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Abstract: Infrared thermography (IRT) is a technique used to diagnose Photovoltaic (PV) installations
to detect sub-optimal conditions. The increase of PV installations in smart cities has generated the
search for technology that improves the use of IRT, which requires irradiance conditions to be greater
than 700 W/m2, making it impossible to use at times when irradiance goes under that value. This
project presents an IoT platform working on artificial intelligence (AI) which automatically detects
hot spots in PV modules by analyzing the temperature differentials between modules exposed to
irradiances greater than 300 W/m2. For this purpose, two AI (Deep learning and machine learning)
were trained and tested in a real PV installation where hot spots were induced. The system was able
to detect hot spots with a sensitivity of 0.995 and an accuracy of 0.923 under dirty, short-circuited,
and partially shaded conditions. This project differs from others because it proposes an alternative
to facilitate the implementation of diagnostics with IRT and evaluates the real temperatures of PV
modules, which represents a potential economic saving for PV installation managers and inspectors.

Keywords: IoT System; infrared thermography; deep learning; machine learning; random forest;
Mobilenet; Resnet50; photovoltaic installation

1. Introduction

Solar photovoltaic (PV) energy and distributed generation are being vastly adopted
by smart cities [1]. This energy has considerable advantages; however, it requires correct
management to achieve its maximum exploitation and efficiency. The exposure of solar
modules to shadows or soiling, or internal damage to the modules, generates a reduction in
system performance [2]. These sub-optimal operating conditions must be addressed quickly
and effectively to avoid permanent damage to the system, loss of project profitability, or
even the possibility of fire being generated [3].

To detect sub-optimal conditions, we can make use of infrared thermography (IRT).
This technique allows us to analyze the temperature distribution of the PV arrays to detect
regions that are at higher temperatures (hot spots), indicating that there is a loss of power
(sub-optimal condition) [4]. Hot spot detection has traditionally been performed manually.
In PV modules, they are identified through the presence of a temperature gradient of at least
10 ◦C. However, for the same sub-optimal condition, the temperature gradient becomes
greater as the irradiance increases [5]. The author in [6] proposes a method that should be
performed with an irradiance of at least 600 W/m2 and [7] indicates that at least 700 W/m2

is required. The existence of multiple fault detection criteria makes the diagnosis more
complex and generates a loss of objectivity.

Costa Rica is in a tropical latitude with a very variable climate due to its mountainous
topography, presenting cloudy or rainy conditions even in the dry season. This climate
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variation, to which many other countries in the world are also exposed, makes it difficult
to ensure conditions of at least 600 W/m2 at the time of an IRT inspection. Thus, there is
a need to define new hot spot detection criteria under lower irradiances [8,9]. Since the
temperature gradient of a hot spot decreases as the irradiance decreases [5], this project
proposes a system capable of associating hot spot temperature gradients of less than
10 ◦C under irradiance conditions lower than 700 W/m2, by generating a model based
on AI trained with hot spot conditions for a wide range of irradiances. Training this
model requires the processing of a large amount of IRT data, including information under
sub-optimal conditions and multiple irradiance conditions. Unfortunately, there are few
freely available or freely accessible image data with the aforementioned information [10];
therefore, as a first step, it is necessary to collect a large amount of IRT data from PV
modules under sub-optimal conditions.

To generate a high volume of thermographic information, this research group devel-
oped the project described in [11]. In that project, an IoT-based platform was developed to
capture thermal images of PV modules automatically and remotely, monitoring the irradi-
ance and environmental information required for correct thermal image processing. In the
research, the correct operation of the system was validated, and a detailed extraction of
the PV array temperature information performed, with the aim of automatically detecting
sufficient IRT data hot spots even under irradiances lower than 700 W/m2.

Accurate detection of solar modules in IRT images has numerous practical applica-
tions [12]. For example, it can be used in the monitoring and maintenance of large-scale
solar installations, enabling early detection of faulty or mispositioned modules. IRT images
can provide valuable information about their status and performance. However, manual
processing of these images is a slow and error-prone process.

This is where deep learning comes into play, a branch of AI that has revolutionized
computer vision. In this article, we explore the use of deep learning and pre-trained models,
specifically, ResNet50 [13] and MobileNet [14], for the detection of solar modules in IRT
images. These pre-trained models are convolutional neural networks [15] that have been
trained on massive and diverse datasets, enabling them to learn general and complex
features that can be applied to specific tasks, such as object detection.

The ResNet50 [13] model is known for its depth and ability to capture high-quality
features, making it a promising choice for the detection of solar modules in IRT images. On
the other hand, MobileNet stands out for its computational efficiency and ability to run
on resource-constrained devices, making it suitable for real-time implementations. The
process of detecting solar modules using deep learning consists of several stages [16].

This paper presents the continuation of the project described in [11]. Through a case
study, an algorithm based on AI is proposed for the automatic detection of PV modules
and hot spots for irradiance conditions higher than 300 W/m2. The system was validated
under the following three types of sub-optimal conditions: partial shading, short-circuit
in a PV module, and soiling. The results demonstrate the possibility of detecting hot
spots even under irradiances lower than 700 W/m2, which could significantly reduce
maintenance costs of IRT and speed up the detection of sub-optimal conditions. In addition,
the information being collected can be shared with other researchers so that they can
investigate this topic, a situation that is currently not possible due to the unavailability of
open data.

The article is structured as follows: (a) a section on related work with a similar
approach is presented; (b) a section on materials and methods where the technical charac-
teristics of the equipment, the system used, and the methodology are described; (c) a section
on results and a discussion presenting the experimental results with their interpretation;
and, finally, (d) the conclusions of the work.

2. Related Work

Previous research efforts have focused on different approaches for hot spot detection
in PV modules. Some studies have utilized IRT techniques to capture temperature varia-
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tions across the module surface, while others have explored the use of machine learning
algorithms for classification and anomaly detection. However, existing methods often face
limitations in terms of accuracy, scalability, and adaptability to varying irradiances. This
motivates the need for an IoT system that can provide real-time monitoring and detection
of hot spots in PV modules, capable of handling a wide range of irradiances commonly
encountered in outdoor environments.

2.1. IoT and Thermography

The development of correct monitoring for the operation and maintenance of a PV
system is implemented through monitoring technology and continuous analysis of the
system [17]. Among the variety of techniques for PV module diagnostics, the ability of the
IRT to detect hot spots is noted [18,19]; therefore, extensive research has been carried out
on the correct implementation of this method. For instance, in ref. [20], the performance of
PV arrays in the presence of faults was analyzed using a PV analyzer, an electrical power
meter, and an IRT camera. Moreover, with the innovation of IoT technology, ref. [21]
demonstrated the effectiveness of this technology for PV array diagnosis; in this particular
case, using the K-means clustering algorithm. IRT has also been implemented for the
development of orthomosaics, demonstrating its ability to detect hot spots, soiling, and
cracks semi-automatically [22]. To generate quantitative indicators that characterize IRT,
ref. [23] established a metric that takes into account the capabilities of the technique. In
addition, ref. [24] makes a comparison between IRT and other fault detection techniques.

For the detection of hot spots with IRT, studies have been done to evaluate the temper-
ature gradient required for specific irradiance conditions. One such example, [25], validated
that, for certain irradiance conditions, a temperature gradient greater than, or equal to
10 ◦C, is required. Related to this, although IRT has improved over time, it its effectiveness
in detecting hot spots should be improved, and detection criteria should be generated for
facilities where irradiance may decrease unexpectedly [8].

2.2. Deep Learning

Deep Learning, a subfield of Machine Learning, has revolutionized the field of com-
puter vision in recent years. In [26], it was proven to be highly effective in object detection
and classification in images, making it a promising tool for addressing solar panel detection
in IRT images. This study proposes an approach based on deep convolutional neural
networks for the detection and localization of solar modules in aerial images. The method
achieves high accuracy in detecting solar modules in different scenarios. The research docu-
ment Deep Learning-Based Detection of PV modules in aerial images presents a system for
detecting solar modules using a deep convolutional neural network. The approach achieves
accurate and efficient detection of solar modules in high-resolution aerial images [27].

Fault detection in photovoltaic modules with Deep Learning was proposed by [28].
The study used a drone with an IRT camera to locate faults in solar modules. For detection,
it used an enhanced version of You Only Look Once (YOLOv3-tiny), storing the information
on a remote server via Long-Term Evolution (LTE) communication. The study found that
the YOLOv3-tiny model performed well.

Semantic Segmentation of Solar PV modules and Wind Turbines in Satellite Images
Using U-Net, presented by [29], focuses on automating the surveying process of renewable
energy resources to eliminate manual effort. Specifically, it aims to gather information on
Solar PV modules and Wind Turbines at the building or neighborhood level to facilitate
the analysis of their deployment. By leveraging a Deep Learning model, it becomes
possible to approximate the carbon footprint and payback period for both existing and
proposed locations of these renewable energy installations. The Dataset used in this
work was acquired from Google Maps, and specifically from its satellite view. Deep
convolutional neural network for automatic detection of damaged PV cells [30] introduces
a novel approach utilizing Deep Convolutional Neural Networks (DCNNs) to estimate the
degradation of PV cells. While numerous studies have focused on image classification, this
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research stands out as the first to leverage data obtained from a drone equipped with an IRT
sensor. The authors present experiments conducted on the PV images Dataset, a collected
dataset, to highlight the degradation issue and provide a comprehensive evaluation of
the proposed method. Results, in terms of precision, recall, and F1-score, demonstrate the
effectiveness and suitability of the approach.

2.3. Machine Learning

A commonly used technique is supervised learning, where a model is trained using
labeled datasets containing information about the presence or absence of solar modules and
their condition. PV defect classification through IRT imaging using a Binary classification
learning approach is presented in [31]. This study explores a deep learning and feature-
based approach to detect and classify defective PV modules using IRT images in a South
African context. The performances of the VGG-16 and MobileNet models are evaluated
and found to be effective in accurately classifying defects. To identify the defective PV
modules, the scale invariant feature transform (SIFT) descriptor is combined with a random
forest classifier. The implementation of this approach shows potential for reducing costs
associated with defect classification compared to current methods.

In [32], a binary classification of defective solar PV modules using IRT project is
presented; the focus was on addressing the crucial aspects of monitoring and maintenance to
ensure the reliability of PV modules within solar PV-based power systems. They proposed
a machine learning-based approach that leverages texture features extracted through IRT
assessment to categorize operational solar modules into two distinct categories: defective
and non-defective modules. Fault Detection and Classification in PV Arrays Using Machine
Learning Algorithms in the Presence of Noisy Data is presented in [32]. In this study, the
objective was to develop a robust method for fault detection in PV arrays by incorporating
machine learning techniques while handling noisy data. The presence of noise in the data
poses a challenge to the training process of machine learning algorithms. Furthermore,
the data collected from PV arrays may contain noise due to human errors or equipment
malfunctions. Therefore, this research focused on devising a methodology to effectively
detect faults in PV arrays by mitigating the impact of noisy data.

In [33], a machine learning scheme for anomaly detection in solar power plants is
presented. The primary focus is on leveraging recent advancements in machine learning to
tackle the challenging task of anomaly detection in PV systems. With the rapid growth of
the solar energy industry and the increasing demand for reliable and efficient PV systems,
accurately detecting and monitoring anomalies has become a crucial requirement.

2.4. Innovation of This Work

In previous projects on hot spot detection in PV installations using AI for IRT, irradi-
ance has not been taken into account [28,31,32], or it the irradiance conditions have been
indicated as at a maximum [30], making it impossible to include this variable in the IRT
analysis, which is known to be directly related to the hot spot temperature [5]. On the other
hand, the above-mentioned projects have not taken into account the specific record for
each thermogram, the relative humidity and ambient temperature conditions [28,30–32],
thereby impeding the inclusion of this information within the AI model, even though these
variables have a relationship with the temperature estimated from IRT [34]. In previous
studies [28,30–32], the detection of hot spots was conducted by considering as the input
variable in training AI models the thermograms of the PV installation, but not the analysis
of temperature deltas between modules, which is the criterion taken as reference in the
IRT analysis [7]. Finally, in the studies mentioned the analyzed thermograms included
elements of the surroundings (roads, soil, and vegetation), introducing elements with
thermal patterns that could generate false detection of hot spots.

In this project, real-time information on irradiance, ambient temperature, and relative
humidity is introduced for each thermogram to achieve a more accurate model that allows
the detection of hot spots even under low irradiance conditions. In addition, the AI model
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takes a validated quantitative criterion for hot spot detection, using, as a reference, the
temperature gradients between modules. Finally, so that the analysis performed omits the
consideration of unwanted information (elements that do not correspond to hot spots), the
detection of the PV modules is introduced as a first step so that the subsequent IRT analysis
focuses specifically on the PV modules.

3. Materials and Methods

This article presents, in detail, the methodology applied to achieve a new system
to detect hot spots for irradiances greater than 300 W/m2 using AI. The materials and
methods considered in the research are detailed below.

First, thermograms of the PV array are captured using the IRT camera to obtain the
thermal information of all PV modules. These images are then processed to identify and
isolate each PV module. This step involves thresholding techniques and segmentation
algorithms to distinguish the pixels corresponding to each PV module. Once each module
has been identified, the next step is to determine the temperature associated with each
pixel of each PV module. This is achieved by calibrating the IRT camera and correlating the
recorded thermal radiation with known temperature values.

The IRT images are collected and prepared, along with corresponding labels indicating
the presence or absence of solar modules. Then, a training dataset is used to fine-tune
the weights and parameters of the selected pre-trained model. Once the model has been
trained, we proceed to the inference stage, where it is applied to new images to detect and
locate the solar modules present in them. During this stage, the model leverages its ability
to extract relevant features from the images and classify regions of interest as either solar
modules or backgrounds using deep learning techniques, such as the ResNet model.

In this project, an approach for detecting hot spots in IRT images and utilizing machine
learning techniques, specifically Random Forests, was evaluated. Random forests constitute
a versatile and powerful ensemble learning tool that combines several decision trees to
make accurate classifications and predictions.

By associating temperatures with each pixel, a quantitative assessment of the module’s
temperature distribution can be obtained [35]. Furthermore, the classification of the overall
state of the PV module can be performed, based on the temperatures detected. The idea
is that the identification of hot spots may indicate potential issues, such as soiling, partial
shading, or electrical malfunctions. By employing Random Forests [36], a machine learning
model can be trained on labeled datasets, where the number of hot pixels and other relevant
features are associated with the corresponding module conditions. This model can then
predict the state of a new module based on its hot pixel count.

The utilization of the random forest technique allows for the classification of temper-
ature differences using the corresponding irradiance, and, from that, a determination of
whether the condition is optimal or not. Random forests are a supervised machine learning
algorithm employed for both classification and regression tasks. To apply random forests
in this case, a data set containing information on irradiance, temperature differences, and
the classification of whether a hot spot exists or not is necessary. Historical data can be
used to train the random forest model.

Once the model is trained, it can be utilized to classify new observations of irradiance
and temperature differences, determining whether a hot spot exists or not. The random
forest model leverages the learned information during training to make classification
decisions based on the input data characteristics. The integration of machine learning
with the analysis of hot pixels in IRT images offers a powerful and efficient approach to
temperature determination and classification of PV modules. By leveraging the capabilities
of Random Forests, accurate predictions and classifications can be made, enabling proactive
maintenance and troubleshooting of PV installations.
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3.1. PV System Analyzed

A PV array of 12 modules in a series was used at the Costa Rica Institute of Technology,
with the characteristics shown in Table 1. Figure 1 shows the PV array under study.

Table 1. Characteristics of the PV system used in this study

Parameter Value

Array DC Power 3.36 kW
Latitude 10◦32′

Longitude 84◦31′

PV modules model Canadian Solar CS6k-280M
Inclination 15◦

Azimuth 150◦ with respect to the North

Figure 1. Polycrystalline 3.36 kW PV array used for this study.

3.2. Data Acquisition System for Thermographic Analysis

A thermographic data acquisition system developed in the previous stage of the
project was used [11]. A FLIR Vue Pro R 336 camera (FLIR LLC, Wilsonville, OR, USA) and
a Spektron 210 irradiance sensor (Tritec Energy, Arundel, UK) were used. The temperature
of each pixel of the thermograms was obtained with the thermimage package [37], which,
considering Plank’s law and Stefan Boltzmann’s relation, requires, as input parameters, the
relative humidity and the ambient temperature; therefore, the system includes a sensor for
the real-time measurement of these variables. Tables 2 and 3 show the characteristics of the
instrumentation used. The proper functioning of the system was validated in [11].

Table 2. Main characteristics of the thermal camera (FLIR VUE PRO R 336) used in the project.

Parameter Value Parameter Value

HFOV × VFOV 25◦ × 19◦ Image width × height 336 × 256
Sensor (widht × height) 5.764 mm × 4.351 mm Accuracy ±5◦C
Focal Lenght 13.00 mm Thermal sensitivity 40 mK
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Table 3. Characteristics of the sensors used for measurements of environmental variables required
for IRT analysis.

Component Parameter Value

DHT11 Sensor Temperature range 0 ◦C to 50 ◦C
Humidity Range 20% to 90%

Accuracy ±2 ◦C and ±5%

Spektron 210 Irradiance range 0 to 1500 W/m2

Accuracy ±5%

Using an IRT protocol defined in [38], the camera was placed in a fixed position to
maintain the conditions between the taking of IRT images.

3.3. System Requirements

These were the requirements for the implemented system:

(a) Automatic and synchronous acquisition of all information needed for IRT analysis.
(b) Automatic processing of the IRT data. The technique implicitly measures the temper-

ature of each PV module by means of a model, details in [11].
(c) The detection of hot spots in the modules should be automatic. For this purpose, the

system verifies that there is at least an irradiance of 300 W/m2.
(d) Remote information management. The system can store information in data backup,

with the possibility of accessing it online. Additionally, all system control is done via
a graphical user interface (GUI).

3.4. Algorithm for Hot Spot Detection

An algorithm for automatic hot spot detection was defined and implemented in
an IoT-based system. Figure 2 shows the developed algorithm and its relationship with the
main components of the system.

From Figure 2, it can be identified that the proposed system has the following steps
for the detection of hot spots: (1) Data acquisition for IRT, (2) Detection of PV modules
by means of deep learning, (3) Reading the temperature of each pixel of the PV modules,
(4) Establishment of a healthy reference module, (5) Detection of hot spots by machine
learning and (6) Identification of modules with hot spots.

As can be observed in Figure 2, the system inputs are the thermal image, irradiance,
relative humidity, and ambient temperature, all acquired from two Raspberry Pi 4. In
step 1, the control unit can be configured to take measurements automatically at a given
frequency and also manually (IRT analysis is not yet performed at this point). In step 2,
the server runs a deep learning process that automatically detects each of the PV modules
present in the captured thermal image; this process has, as output, the coordinates of each
PV module. In step 3, each of the identified PV modules is analyzed with the Flir script that
interprets the temperature of each of the pixels of each image; for this, it makes use of the
real-time measurement of humidity and temperature. Additional details of this process are
included in [11]. In step 4, a statistical analysis identifies which PV module is the healthiest
(the module with the smallest temperature gradient). This step is essential, since the IRT
analysis is based on the comparison of objects to be evaluated with a healthy object [4]. In
step 5, each PV module is evaluated with respect to the healthy module. In this analysis, the
temperature gradient between modules, known as delta temperature (DT) and irradiance,
are taken into consideration. DT is calculated with Equation (1) for each module evaluated
with respect to the healthy module.

DT = Tmax,UTest − Tmax,healthy (1)

where Tmax,UTest is the maximum temperature in the module under test and Tmax,healthy is
the maximum temperature of the healthy module. The detection of hot spots is achieved
using a machine learning AI of Ensemble Classifiers as has been used before for IRT [39].
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The output corresponds to a data matrix stored in a CSV file that identifies modules with
and without hot spots (Step 6).

Figure 2. Implemented fault detection algorithm. The flow of information is listed from 1 to 6.

3.5. Fault Detection Criteria

The whole system considers that a failure in a PV module, due to a hot spot, generates
a temperature differential of 10 ◦C or more for a minimum irradiance of 700 W/m2 [7].
With this, the proposed algorithm considers that, if, for a given sub-optimal condition, a hot
spot is generated at an irradiance of at least 700 W/m2, then, for an irradiance lower than
700 W/m2 that condition still corresponds to a hot spot, even if the DT is less than 10 ◦C.

3.6. Deep Learning for Solar Module Recognition

The recognition of PV modules using deep learning techniques, and, specifically,
the ResNet50 and MobileNet architectures, has proven to be an effective solution for the
automated identification of these devices in images. This system utilizes deep learning
to analyze and classify images (step 1), enabling accurate and efficient detection of solar
modules in various scenarios.

ResNet50 is a deep convolutional neural network (CNN) architecture that has demon-
strated exceptional performance in image classification tasks. It consists of 50 layers of
learning, allowing it to effectively capture complex and high-level features from images.
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On the other hand, MobileNet is another CNN architecture known for its computational
efficiency and ability to run on mobile devices with limited resources.

The system training process begins with the collection of a labeled dataset of PV
modules, consisting of images that contain both solar modules and other features present
in the environment. These images are used to train the neural network, where they are fed
into the network, and the weights of different layers are adjusted so that the network can
learn to recognize and distinguish solar modules.

Once trained, the network can perform inferences on new images to detect and classify
PV modules. The system takes an image as input and passes it through the neural network.
The initial layers of the network capture low-level features, such as edges and textures,
while the later layers capture more abstract and module-specific features.

The ResNet50 and MobileNet architectures are capable of extracting distinctive fea-
tures of solar modules, such as the structure of PV cells and the frame of the module. These
features are used by the system to determine if a solar module is present in the image and
to provide an accurate classification of its location and orientation.

The training of the ResNet model was conducted using a dataset of 6800 images of
PV modules. To enhance the identification of PV modules’ capability, the technique of
knowledge transfer was applied using TensorFlow, a popular machine learning library.
Knowledge transfer is an approach that leverages the knowledge previously acquired by
a model in a related task to improve performance in a specific task. In this case, a pre-
trained model on a general dataset was used to initiate the training of the ResNet model.
This pre-trained model benefited from its previous experience in learning relevant image
features. The technique of knowledge transfer enabled this knowledge to be transferred to
the ResNet model and enhanced its classification capability for sub-optimal and optimal
contexts in PV modules. During the training process, the ResNet model adjusted its
parameters using the training data. By training the ResNet model on this specific dataset,
the goal was to capture the distinctive characteristics of each category and improve the
model’s classification capability on new images. The choice of ResNet as the model
architecture was significant due to its ability to learn high-level representations of images.
ResNet’s architecture includes residual blocks that enable the model to learn deeper and
more complex features. This capability was leveraged to enhance the precise identification
of PV modules. During training, optimization techniques, such as stochastic gradient
descent, were employed to iteratively adjust the weights and biases of the ResNet model.
These adjustments were performed over multiple epochs to gradually improve the model’s
ability to generalize and accurately classify new images. To evaluate the performance of
the model, an independent test dataset that was not used during training was utilized.
Evaluation metrics, such as precision and accuracy, were calculated to measure the model’s
performance in classifying sub-optimal and optimal conditions accurately.

3.7. Machine Learning for Hot Spot Detection

The random forest classification system is a machine learning technique used to classify
PV modules with and without hot spots. For this purpose, the algorithm is trained with
information from real-time conditions of irradiance and DT. First, a dataset is collected
consisting of images of PV modules. These images contain both healthy solar modules
and those with possible anomalies or issues. Along with the images, information about
irradiance and DT is gathered. Once the dataset is obtained, the random forest classification
system is trained. This algorithm utilizes multiple decision trees, where each tree is trained
with a random sample from the dataset. During training, each tree performs classification
of the PV modules using the information from each pixel present in the image, as well as
the irradiance and DT. During the classification stage, the system takes an image of a PV
module as input and submits it to each tree in the random forest. Each tree performs an
independent classification and produces its prediction. The output of all the trees is then
combined to obtain a final prediction.
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Employing a random forest classification system brings numerous advantages to this
analysis. Firstly, it enables the handling of large datasets efficiently and exhibits robustness
against noise or missing data. This resilience allows for reliable and accurate classification
results even in real-world scenarios where data imperfections may exist. Moreover, the
random forest model excels in capturing complex and non-linear features that are often
present in images of PV modules, enhancing the system’s ability to accurately differentiate
between normal and defective modules.

By leveraging information regarding irradiance and temperature, the system becomes
capable of detecting a range of potential issues within the modules. These may include
soiling, partial shading, and short circuits that would affect the overall performance and
efficiency of the solar system. Identifying such problems on time empowers maintenance
teams to address them promptly, thereby ensuring the optimal functioning of the PV array
and maximizing its power generation capacity.

The classification system described herein offers a comprehensive approach to detect-
ing issues in PV modules (Step 5). By considering the analysis of pixel features, temperature
differentials, and irradiance and employing a random forest model, it becomes possible
to accurately classify modules as no hot spot (0) or hot spot (1). This approach enables
efficient maintenance practices, reduces downtime, and maximizes the overall reliability
and performance of solar energy systems.

In this project, a total of 664 observations were used to train a random forest model,
with 332 observations with hot spots and 332 in normal conditions. The data was split
into a 70 percent training set and a 30 percent test set. This meant that 464 observations
(70 percent of 664) were used for training, while 200 observations (30 percent of 664) were
reserved for testing the model. By employing this configuration, the model was trained on
diverse conditions and evaluated on an independent sample, providing a solid foundation
for analyzing its performance and generalization in real-world scenarios.

3.8. Validation Process

Initially, the correct data acquisition, processing, and visualization of the system
were verified. Then, considering the methodology of [8], sub-optimal conditions (soiling,
partial shading and module short-circuit) were induced to evaluate the correct detection
of hot spots with different irradiance levels and different hot spot causes. Figure 3 shows
an example of a test of soiling conditions. Finally, to obtain an indicator of the system’s
performance in detecting hot spots, an inferential statistical analysis was performed using
ROC analysis [40]; thus, calculating the sensitivity and accuracy of the system.

Figure 3. (a) Example of application of bird droppings in the PV array under test. (b) Example of
application of a combination of droppings and leaves in the PV array under test.

3.9. Limitations of the Project

It should be taken into consideration that this project presents a platform that can
detect hot spots from AI; however, its performance is directly related to the training dataset.
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Due to the defined availability of time for this stage of the project, the dataset used was
limited should be increased, and its improvement should be evaluated in future research.

For this first iteration of the system, it was assumed that it would be at a fixed location;
therefore, the data set used corresponds to images taken from the same point. The real
potential of this system lies in making it work for images taken from variable locations, as
a drone would do. Therefore, improving the dataset with these considerations in mind is
still pending.

To evaluate the system’s ability to detect sub-optimal conditions, partial shading,
soiling, and short circuits were taken into consideration; however, there are other types of
faults for which the system’s performance is yet to be evaluated.

Finally, the performance of the system is closely related to the accuracy of the instru-
mentation; therefore, there is an inherent error in the equipment used.

4. Results and Discussion

The main experimental results obtained in the research are discussed and
presented below.

4.1. Graphical Interface to Operate the System

Figure 4 shows the system interface in operation. It allows the user to visually know
the location of each hot spot in the analyzed thermogram and also allows the user to
visualize, in detail, all the variables measured and calculations used in the analysis.

Figure 4. Graphical user interface for presentation of thermographic analysis and hot spot detection.

4.2. Automatic Module Detection

Figure 5 shows the detection of each PV module numbered with an identifier between
1 and 8. As can be seen, from the deep learning algorithm, the system was able to automat-
ically detect the 8 PV modules that were fully observed in the thermogram, identifying
them for further temperature analysis. The labeling of 1–8 was not presented to the user.
It is included in Figure 5 to exemplify the concept. It can be seen that the rectangle that
identifies each module in some cases includes regions behind the array, and there are also
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cases where there is an overlap between modules, a feature that could be improved in
the future.

Figure 5. Representation of the automatic identification of PV modules by the system. The numbering
was not presented to the user, but was included in the figure to exemplify the process.

4.3. Automatic Hot Spot Detection

The system response was evaluated based on hot spot detection analysis for induced
sub-optimal conditions. Table 4 shows an example of 4 tests performed. For each test,
the irradiance, the modules where a hot spot condition was applied, and the modules
where the system detected a hot spot were recorded. As shown in Table 4, the system was
able to correctly detect hot spot conditions induced by soiling (Figure 6a) and short-circuit
conditions (Figure 6b). It is important to emphasize, in this case, that the failures were
induced in PV modules that were randomly located and were for irradiance conditions
below 700 W/m2, demonstrating the capability of the system to effectively detect hot spots
due to different conditions under low irradiances.

Table 4. Examples of tests applied to evaluate the performance of the system.

Figure Irradiance (W/m2)
Module with Hot Spot Induced Module with Hot Spot Detected

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Figure 6a 317 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1
Figure 6b 430 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Figure 7a 456 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
Figure 7b 362 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

PV modules where the system detected the condition correctly are shown in green, and modules where an
erroneous condition was detected are shown in red.

Table 4 shows the cases described by Figure 7a (soiling) and Figure 7b (no hot spot
induced). The system detected a hot spot in module 2 by mistake. In regard to the case
presented with Figure 7a., the hot spot existed in module 5, right at the edge adjacent to
module 2; this caused the system to detect the hot spot in both modules (5 and 2). This could
be corrected in several ways; for example, using the AI of step 2 through segmentation [41].
In regard to the case presented with Figure 7b, the system detected a hot spot by mistake
due to a reflection of an object. The object that generated the reflection would have to be
relocated or the camera position changed to correct this.
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Figure 6. (a) Thermogram of array under soiling conditions at an irradiance of 317 W/m2. (b) Ther-
mogram of array under short-circuit conditions at an irradiance of 430 W/m2.

Figure 7. (a) Thermogram of array under soiling condition at irradiance of 456 W/m2. (b) Thermo-
gram of array under normal condition at irradiance of 362 W/m2.

4.4. Performance Evaluation

An experiment was developed by inducing sub-optimal conditions to the PV array
and analyzing the system response for each test; from the results, the system performance
for hot spot detection was determined. For this, 86 tests of sub-optimal conditions and
10 control (non-failure) conditions were applied to the array under test. In this process,
each measurement was taken approximately every 15 min. The results of the confusion
matrix are shown in Table 5.

Table 5. Results of the confusion matrix of the experiment to test the system performance.

True False ∑

Positive 216 18 234
Negative 437 1 438
∑ 653 19 672

A confusion matrix was generated by considering each PV module as an individual
test subject. In this analysis, it was considered that, of the 8 modules analyzed, only 7 could
be modules with a hot spot, since one was always chosen as a healthy module. Consid-
ering this, with the 96 tests performed on the PV array of interest, a total of 672 modules
were evaluated.

From the results of Table 5, it was determined that the system had a sensitivity of
0.995 and an accuracy of 0.923. This verified that the system performed correctly to detect
hot spots due to different types of sub-optimal conditions at irradiances from 301 W/m2
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to 1132 W/m2 (range of irradiances used in the 96 tests). It can be observed that there
was only one case in which the system did not detect the presence of a hot spot, which
was associated with the high sensitivity of the system. On the other hand, 18 hot spots
were detected in cases where there were none (false positives), which occurred due to
a reflection of an object behind the array of interest, and in cases where two hot spots
were detected in two adjacent modules that corresponded to a single hot spot. Thus, it
was confirmed that a thermographic image acquisition system could be trained to detect
hot spots at irradiances greater than 300 W/m2, allowing hot spot detection even under
varying weather conditions, where unexpected low irradiances may occur. This confers
high benefits to managers and inspectors of PV installations, since suspending a scheduled
IRT inspection due to a decrease in irradiance represents economic losses. Additionally,
early detection of a hot spot, even under low irradiance conditions, can prevent further
damage to an installation.

5. Conclusions

It was experimentally proven that, from an IoT-based system with AI, it is possible to
detect hot spots in PV modules for irradiances above 300 W/m2. This contributes to the
solution of an existing need to facilitate managers and thermographers of PV installations
in speeding up the detection of hot spots that, up to now, require scheduling inspections
for irradiances above 700 W/m2.

The system achieved a sensitivity of 0.995 and an accuracy of 0.92, which is associated
with high system performance; even so, these results can be improved by implementing
the variations indicated in Section 4.3.

The results indicate the ability of the system to detect hot spots due to soiling, partial
shadows, and short circuits in modules; however, because the system analyzes temperature
differentials, it has the potential to detect hot spots due to any other cause.

This research differs from classical IRT processing techniques in that it is not trained
to detect temperature patterns but is capable of analyzing the temperature of each pixel
of PV modules to detect a hot spot. The results represent the high potential of combining
IRT and AI in IoT systems to maximize the requirement for smart cities to make greater
exploitation of PV energy.

The performance of the system can be improved by expanding the training data set.
In this process, the inclusion of other sub-optimal conditions would allow the system to be
validated against a wider range of possible situations that may occur in real installations;
however, because the system focuses on the analysis of temperature gradients, the system
should even identify sub-optimal conditions for which it has not been trained. All of the
aforementioned should be experimentally validated in future work.

This system can be implemented to automatically evaluate the diagnosis of IRT taken
with drones; however, experimental tests with thermograms at different altitudes and
orientations are still pending in future research.

It is of high interest for PV installation managers to detect not only the presence of
a fault, but also the cause of the fault. The system shown could be improved to achieve
this by expanding the dataset and training the AI to identify the main types of faults; this
remains to be developed in a future project.

The proposed system involves including, in the IRT analysis of PV systems, a detailed
monitoring of irradiance, relative humidity, and ambient temperature, to be subsequently
processed in a computer system with AI, These aspects are not currently considered in
many cases. On the other hand, the system aims to facilitate and speed up the appli-
cation and analysis of IRT. The inclusion of this type of factor should be analyzed to
estimate the benefit for real inspection scenarios and this type of analysis is a pending line
of research.



Sensors 2023, 23, 6749 15 of 17

Author Contributions: Conceptualization, L.C.-V. and E.J.-D.; methodology, L.C.-V., Y.G.-R. and
E.J.-D.; software, Y.G.-R. and L.A.S.-G.; validation, L.C.-V. and Y.G.-R.; formal analysis, Y.G.-R., L.C.-V.
and E.J.-D.; investigation, Y.G.-R., L.A.-S., E.J.-D. and J.A.-V.; supervision, L.C.-V. and A.M.-P. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was fully funded by the Instituto Tecnológico de Costa Rica (TEC) through the
project “Identificación de Fallas en Instalaciones Solares Fotovoltaicas”, funding number 1360051.
TEC was supported by State of Costa Rica as one of the public estate universities. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Data Availability Statement: Data presented in this study are available on request from the corre-
sponding author. The data are not publicly available due to internal policies of the Institution.

Acknowledgments: The authors thank Allan Solís Gonzáles and Alvaro Sossa Rojas of TEC for their
assistance with the experimental procedures.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Hoang, A.T.; Pham, V.V.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy

towards clean and sustainable process. J. Clean. Prod. 2021, 305, 127161. [CrossRef]
2. Tsanakas, J.A.; Ha, L.; Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review

of research and future challenges. Renew. Sustain. Energy Rev. 2016, 62, 695–709. [CrossRef]
3. Wu, Z.; Hu, Y.; Wen, J.X.; Zhou, F.; Ye, X. A Review for Solar Panel Fire Accident Prevention in Large-Scale PV Applications.

IEEE Access 2020, 8, 132466–132480. [CrossRef]
4. Lagüela, S.; Díaz-Vilariño, L.; Roca, D. Infrared Thermography: Fundamentals and Applications. In Non-Destructive Techniques for

the Evaluation of Structures and Infrastructure, 1st ed.; Riveiro, B., Solla, M., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Chapter 6,
p. 26. [CrossRef]

5. Cubukcu, M.; Akanalci, A. Real-time inspection and determination methods of faults on photovoltaic power systems by thermal
imaging in Turkey. Renew. Energy 2020, 147, 1231–1238. [CrossRef]

6. International Energy Agency. Review of Failures of Photovoltaic Modules; Technical Report July; International Energy Agency: Paris,
France, 2014.

7. International Energy Agency. Review on Infrared and Electroluminescence Imaging for PV Field Applications; Technical Report,
Photovoltaic Power Systems Programme; International Energy Agency: Paris, France, 2018.

8. Cardinale-Villalobos, L.; Meza, C.; Méndez-Porras, A.; Murillo-Soto, L.D. Quantitative Comparison of Infrared Thermography,
Visual Inspection, and Electrical Analysis Techniques on Photovoltaic Modules: A Case Study. Energies 2022, 15, 1841. [CrossRef]

9. Cardinale-Villalobos, L.; Meza, C.; Murillo-Soto, L.D. Experimental Comparison of Visual Inspection and Infrared Thermography
for the Detection of Soling and Partial Shading in Photovoltaic Arrays. In Ibero-American Congress of Smart Cities; Springer
International Publishing: Cham, Switzland, 2021; pp. 302–321. [CrossRef]

10. Jiménez-Delgado, E.; Méndez-Porras, A.; Alfaro-Velasco, J. Generative Adversarial Network for Synthetic Imaging Data of Sub-
optimal Conditions in Photovoltaic Panels. In International Conference on Information Technology & Systems; Springer International
Publishing: Cham, Switzland, 2022; pp. 206–218. [CrossRef]

11. Cardinale-Villalobos, L.; Solís-García, L.A.; Araya-Solano, L.A. IoT System for Thermographic Data Acquisition of Photovoltaic
Installations. In Ibero-American Congress of Smart Cities; Springer International Publishing: Cham, Switzland, 2023; pp. 110–122.
[CrossRef]

12. Ali, M.U.; Khan, H.F.; Masud, M.; Kallu, K.D.; Zafar, A. A machine learning framework to identify the hotspot in photovoltaic
module using infrared thermography. Sol. Energy 2020, 208, 643–651. . [CrossRef]

13. Tella, H.; Mohandes, M.; Liu, B.; Rehman, S.; Al-Shaikhi, A. Deep Learning System for Defect Classification of Solar Panel Cells.
In Proceedings of the 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN),
Al-Khobar, Saudi Arabia, 4–6 December 2022; pp. 448–453. [CrossRef]

14. Pham, D.A.; Le, A.D.; Pham, D.T.; Vo, H.B. AlertTrap: On Designing An Edge-Computing Remote Insect Monitoring Sys-
tem. In Proceedings of the 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam,
21–22 December 2021; pp. 323–328. [CrossRef]

15. Subraja, N.; Venkatasekhar, D. Satellite Image Segmentation using Modified U-Net Convolutional Networks. In Proceedings
of the 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India,
7–9 April 2022; pp. 1706–1713. [CrossRef]

http://doi.org/10.1016/j.jclepro.2021.127161
http://dx.doi.org/10.1016/j.rser.2016.04.079
http://dx.doi.org/10.1109/ACCESS.2020.3010212
http://dx.doi.org/10.1201/b19024
http://dx.doi.org/10.1016/j.renene.2019.09.075
http://dx.doi.org/10.3390/en15051841
http://dx.doi.org/10.1007/978-3-030-69136-3_21
http://dx.doi.org/10.1007/978-3-030-96293-7_20
http://dx.doi.org/10.1007/978-3-031-28454-0_8
http://dx.doi.org/10.1016/j.solener.2020.08.027
http://dx.doi.org/10.1109/CICN56167.2022.10008277
http://dx.doi.org/10.1109/NICS54270.2021.9701558
http://dx.doi.org/10.1109/ICSCDS53736.2022.9760787


Sensors 2023, 23, 6749 16 of 17

16. Haitao, C.; Caijia, L.; Xin, W.; Qiang, S. An automatic defects detection system for PV plants with data augmentation.
In Proceedings of the 2021 International Conference on Power System Technology (POWERCON), Hangzhou, China,
8 December 2021; pp. 980–984. [CrossRef]

17. Aghaei, M. Autonomous Monitoring and Analysis of Photovoltaic Systems. Energies 2022, 15, 5011.
18. Madeti, S.R.; Singh, S. A comprehensive study on different types of faults and detection techniques for solar photovoltaic system.

Sol. Energy 2017, 158, 161–185. [CrossRef]
19. Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and

Mitigation Techniques. IEEE J. Photovoltaics 2015, 5, 982–997. [CrossRef]
20. Phoolwani, U.K.; Sharma, T.; Singh, A.; Gawre, S.K. IoT Based Solar Panel Analysis using Thermal Imaging.

In Proceedings of the 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science
(SCEECS), Online, 19–20 February 2022; pp. 1–5. [CrossRef]

21. Salazar, A.; Macabebe, E.Q. Hotspots Detection in Photovoltaic Modules Using Infrared Thermography. MATEC Web Conf. 2016,
70, 10015. [CrossRef]

22. Zefri, Y.; ElKettani, A.; Sebari, I.; Ait Lamallam, S. Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV
Photogrammetry—Application Case: Morocco. Drones 2018, 2, 41. [CrossRef]

23. Appiah, A.; Zhang, X.; Ayawli, B.; Kyeremeh, F. Review and Performance Evaluation of Photovoltaic Array Fault Detection and
Diagnosis Techniques. Int. J. Photoenergy 2019, 2019, 6953530. [CrossRef]

24. Mellit, A.; Tina, G.; Kalogirou, S. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain.
Energy Rev. 2018, 91, 1–17. [CrossRef]

25. Moretón, R.; Lorenzo, E.; Narvarte, L. Experimental observations on hot-spots and derived acceptance/rejection criteria.
Sol. Energy 2015, 118, 28–40. [CrossRef]

26. Golovko, V.; Kroshchanka, A.; Mikhno, E.; Komar, M.; Sachenko, A. Deep Convolutional Neural Network for Detection of Solar
Panels. In Data-Centric Business and Applications: ICT Systems-Theory, Radio-Electronics, Information Technologies and Cybersecurity
(Volume 5); Radivilova, T., Ageyev, D., Kryvinska, N., Eds.; Springer International Publishing: Cham, Switzland, 2021; pp. 371–389.
[CrossRef]

27. Golovko, V.; Bezobrazov, S.; Kroshchanka, A.; Sachenko, A.; Komar, M.; Karachka, A. Convolutional neural network based
solar photovoltaic panel detection in satellite photos. In Proceedings of the 2017 9th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania,
21–23 September 2017; Volume 1, pp. 14–19. [CrossRef]

28. Han, S.H.; Rahim, T.; Shin, S.Y. Detection of Faults in Solar Panels Using Deep Learning. In Proceedings of the 2021 International
Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 31 January–3 February 2021;
pp. 1–4. [CrossRef]

29. Darapaneni, N.; Jagannathan, A.; Natarajan, V.; Swaminathan, G.V.; Subramanian, S.; Paduri, A.R. Semantic Segmentation
of Solar PV Panels and Wind Turbines in Satellite Images Using U-Net. In Proceedings of the 2020 IEEE 15th International
Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 26–28 November 2020; pp. 7–12. [CrossRef]

30. Pierdicca, R.; Malinverni, E.S.; Piccinini, F.; Paolanti, M.; Felicetti, A.; Zingaretti, P. Deep Convolutional Neural Network for
Automatic Detection of Damaged Photovoltaic Cells. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, XLII-2, 893–900.
[CrossRef]

31. Dunderdale, C.; Brettenny, W.; Clohessy, C.; van Dyk, E.E. Photovoltaic defect classification through thermal infrared imaging
using a machine learning approach. Prog. Photovoltaics Res. Appl. 2020, 28, 177–188. [CrossRef]

32. Niazi, K.; Akhtar, W.; Khan, H.A.; Sohaib, S.; Nasir, A.K. Binary Classification of Defective Solar PV Modules Using Thermography.
In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th
IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, USA, 10–15 June 2018; pp. 0753–0757. [CrossRef]

33. Vahidi, A.; Golkar, M.A. Fault Detection and Classification in PV Arrays Using Machine Learning Algorithms in the Presence
of Noisy Data. In Proceedings of the 2022 9th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG),
Mashhad, Iran, 23–24 February 2022; pp. 1–7. [CrossRef]

34. Tattersall, G.J. Infrared thermography: A non-invasive window into thermal physiology. Comp. Biochem. Physiol. Part A Mol.
Integr. Physiol. 2016, 202, 78–98. [CrossRef]

35. Fan, F.; Na, Z.; Zhang, C.; Li, H.; Tong, C. Hot Spot Detection of Photovoltaic Module Infrared Near-field Image based on
Convolutional Neural Network. J. Phys. Conf. Ser. 2022, 2310, 012076. [CrossRef]

36. Kurukuru, V.S.B.; Haque, A.; Tripathy, A.K.; Khan, M.A. Machine learning framework for photovoltaic module defect detection
with infrared images. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 1771–1787. [CrossRef]

37. Tattersall, G.J. Thermimage: Thermal Image Analysis; R Package Version 4.1.3; R Core Team: Vienna, Austria, 2021. [CrossRef]
38. Cardinale-Villalobos, L.; Rimolo-Donadio, R.; Meza, C. Solar panel failure detection by infrared UAS digital photogrammetry:

A case study. Int. J. Renew. Energy Res. (IJRER) 2020, 10, 1154–1164.
39. Krawczyk, B.; Schaefer, G. A pruned ensemble classifier for effective breast thermogram analysis. In Proceedings of the 2013 35th

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013;
pp. 7120–7123. [CrossRef]

http://dx.doi.org/10.1109/POWERCON53785.2021.9697898
http://dx.doi.org/10.1016/j.solener.2017.08.069
http://dx.doi.org/10.1109/JPHOTOV.2015.2397599
http://dx.doi.org/10.1109/SCEECS48394.2020.114
http://dx.doi.org/10.1051/matecconf/20167010015
http://dx.doi.org/10.3390/drones2040041
http://dx.doi.org/10.1155/2019/6953530
http://dx.doi.org/10.1016/j.rser.2018.03.062
http://dx.doi.org/10.1016/j.solener.2015.05.009
http://dx.doi.org/10.1007/978-3-030-43070-2_17
http://dx.doi.org/10.1109/IDAACS.2017.8094501
http://dx.doi.org/10.1109/ICEIC51217.2021.9369744
http://dx.doi.org/10.1109/ICIIS51140.2020.9342701
http://dx.doi.org/10.5194/isprs-archives-XLII-2-893-2018.
http://dx.doi.org/10.1002/pip.3191
http://dx.doi.org/10.1109/PVSC.2018.8548138
http://dx.doi.org/10.1109/ICREDG54199.2022.9804510
http://dx.doi.org/10.1016/j.cbpa.2016.02.022
http://dx.doi.org/10.1088/1742-6596/2310/1/012076
http://dx.doi.org/10.1007/s13198-021-01544-
http://dx.doi.org/10.5281/zenodo.1069704
http://dx.doi.org/10.1109/EMBC.2013.6611199


Sensors 2023, 23, 6749 17 of 17

40. Pintea, S.; Moldovan, R. The Receiver-Operating Characteristic (ROC) analysis: Fundamentals and applications in clinical
psychology. J. Cogn. Behav. Psychother. 2009, 9, 49–66.

41. Maloca, P.M.; Lee, A.Y.; de Carvalho, E.R.; Okada, M.; Fasler, K.; Leung, I.; Hörmann, B.; Kaiser, P.; Suter, S.; Hasler, P.W.; et al.
Validation of automated artificial intelligence segmentation of optical coherence tomography images. PLoS ONE 2019, 14, e0220063.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0220063
http://www.ncbi.nlm.nih.gov/pubmed/31419240

	Introduction
	Related Work
	IoT and Thermography
	Deep Learning
	Machine Learning
	Innovation of This Work

	Materials and Methods
	PV System Analyzed
	Data Acquisition System for Thermographic Analysis
	System Requirements
	Algorithm for Hot Spot Detection
	Fault Detection Criteria
	Deep Learning for Solar Module Recognition 
	Machine Learning for Hot Spot Detection
	Validation Process
	Limitations of the Project

	Results and Discussion
	Graphical Interface to Operate the System
	Automatic Module Detection
	Automatic Hot Spot Detection
	Performance Evaluation

	Conclusions
	References

