ca2+ detection, which comprises a dual-gate (DG) field-effect transistor
(FET) with a high-k engineered gate dielectric, silicon nanowire (SiNW) random network channel,
and Ca2+-selective extended gate. The SiNW channel device, which was fabricated via the template
transfer method, exhibits superior Ca2+ sensing characteristics compared to conventional film channel
devices. An exceptionally high Ca2+ sensitivity of 208.25 mV/dec was achieved through the self-
amplification of capacitively coupled DG operation and an enhanced amplification ratio resulting
from the high surface-to-volume ratio of the SiNW channel. The SiNW channel device demonstrated
stable and reliable sensing characteristics, as evidenced by minimal hysteresis and drift effects, with
the hysteresis voltage and drift rate measuring less than 6.53% of the Ca2+ sensitivity. Furthermore,
the Ca2+-selective characteristics of the biosensor platform were elucidated through experiments
with pH buffer, NaCl, and KCl solutions, wherein the sensitivities of the interfering ions were below
7.82% compared to the Ca2+ sensitivity. The proposed Ca2+-selective biosensor platform exhibits
exceptional performance and holds great potential in various biosensing fields.

Keywords: biosensor; silicon nanowire random network; dual-gate field-effect transistor;
self-amplification; calcium ion-selective; extended gate; capacitive coupling; high-k gate dielectric
engineering

1. Introduction

Calcium ions (Ca2+) are the most abundant metal ions found in the human body. These
ions are responsible for performing various biological functions, such as blood clotting,
intercellular adhesion, skeletal integrity maintenance, and cell mobility facilitation. Main-
taining appropriate Ca2+ levels within the body is critical for sustaining optimal biological
health [1,2]. However, high concentrations of Ca2+ can be highly toxic, necessitating the
precise regulation of physiological Ca2+ concentrations within specific limits. Therefore,
employing appropriate analytical approaches to determine physiological concentrations of
Ca2+ is crucial [3,4]. However, the human body comprises other cations, such as Na+ and
K+. Consequently, in most cases, Ca2+ must be selectively detected in the presence of other
interfering ions. Several studies have focused on designing sensors, such as potentiometric,
galvanostatic, and colorimetric sensors, for the selective detection of Ca2+ [5–8].

An ion-sensitive field-effect transistor (ISFET) was first reported in the 1970s [9]. This
field-effect transistor (FET)-type sensor system offers numerous advantages, such as fast
response, label-free detection, and compatibility with the complementary metal-oxide-
semiconductor (CMOS) process [10–13]. The concept of ISFETs has been further advanced
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to an extended-gate field-effect transistor (EGFET) structure, which comprises a separated
extended gate (EG) sensing unit and an FET transducer unit [14–17]. By adopting the EG
structure, disposable EGs can protect high-cost FETs from chemical damage, because the
analyte solution is not in direct contact with the FETs. Despite their many desirable features,
conventional single-gate (SG) structured ISFETs suffer from a critical drawback, known as
the Nernstian limit, which restricts their sensitivity. According to this theoretical limitation,
conventional ISFETs cannot exceed a sensitivity of 59.14 mV/pH at 300 K [18]. Therefore,
improving their sensitivity is essential for the wider application of FET-type sensors. The
dual-gate (DG) structure, which has capacitively coupled top- and bottom-gate electrodes,
can amplify sensitivity itself through its structural features. Additionally, employing a
high-k gate dielectric engineered DG structure, which replaces the top-gate insulator with a
high-k insulator, can be employed to further improve the sensitivity of ISFETs by increasing
the top-gate insulator capacitance [19–22]. Consequently, constructing DG-structured FET-
type sensors is an effective and promising approach for developing highly sensitive sensor
platforms that can overcome the Nernstian limit.

Silicon nanowire (SiNW) channel-based FET-type sensors have recently attracted
attention as promising biosensor platforms owing to their advantageous properties such
as superior sensitivity, high selectivity, and wide applicability. In recent years, numerous
studies have reported various applications of SiNW channel biosensors, including detection
of pH, chemicals, neurotransmitters, DNA, proteins, and viruses [23–27]. The high surface-
to-volume ratio of the SiNW channel enhances gate capacitance and gate controllability,
providing excellent charge control and operational performance [23]. Furthermore, in
DG structured ISFETs, SiNW channel provides higher top-gate oxide capacitance, which
results in a higher amplification of the sensitivity. However, the conventional formation
process of the SiNW channels generally requires complex and expensive procedures such as
vapor–liquid–solid (VLS) growth, plasma-enhanced chemical deposition (PECVD), electron
beam lithography, and deep ultraviolet (DUV) photolithography [28–30]. Meanwhile, the
template transfer method allows for the fabrication of SiNW random network channels
through simpler processes such as electrospinning and reactive ion etching (RIE), which
are commonly used in CMOS processing. By employing the template transfer method to
create a SiNW random network channel, it is possible to easily achieve the advantages of a
high surface-to-volume ratio and high gate capacitance of the SiNW channels.

In this study, we propose a high-performance Ca2+-selective biosensor platform based
on high-k gate dielectric engineered SiNW random network channel DG FETs. The SiNW
channel was fabricated using a template transfer method, utilizing polyvinylpyrrolidone
(PVP) nanofibers as the pattern template. The electrical and sensing properties of the
fabricated high-k gate dielectric engineered SiNW channel DG FETs, including the transfer
curves, output curves, pH sensing, and Ca2+-selective sensing characteristics, were elu-
cidated. These properties were compared to those of conventional film channel devices.
Owing to the advantageous high surface-to-volume ratio of the SiNW channel, the SiNW
channel device exhibited a superior sensing performance, including significantly improved
self-amplification capability, sensitivity, and stability, than that of the film channel device.
Therefore, the proposed high-performance Ca2+-selective biosensor based on high-k gate
dielectric engineered SiNW random network channel DG FETs holds great promise as a
sensor platform with exceptional sensitivity, remarkable selectivity, and reliable sensing
characteristics, thereby enabling a wide range of applications in various biosensing fields.

2. Materials and Methods
2.1. Materials

The following materials were used in this study: SiO2 sputter target (purity ≥ 99.99%,
THIFINE Co., Ltd., Incheon, Republic of Korea), glass substrates (7059 glass; Corning
Inc., Corning, NY, USA), Ta2O5 sputter target (purity ≥ 99.99%, THIFINE Co., Ltd.,
Incheon, Republic of Korea), indium tin oxide (ITO) sputter target (purity ≥ 99.99%,
THIFINE Co., Ltd.), SnO2 sputter target (purity ≥ 99.99%, THIFINE Co., Ltd.), phos-
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phosilicate glass (PSG; Filmtronics Inc., Butler, PA, USA), 30:1 buffered oxide etchant
(BOE; J.T. Baker, Phillipsburg, NJ, USA), pH buffer solution (Samchun Chemical, Pyeong-
tack, Republic of Korea), ethanol (Samchun Chemical), polydimethylsiloxane (PDMS;
Sylgard 184 silicon elastomer; Dow Corning, Midland, MI, USA), deionized water (DI wa-
ter; conductivity ≤ 4.3 µS/cm, Sigma-Aldrich, St. Louis, MO, USA), phosphate-buffered
saline (PBS; pH 7.4, Sigma-Aldrich), Ca ionophore IV (C52H100N2O3, Sigma-Aldrich),
2-nitrophenyl octyl ether (purity ≥ 99.0%, Sigma-Aldrich), polyvinyl chloride (PVC, Sigma-
Aldrich), sodium tetrakis [3,5-bis(trifluoromethyl)phenyl]borate (Na-TFPB, Sigma-Aldrich),
tetrahydrofuran (THF, Sigma-Aldrich), sodium chloride (NaCl, Sigma-Aldrich), calcium
chloride (CaCl2, Sigma-Aldrich), and potassium chloride (KCl, Sigma-Aldrich). All the
materials were used without any further purification.

We prepared CaCl2, NaCl, and KCl solutions by dissolving CaCl2, NaCl, and KCl,
respectively, in DI water. Through sequential dilution, we prepared solutions with concen-
trations of 100 M, 10−1 M, 10−2 M, 10−3 M, and 10−4 M for each ion.

2.2. Formation of SiNW Random Network Channel via the Template Transfer Method

A SiNW random network channel was obtained using a template transfer method
employing electrospun PVP nanofibers. This method offers a straightforward approach for
creating a SiNW random network structure through electrospinning and RIE. The formation
process of the SiNW channel commenced with the preparation of a silicon-on-insulator
(SOI) substrate with defined active regions and n-doped source/drain (S/D) electrodes,
as described in Section 2.3. To confine the SiNW pattern to the channel area, the S/D
regions were protected by depositing a 200 nm SiO2 layer, which was patterned using a
lift-off process. Subsequently, PVP nanofibers were deposited as a pattern template via an
electrospinning process utilizing a PVP precursor solution under a controlled humidity
of 25% and room temperature (25 ◦C). The PVP precursor solution was prepared by
dissolving 200 mg of PVP in 3 mL of ethanol, followed by stirring at 800 RPM for 4 h at
room temperature. Figure 1 shows a schematic of the electrospinning system.
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Figure 1. Schematic of the electrospinning system. The electrospinning process was conducted under
controlled conditions with a humidity of 25% and temperature of 25 ◦C.
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After the electrospinning process, conventional thermal annealing (CTA) was per-
formed in a furnace system at 300 ◦C, which is the melting point of PVP nanofibers.
This step was performed to solidify the patterned template and enhance its adhesion to
the Si film. The pattern template of the PVP nanofibers was then transferred onto the
underlying Si channel layer through RIE in an SF6 plasma ambient. Any residual PVP
nanofibers were removed via wet etching using a sulfuric acid–hydrogen peroxide mixture.
Finally, the shielding oxide layers were removed using a 30:1 buffered oxide etchant (BOE).
Figure 2 illustrates the process flow of the template transfer method using electrospun
PVP nanofibers.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 16 
 

 

After the electrospinning process, conventional thermal annealing (CTA) was per-

formed in a furnace system at 300 °C, which is the melting point of PVP nanofibers. This 

step was performed to solidify the patterned template and enhance its adhesion to the Si 

film. The pattern template of the PVP nanofibers was then transferred onto the underlying 

Si channel layer through RIE in an SF6 plasma ambient. Any residual PVP nanofibers were 

removed via wet etching using a sulfuric acid–hydrogen peroxide mixture. Finally, the 

shielding oxide layers were removed using a 30:1 buffered oxide etchant (BOE). Figure 2 

illustrates the process flow of the template transfer method using electrospun PVP nano-

fibers. 

 

Figure 2. Process flow of the template transfer method using electrospun PVP nanofibers. 

2.3. Fabrication of the SiNW DG FET Transducer Unit 

A 1 × 1 cm2 p-type (100) SOI substrate with a 100 nm thick top silicon layer and 200 

nm thick buried oxide (BOX) layer was prepared. The resistivity and boron doping con-

centration of the top silicon layer were 1–10 Ω·cm and 1 × 1015 cm−3, respectively. To elim-

inate surface impurities and contaminants, the substrate was cleaned via a standard Radio 

Corporation of America (RCA) cleaning process. Active regions with a channel layer 

width/length of 130/90 μm were formed using photolithography and RIE. A 200 nm thick 

SiO2 layer was blanket-deposited using RF magnetron sputtering as a dummy oxide for 

the phosphorus doping process. The source and drain (S/D) areas were patterned using 

photolithography, followed by the use of 30:1 BOE to etch the dummy oxide on the S/D 

area. For n+ doping of the S/D regions, a PSG film was spin-coated and thermally diffused 

using a rapid thermal annealing (RTA) process at 950 °C for 30 s in an O2/N2 ambient. The 

residual PSG and dummy oxide layers were removed using 30:1 BOE. Next, the SiNW 

channel formation process was performed, as described in Section 2.2. After the SiNW 

channel was formed, a 20 nm thick SiO2 layer and an 80 nm thick Ta2O5 layer were depos-

ited as high-k engineered top-gate oxides using RF magnetron sputtering and a lift-off 

process. A top-gate electrode of 150 nm thick Al was formed using an electron-beam evap-

orator and the lift-off process. Simultaneously, a film channel DG FET was fabricated as a 

reference device without SiNW channel formation. To enhance the overall electrical prop-

erties of the fabricated devices, a forming gas annealing (FGA) process was performed at 

450 °C for 30 min in a 2% H2/N2 atmosphere in a furnace. Figure 3 shows a schematic of 

the fabricated SiNW DG FET transducer unit. 

Si film channel PVP nanofiber Template transfer

Electrospinning RIE

SiNW channel

Cleaning

Si substrate

SiO2 200 nm

Si 100 nm Si 100nm

PVP nanofiber Pattern template

SiNW channelSi film channel

Si substrate

SiO2 200 nm

Si substrate

SiO2 200 nm

Si substrate

SiO2 200 nm

Figure 2. Process flow of the template transfer method using electrospun PVP nanofibers.

2.3. Fabrication of the SiNW DG FET Transducer Unit

A 1 × 1 cm2 p-type (100) SOI substrate with a 100 nm thick top silicon layer and
200 nm thick buried oxide (BOX) layer was prepared. The resistivity and boron doping
concentration of the top silicon layer were 1–10 Ω·cm and 1 × 1015 cm−3, respectively. To
eliminate surface impurities and contaminants, the substrate was cleaned via a standard
Radio Corporation of America (RCA) cleaning process. Active regions with a channel
layer width/length of 130/90 µm were formed using photolithography and RIE. A 200 nm
thick SiO2 layer was blanket-deposited using RF magnetron sputtering as a dummy oxide
for the phosphorus doping process. The source and drain (S/D) areas were patterned
using photolithography, followed by the use of 30:1 BOE to etch the dummy oxide on the
S/D area. For n+ doping of the S/D regions, a PSG film was spin-coated and thermally
diffused using a rapid thermal annealing (RTA) process at 950 ◦C for 30 s in an O2/N2
ambient. The residual PSG and dummy oxide layers were removed using 30:1 BOE. Next,
the SiNW channel formation process was performed, as described in Section 2.2. After
the SiNW channel was formed, a 20 nm thick SiO2 layer and an 80 nm thick Ta2O5 layer
were deposited as high-k engineered top-gate oxides using RF magnetron sputtering and a
lift-off process. A top-gate electrode of 150 nm thick Al was formed using an electron-beam
evaporator and the lift-off process. Simultaneously, a film channel DG FET was fabricated
as a reference device without SiNW channel formation. To enhance the overall electrical
properties of the fabricated devices, a forming gas annealing (FGA) process was performed
at 450 ◦C for 30 min in a 2% H2/N2 atmosphere in a furnace. Figure 3 shows a schematic of
the fabricated SiNW DG FET transducer unit.
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Figure 3. Schematic of the fabricated SiNW DG FET transducer unit.

2.4. Fabrication of Ca2+-Selective EG Sensing Unit

The EG sensing unit was fabricated on a glass substrate (1.5 cm × 2.5 cm). A 300 nm
thick ITO layer was deposited as the conductive layer, which was electrically connected
to the top-gate electrode of the transducer through an electrical cable. Subsequently, a
50 nm thick layer of SnO2 was deposited as a sensing membrane. The SnO2 sensing
membrane transfers the surface potential of the analyte solution to the transducer unit via
the ITO conductive layer. The ITO and SnO2 layers were deposited using an RF magnetron
sputtering system. To form a Ca2+-selective membrane, a Ca2+-selective cocktail (100 µL)
was drop-casted onto the SnO2 sensing layer and allowed to dry in ambient air at room
temperature for 24 h to evaporate the solvent and enhance adhesion. The Ca2+-selective
cocktail was prepared by dissolving 1.2 mg of Ca ionophore IV, 0.3 mg of Na-TFPB, 32.5 mg
of PVC, and 66 mg of 2-nitrophenyl octyl ether in 660 µL of THF. The mixture was then
stirred at 800 RPM for 6 h at room temperature. Finally, a sensing region with a diameter
of 0.6 cm was defined by attaching a PDMS reservoir to the center of the Ca2+-selective
membrane. The process flow of the Ca2+-selective EG sensing unit is illustrated in Figure 4.
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2.5. Device Characterization

The thicknesses of Si, Al, SiO2, Ta2O5, SnO2, ITO, and drop-casted Ca2+-selective
membranes were measured using a Dektak XT Bruker stylus profiler (Bruker, Hamburg,
Germany). The electrical characteristics of the devices were measured using an Agilent
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4156 B precision semiconductor parameter analyzer (Agilent Technologies, Santa Clara,
CA, USA). A commercial Ag/AgCl electrode (Horiba 2086A-06T, Kyoto, Japan) was used
as the reference electrode for pH and Ca2+-selective sensor platforms. To minimize external
interference, all the electrical measurements were performed in an electromagnetically
shielded dark box. Figure 5a,b shows the optical microscopic images of the fabricated high-
k gate dielectric engineered SiNW and film channel DG FET, respectively. The thickness
of the Ca2+-selective membrane was approximately 5.3 µm, as depicted in Figure 5c. The
inset of Figure 5c shows a photograph of the fabricated EG sensing unit.
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Figure 5. Optical microscopic images of the fabricated high-k dielectric engineered (a) SiNW random
network channel and (b) film channel DG FETs. (c) Thickness of the drop-casted Ca2+-selective
membrane. The inset image is a photograph of the fabricated EG sensing unit.

3. Results
3.1. Electrical Characteristics of High-k Gate Dielectric Engineered SiNW Channel DG FETs

We fabricated FET-type sensors based on high-k gate dielectric engineered SiNW
channel DG FETs. The operation of the fabricated FET transducer units enabled the
sensing functions of the entire sensor platform. Therefore, prior to evaluating the sensing
performance, the electrical characteristics of the fabricated SiNW and film channel DG
FETs were compared. Figure 6 illustrates the electrical characteristics of the SiNW and film
channel DG FETs. The transfer characteristic (IDS-VG) curves for the top-gate operation of
the SiNW and film channel DG FETs are presented in Figure 6a,b, respectively. Meanwhile,
Figure 6c,d depicts the transfer characteristic curves for the bottom-gate operations of
the SiNW and film channel DG FETs, respectively. The insets show the corresponding
output characteristic (IDS-VD) curves. Transfer characteristic curves were obtained at a
drain voltage (VD) of 1 V. While sweeping either the top- or bottom-gate voltage, the
other gate electrode was connected to the ground electrode. To quantitatively compare
the measured electrical characteristics of the SiNW channel DG FETs with those of film
channel devices, we extracted various electrical parameters, as summarized in Table 1.
Although the values of the threshold voltage (VTH) and on/off current ratio (ION/OFF)
were similar, the SiNW channel DG FETs exhibited better field-effect mobility (µFE) and
subthreshold swing (SS) values compared to those of the film channel device. Overall, a
comparison of electrical characteristics indicates that the SiNW channel DG FETs possess
favorable properties for sensor applications, demonstrating improved field-effect mobility
and subthreshold swing values.
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Figure 6. Electrical characteristics of the fabricated devices. Transfer characteristic curves for the
top-gate operations of (a) SiNW and (b) film channel DG FETs, as well as the bottom-gate operations
of (c) SiNW and (d) film channel DG FETs.

Table 1. Electrical parameters evaluated from the transfer characteristic curves, including threshold
voltage (VTH), on/off current ratio (ION/OFF), field-effect mobility (µFE), and subthreshold swing (SS).

Operating
Electrode

Channel
Type VTH (V) ION/OFF

(A/A)
µFE

(cm2/V·s) SS (mV/dec)

Top gate SiNW −0.5 2.7 × 106 308.6 136.1
Film −0.8 1.1 × 106 280.91 144.2

Bottom gate SiNW −1.5 1.7 × 105 159.6 172.1
Film −2.4 7.4 × 105 134.2 181.7

3.2. Self-Amplification Capabilities of High-k Gate Dielectric Engineered DG FETs

The fabricated FET devices comprised two gate electrodes: top-gate and bottom-gate
electrodes. In the proposed sensor platform, the top-gate electrode is connected to the EG
sensing unit, and the FETs can be operated in either SG or DG modes. Figure 7a,b depicts
the electrical connections of the sensor platform in the SG and DG modes, respectively.
In the SG mode (Figure 7a), only the top-gate electrode was utilized, which retained the
theoretical limitation of the sensitivity associated with conventional ISFETs. However, in
the DG mode (Figure 7b), the capacitive coupling between the two gate electrodes enabled
the self-amplification of the sensitivity. Figure 7c shows a cross-sectional view of the metal-
oxide-semiconductor capacitor (MOSCAP) structure of the high-k gate dielectric engineered
DG FETs. The equivalent electrical circuit of the MOSCAP structure, excluding the parasitic
components, is shown in Figure 7d. As shown in Figure 7d, the top-gate voltage (VTG) and
bottom-gate voltage (VBG) are capacitively coupled based on the capacitances of the top-
gate insulator (CTox) and bottom-gate insulator (CBox). Because the depletion capacitance of
the Si channel (CSi) is negligible, the relationship between ∆VTG and ∆VBG in the DG mode
can be expressed as in Equation (1). Because the top-gate electrode was connected to the
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EG sensing unit, VTG was equivalent to the surface potential (ψ0) of the analyte solution
(VTG = ψ0).

∆VBG =
CTox

CBox
∆VTG, (1)
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This relationship indicates that the sensitivity of the proposed sensor platform can be
amplified by the amplification factor of CTox/CBox due to capacitance coupling. Notably, a
larger amplification factor can be achieved using a larger CTox. We deliberately fabricated
DG FETs with different CTox and CBox values by varying the oxide thickness. To achieve
a higher CTox/CBox, we adopted a high-k gate dielectric engineered top-gate insulator
structure by utilizing stacked oxide layers of SiO2/Ta2O5, which resulted in a higher CTox
compared to that of single SiO2 oxide layers with the same thickness. Moreover, when
compared to conventional film channel DG FETs, SiNW channel devices exhibit greater
CTox owing to the high surface-to-volume ratio of the SiNW channel devices.

3.3. pH Sensing Characteristics of High-k Gate Dielectric Engineered SiNW Channel DG FETs

The pH sensing characteristics of the high-k gate dielectric engineered SiNW channel
DG FETs were investigated in both the SG and DG modes to verify their detection and self-
amplification capabilities for the surface potential of the analyte solution. For pH sensing
characterization, the SnO2 layer was used as the sensing membrane of the sensor platform
without the formation of a Ca2+-selective membrane. Figure 8 illustrates the pH sensing
characteristics of the fabricated sensors. The transfer characteristic curves of the SiNW
channel device at various pH values in the SG and DG modes are shown in Figure 8a,b,
respectively. The transfer characteristic curves of the film channel device in the SG and DG
modes are shown in Figures 8d and 8e, respectively. The pH sensitivities were evaluated
from these transfer characteristic curves by calculating the shift in the reference voltage
(VREF). The VREF values were obtained at a read current (IR) of 1 nA. The calculated pH
sensitivities of the SiNW and film channel devices are presented in Figure 8c,f, respectively.
In the SG mode, the pH sensitivities of the SiNW and film channel devices were 57.74 and
58.79 mV/pH, respectively, demonstrating no significant difference between the SiNW
and film channel DG FETs. In addition, none of the devices exceeded the Nernstian limit
of 59.14 mV/pH. However, in the DG mode, the pH sensitivities of the SiNW and film
channel devices were 325.38 and 247.05 mV/pH, respectively. Notably, the SiNW channel
device amplified the pH sensitivity 5.51 times, whereas the film channel device amplified it
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4.2 times. Because of its high surface-to-volume ratio, the SiNW channel device exhibited
a higher amplification factor, resulting in a greater pH sensitivity. Thus, SiNW channel
DG FETs can exhibit a pH sensing performance superior to that of conventional film
channel devices.
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Figure 8. pH sensing characteristics of high-k gate dielectric engineered DG FETs. Transfer char-
acteristic curves of the SiNW channel device in (a) SG and (b) DG mode with varying pH values.
Transfer characteristic curves of the film channel device in the (d) SG and (e) DG mode with varying
pH values. pH sensitivities of the (c) SiNW and (f) film channel devices.

In addition to pH sensitivity, non-ideal effects such as hysteresis and drift can affect the
sensing characteristics of FET-type sensor platforms. Direct contact between the EG sensing
unit and analyte solution can result in chemical damage to the sensing membrane, leading
to a decrease in sensing performance. Hysteresis effects are influenced by the presence
of buried OH sites and the transport of defects within the sensing membrane [31–33].
However, drift effects arise from the hopping or trap-limited transport of OH-related
species [34–37]. Figure 9a,b displays the hysteresis effects of the SiNW and film channel
DG FETs in the SG and DG modes, respectively. The hysteresis effects were evaluated by
varying the pH values as 7 − 4 − 7 − 10 − 7. Transfer characteristic curves were measured
every 2 min for 50 min. The hysteresis voltage (VH) was determined by calculating the
difference between the initial and final VREF values. In the SG mode, the resulting VH
values for SiNW and film channel devices were 4.85 and 2.22 mV, respectively, while in
DG mode, the corresponding values were 12.13 and 12.06 mV, respectively. The drift
effects of the SiNW and film channel DG FETs in the SG and DG modes are depicted in
Figure 9c,d, respectively. The drift rate (RD) was measured after the sensing membrane
was immersed in a pH 7 buffer solution for 10 h. The fabricated SiNW and film channel
devices exhibited RD values of 6.25 and 4.71 mV/h, respectively, in the SG mode. In the DG
mode, the corresponding values were 14.37 and 13.38 mV/h, respectively. Table 2 presents
the pH sensing characteristics of the fabricated devices, including pH sensitivity, VH, RD,
VH-to-pH sensitivity, and RD-to-pH sensitivity. The results indicated that the DG mode
operation yielded higher values for both VH and RD, as well as pH sensitivity, compared to
the SG mode for both the SiNW and film channel devices. However, when considering the
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VH-to-pH sensitivity and RD-to-pH sensitivity, the increase in the VH and RD values was
notably lower than the increase in pH sensitivity for each device. Furthermore, the SiNW
channel device exhibited a more significant reduction in both VH-to-pH sensitivity and
RD-to-pH sensitivity in the DG mode compared to the film channel device. These findings
suggest that capacitive coupling in the DG mode is an effective approach for amplifying
the sensitivity beyond the theoretical limit, resulting in higher sensitivity, stability, and
reliability. Consequently, the proposed high-k gate dielectric engineered SiNW channel DG
FET demonstrates promising potential as a high-performance sensor platform, offering
highly sensitive and stable sensing characteristics.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

capacitive coupling in the DG mode is an effective approach for amplifying the sensitivity 

beyond the theoretical limit, resulting in higher sensitivity, stability, and reliability. Con-

sequently, the proposed high-k gate dielectric engineered SiNW channel DG FET demon-

strates promising potential as a high-performance sensor platform, offering highly sensi-

tive and stable sensing characteristics. 

 

Figure 9. Non-ideal effects of high-k gate dielectric engineered DG FETs during pH sensing opera-

tions. Hysteresis effects of SiNW and film channel devices in the (a) SG and (b) DG modes. Drift 

effects of SiNW and film channel devices in the (c) SG and (d) DG modes. 

Table 2. pH sensing characteristics of high-k gate dielectric engineered DG FETs, including pH sen-

sitivity, hysteresis voltage (VH), drift rate (RD), VH-to-pH sensitivity, and RD-to-pH sensitivity. 

Operation 

Mode 
Channel Type 

pH Sensitivity 

(mV/pH) 
VH (mV) RD (mV/h) 

VH-to-pH  

Sensitivity 

RD-to-pH  

Sensitivity 

SG mode 
SiNW 57.74 4.85 6.25 8.3% 10.82% 

Film 58.79 2.22 4.71 3.77% 8.01% 

DG mode 
SiNW 325.38 12.13 14.37 3.72% 4.41% 

Film 247.05 12.06 13.38 4.88% 5.41% 

3.4. Ca2+-Selective Sensing Characteristics of the High-k Gate Dielectric Engineered SiNW Chan-

nel DG FETs 

After successfully demonstrating the high-performance sensing capabilities of the 

fabricated high-k gate dielectric engineered SiNW channel DG FET sensor platform, we 

applied our device to practical biosensing applications, specifically, the selective detection 

of Ca2+. To enable the device as a Ca2+-selective sensor, we fabricated a Ca2+-selective EG 

by forming a Ca2+-selective membrane on a SnO2 layer. The detailed fabrication process of 

the Ca2+-selective EG sensing unit is described in Section 2.4. Figure 10a,b presents the 

transfer characteristic curves of the SiNW channel devices in the SG and DG modes, re-

spectively, with varying Ca2+ concentrations. The corresponding results for the film chan-

nel devices are shown in Figure 10d,e, respectively. The transfer characteristic curves were 

0.1 1 10
−0.1

0.0

0.1

D
V

R
E

F
 (

V
)

Time (h)

Drift rate (RD)

 SiNW channel   14.37 mV/h

 Film channel     13.38 mV/h

DG mode

Immersed in pH 7 for 10 h

0.1 1 10

−40

−20

0

20

40

D
V

R
E

F
 (

m
V

)

Time (h)

Drift rate (RD)

 SiNW channel   6.25 mV/h

 Film channel     4.71 mV/h

SG mode

Immersed in pH 7 for 10 h

0 10 20 30 40 50

−2

−1

0

1

2

D
V

R
E

F
 (

V
)

Time (mim)

DG mode

pH loop : 7 → 4 → 7 → 10 → 7

Hysteresis voltage (VH)

 SiNW channel   12.13 mV

 Film channel     12.06 mV

0 10 20 30 40 50

−0.4

−0.2

0.0

0.2

0.4

Hysteresis voltage (VH)

 SiNW channel   4.85 mV

 Film channel     2.22 mV

D
V

R
E

F
 (

V
)

Time (mim)

SG mode

pH loop : 7 → 4 → 7 → 10 → 7

(a) (b)

(c) (d)

Figure 9. Non-ideal effects of high-k gate dielectric engineered DG FETs during pH sensing operations.
Hysteresis effects of SiNW and film channel devices in the (a) SG and (b) DG modes. Drift effects of
SiNW and film channel devices in the (c) SG and (d) DG modes.

Table 2. pH sensing characteristics of high-k gate dielectric engineered DG FETs, including pH
sensitivity, hysteresis voltage (VH), drift rate (RD), VH-to-pH sensitivity, and RD-to-pH sensitivity.

Operation
Mode

Channel
Type

pH Sensitivity
(mV/pH)

VH
(mV)

RD
(mV/h)

VH-to-pH
Sensitivity

RD-to-pH
Sensitivity

SG mode
SiNW 57.74 4.85 6.25 8.3% 10.82%
Film 58.79 2.22 4.71 3.77% 8.01%

DG mode
SiNW 325.38 12.13 14.37 3.72% 4.41%
Film 247.05 12.06 13.38 4.88% 5.41%

3.4. Ca2+-Selective Sensing Characteristics of the High-k Gate Dielectric Engineered SiNW
Channel DG FETs

After successfully demonstrating the high-performance sensing capabilities of the
fabricated high-k gate dielectric engineered SiNW channel DG FET sensor platform, we
applied our device to practical biosensing applications, specifically, the selective detection
of Ca2+. To enable the device as a Ca2+-selective sensor, we fabricated a Ca2+-selective EG
by forming a Ca2+-selective membrane on a SnO2 layer. The detailed fabrication process
of the Ca2+-selective EG sensing unit is described in Section 2.4. Figure 10a,b presents
the transfer characteristic curves of the SiNW channel devices in the SG and DG modes,
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respectively, with varying Ca2+ concentrations. The corresponding results for the film
channel devices are shown in Figure 10d,e, respectively. The transfer characteristic curves
were measured using CaCl2 solutions with varying Ca2+ concentrations. As the Ca2+

concentration increased, the transfer characteristic curves shifted in the negative direction.
Figure 10c,f show the Ca2+ sensitivities of the SiNW and film channel devices, respectively.
The VREF values were obtained at an IR of 1 nA. In the SG mode, the Ca2+ sensitivities of the
SiNW and film channel devices were 37.44 and 34.45 mV/dec, respectively. In the DG mode,
the corresponding Ca2+ sensitivities were 208.25 and 139.41 mV/dec, respectively. While
both devices exhibited similar Ca2+ sensitivities in the SG mode, the Ca2+ sensitivities of
the SiNW and film channel devices were amplified by factors of 5.51 and 4.04, respectively,
in the DG mode. This result is consistent with the findings observed in the pH sensing
operations described in Section 3.3. Therefore, the fabricated Ca2+ sensor based on the
high-k gate dielectric engineered SiNW channel DG FET demonstrated highly sensitive
characteristics, suggesting its potential for various biosensing applications.
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Figure 10. Ca2+ sensing characteristics of high-k gate dielectric engineered DG FETs. Transfer
characteristic curves of the SiNW channel device in the (a) SG and (b) DG modes with varying
Ca2+ concentrations. Transfer characteristic curves of the film channel device in the (d) SG and
(e) DG modes with varying Ca2+ concentrations. Ca2+ sensitivities of the (c) SiNW and (f) film
channel devices.

To verify the stability and reliability of the fabricated Ca2+ sensor, we conducted hystere-
sis and drift effect measurements during the Ca2+ sensing operations. Figure 11a,b shows the
hysteresis effects of the SiNW and film channel devices with CaCl2 solutions in the SG and
DG modes, respectively. We measured the hysteresis effects of the Ca2+ sensing operations for
45 min, changing the Ca2+ concentration every 5 min according to the following CaCl2 con-
centration loop: 10−4 − 10−3 − 10−2 − 10−1 − 100 − 10−1 − 10−2 − 10−3 − 10−4 M. VREF
values were extracted from the transfer characteristic curves measured every 1 min. In the
SG mode, the VH values of SiNW and film channel devices were 3.65 and 3.06 mV, respec-
tively. In the DG mode, the corresponding values were 13.60 and 12.76 mV, respectively.
Figure 11c,d shows the drift rates of the SiNW and film channel devices, respectively, for
Ca2+ operation. The RD values of the SiNW and film channel devices were monitored for
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10 h, while the Ca2+-selective membrane of EG was immersed in a 10−4 M CaCl2 solution.
In the SG mode, the RD values of SiNW and film channel devices were 7.59 and 6.69 mV/h,
respectively. In the DG mode, the corresponding values were 13.22 and 13.38 mV/h, re-
spectively. Table 3 summarizes the Ca2+-sensing characteristics of the high-k gate dielectric
engineered DG FETs. Although the VH and RD values increased in the DG mode compared
to the SG mode, the increase in these non-ideal effects was much smaller than the increase
in the Ca2+ sensitivity of both devices. Moreover, in the DG mode, the SiNW channel device
significantly reduced the VH and RD to Ca2+ sensitivity from 9.74% to 6.65% and 20.27%
to 6.34%, respectively. The observed enhancement in stability is consistent with the pH
sensing results and is attributed to the high amplification capability of the SiNW channel
device. Thus, we verified the stable Ca2+ sensing characteristics of the fabricated high-k
gate dielectric engineered SiNW channel DG FETs.
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Figure 11. Non-ideal effects of high-k gate dielectric engineered DG FETs with Ca2+ sensing opera-
tions. Hysteresis effect of high-k gate dielectric engineered DG FETs in the (a) SG and (b) DG modes.
Drift effects of high-k gate dielectric engineered DG FETs in the (c) SG and (d) DG modes.

Table 3. Ca2+ sensing characteristics of high-k gate dielectric engineered DG FETs.

Operation
Mode

Channel
Type

Ca2+ Sensitivity
(mV/dev)

VH
(mV)

RD
(mV/h)

VH-to-Ca2+

Sensitivity
RD-to-Ca2+

Sensitivity

SG mode
SiNW 37.44 3.65 7.59 9.74% 20.27%
Film 34.45 3.06 6.69 8.88% 19.41%

DG mode
SiNW 208.25 13.60 13.22 6.53% 6.34%
Film 139.41 12.76 13.38 9.15% 9.59%

To establish Ca2+-selective sensing characteristics, we measured the pH, Na+, and K+

sensitivities of Ca2+-selective EG using pH buffer, NaCl, and KCl solutions, respectively.
Figure 12a,b depicts the Ca2+-selective sensing characteristics of the SiNW and film channel
devices, respectively, in the SG mode. Among the interfering ions, including H+, Na2+,
and K+, the highest interfering-ion sensitivities were only 7.95% and 7.72% for the Ca2+

sensitivities of the SiNW and film channel devices, respectively. Figure 12c,d shows the
Ca2+-selective sensing characteristics of the SiNW and film channel devices, respectively, in
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the DG mode. The maximum interfering-ion sensitivities measured in the DG mode were
7.82% and 12.62% for the Ca2+ sensitivities of the SiNW channel and film channel devices,
respectively. The interfering-ion sensitivities are assumed to be amplified along with the
Ca2+ sensitivities, proportional to the amplification factor, as the interfering-ion sensitivity
arises from the transfer of the ion’s surface potential (ψ0) to the sensing membrane [38–41].
However, considering that the interfering-ion sensitivity in the DG mode for the SiNW
channel device was limited to less than 7.82% of the Ca2+ sensitivity, this corresponds to
a negligible value that does not significantly hinder the selective Ca2+ sensing operation.
Therefore, these findings suggest that the fabricated Ca2+-selective sensor, constructed with
high-k gate dielectric engineered SiNW channel DG FETs, exhibits extensive versatility as
a high-performance biosensor platform, owing to its ultrasensitive and highly selective
sensing characteristics for the selective detection of Ca2+. Table 4 summarizes the pH, Na+,
K+, and Ca2+ sensing characteristics of the high-k gate dielectric engineered DG FETs.
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Figure 12. Ca2+-selective sensing characteristics of high-k gate dielectric engineered DG FETs. Various
ion (H+, Na+, K+, and Ca2+) sensitivities of (a) SiNW channel device in SG mode, (b) film channel
device in SG mode, (c) SiNW channel device in DG mode, and (d) film channel device in DG mode.

Table 4. Summary of the pH, Na+, K+, and Ca2+ sensing characteristics of high-k gate dielectric
engineered DG FETs.

Operation Mode Channel Type pH Sensitivity
(mV/pH)

Na+ Sensitivity
(mV/dec)

K+ Sensitivity
(mV/dec)

Ca2+ Sensitivity
(mV/dec)

SG mode
SiNW 2.56 2.98 2.50 37.44
Film 1.57 2.12 2.66 34.45

DG mode
SiNW 15.03 16.30 14.18 208.25
Film 8.47 17.60 14.95 139.41

4. Conclusions

In this study, we present a high-performance biosensor platform based on high-k gate
dielectric engineered SiNW random network channel DG FETs for the selective detection
of Ca2+. The proposed sensor platform combines the advantages of high-k gate dielectric
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engineered SiNW channel DG FETs as transducer units and separate EG as a sensing
unit. The template transfer method using PVP nanofibers enabled the fabrication of SiNW
channels. Due to the high surface-to-volume ratio of the SiNW channel structure, top-gate
oxide capacitance of the SiNW channel device could be larger, thereby enhancing the self-
amplification capability of capacitively coupled DG FETs. In addition to the SiNW channel
device, a conventional film channel device was fabricated to validate the improved charac-
teristics of the sensor platform. The electrical characteristics and pH-sensing capabilities of
the sensor platform were thoroughly evaluated to lay the foundation for Ca2+ detection.
The integration of a Ca2+-selective membrane to the fabricated sensor platform resulted
in remarkable Ca2+ sensitivity, with the SiNW channel device achieving a sensitivity of
208.25 mV/dec, surpassing that of the film channel device by 149%. The assessment of
non-ideal effects, such as hysteresis and drift, demonstrated that the fabricated SiNW
channel device effectively mitigated these effects, with the VH and RD values remaining
below 6.53% despite the enhanced Ca2+ sensitivity. To further assess its selective sensing
capabilities, the sensitivity of the platform to interfering ions, including H+, K+, and Na+,
was evaluated using a pH buffer, KCl, and NaCl solutions. Although the interfering-ion
sensitivities were also amplified in proportion to the Ca2+ sensitivity, the SiNW channel de-
vice exhibited a sensitivity of less than 7.82% of the amplified Ca2+ sensitivity. These results
confirm the successful application of the proposed sensor platform as a high-performance
biosensor. Therefore, the proposed high-performance biosensor platform based on high-k
gate dielectric engineered SiNW random network channel DG FETs demonstrated highly
sensitive and selective characteristics with reliable sensing operation. These exhibit promis-
ing potential for broad applications in various biosensing fields, highlighting applicability
and versatile capabilities in biomedical diagnostics, environmental monitoring, and food
safety analysis.
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