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Abstract: The remote monitoring of patients using the internet of things (IoT) is essential for ensuring
continuous observation, improving healthcare, and decreasing the associated costs (i.e., reducing
hospital admissions and emergency visits). There has been much emphasis on developing methods
and approaches for remote patient monitoring using IoT. Most existing frameworks cover parts
or sub-parts of the overall system but fail to provide a detailed and well-integrated model that
covers different layers. The leverage of remote monitoring tools and their coupling with health
services requires an architecture that handles data flow and enables significant interventions. This
paper proposes a cloud-based patient monitoring model that enables IoT-generated data collection,
storage, processing, and visualization. The system has three main parts: sensing (IoT-enabled data
collection), network (processing functions and storage), and application (interface for health workers
and caretakers). In order to handle the large IoT data, the sensing module employs filtering and
variable sampling. This pre-processing helps reduce the data received from IoT devices and enables
the observation of four times more patients compared to not using edge processing. We also discuss
the flow of data and processing, thus enabling the deployment of data visualization services and
intelligent applications.

Keywords: remote patient monitoring; internet of things; edge processing; cloud computing

1. Introduction

A general healthcare system involves preventing, controlling, managing, and treating
sickness, disease, injury, or disability and also requires addressing the care and aftercare
of the person with these needs, which may or may not be carried out by a healthcare
professional [1]. The need for patient care (requiring constant monitoring and checkup) has
increased many-fold due to several reasons, such as (i) the intake of unhealthy and fatty
foods, smoking, stress, and inactivity; (ii) increase in life expectancy as a larger population
is in the old age group [2]; (iii) increase in vascular disease and diabetes; and (iv) large-scale
pandemics such as COVID-19, influenza, and Hepatitis C [3], among other factors. Further,
the shift in culture and policy adjustments have contributed to a more patient-centered and
costly healthcare system over the last century. Hospital care incurs enormous expenses
and is often overburdened. According to George Washington University’s report, the use
of hospital services is expected to grow significantly, causing a rise in healthcare industry
costs from 0.9 percent of GDP in 2019 to 2.4 percent by 2025 [4]. Cutting-edge technology
needs, therefore, to play an increasingly significant role in our healthcare system. Many
insurance companies are investing in the adoption of proactive approaches to detect health
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issues early and avoid hospitalizations [5,6]. One way to reduce hospitalizations and
improve healthcare is to move from constant monitoring in health facilities to remote
patient monitoring. The shift is significant, as technological advancements in healthcare
electronic technologies, such as sensors, wearable devices, and GPS tracking, are tested.

The internet of things (IoT) is emerging as a relevant choice for remote monitoring
and sensing. It refers to the interconnection of sensing devices that facilitates a coor-
dinated activity, which enables the monitoring, control, and calibration of a task or an
activity [7–9]. Modern IoT systems find massive use in applications such as urban monitor-
ing [10], emergency services, traffic management, waste management, building monitoring,
transportation, industries, and healthcare [11,12]. IoT is also finding ample use in the
monitoring and treatment of chronic diseases using custom fitness programs [13,14], care of
elderly persons [15], and several medical sensing devices, recorders, and image diagnostic
equipment play a central part in IoT to help make intelligent and informed decisions [16].
The IoT-supported patient monitoring and remote telemetry aim to improve the healthcare
system and reduce its associated costs [17]. Current systems generally discuss individual
aspects of the monitoring frameworks; however, to fully utilize the promise of IoT and
associated technologies (cloud, machine learning, communication, etc.), an end-to-end
solution is vital. This will require a scalable model at the sensing, network, and cloud levels
and their well-defined integration.

In this paper, we propose a scalable cloud-based model for the remote monitoring
of patients. The model consists of three well-defined modules: sensing, network, and
application. The sensing module uses IoT devices to collect the patient’s data. The data
are continuously transferred to the cloud using API gateways. The network module uses
cloud services and consists of several subsystems. The sensing module’s data are provided
to the network module, which stores and feeds them to services such as AI, machine
learning, visualizations, and decision making. This module has several data processing
and notification services. The application module provides an interface for the end users
using desktop, web, and mobile applications and supports the end user in visualizing the
data and performing remote interactions.

The proposed model is designed to handle large-scale data collected from IoT devices
mounted on a limited number of people (as lab experiments) by applying filtering, variable
sampling and multiplexing at the edge level (IoT devices and intermediate hub). The results
show that the model can support four times more patients by reducing the data burden
through edge processing techniques. Besides supporting the increased number of patients,
the gains are realized at the network layer by reducing pressure on the cloud services and
network bandwidth. In the network module, the data are stored in relational and non-
relational storage to enable the application of services like machine learning and AI. The
well-defined restful APIs enable the interaction between cloud services and user applications.

The rest of the paper is laid out as follows. Section 1.1 highlights the scientific con-
tributions of this work. Section 2 describes the related work, followed by the proposed
methodology in Section 3. Sections 3.1–3.3 introduce the sensing, network, and application
modules of our model, respectively. Section 4 details the tools used for implementation,
followed by Section 5, which presents the experiments and evaluation. Finally, Section 6
serves as a comprehensive discussion and conclusion of our proposed model, highlighting
its key features, advantages, and potential applications. We also provide insights into
future research directions and potential areas of improvement.

1.1. Contributions

The uniqueness of our model stems from addressing different aspects of remote patient
monitoring that handles significant data burden at different levels, addresses the integration
and archiving of data, enables smart diagnostic services, and integrates different agents.

The contributions of this work are listed as follows:

• An end-to-end system for remote patient monitoring that shows the collection, trans-
mission, processing, archiving and application of data is developed.
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• A modular and layered approach to patient monitoring is presented, which enables
futuristic technology-driven (AI and ML) healthcare services.

• Edge processing is deployed to reduce the flow of ample data into the system.
• Well-defined APIs are incorporated, which enable the integration of IoT data with cloud

services.
• Relational and non-relational data stores are included for the archiving of different

data and information in the system.

2. Related Work

In this section, we survey a number of remote patient monitoring (RMS) systems and
summarize their features and limitations. An overview is shown in Table 1.

The IoT has found widespread application in healthcare, particularly in health moni-
toring [18,19], and is mainly used for remote healthcare, telemetry, and control [20]. With
the recent pandemic of COVID-19, the world is struggling to improve health services and
incorporate cutting-edge technologies to fill the emerging gaps [21]. The 5G-based IoT
systems effectively provide a way to monitor the patient without physical contact and
enable health workers to evaluate the patient’s status [22]. The framework proposed by
Saji et al. uses gateways to send data from biomedical sensors to the intermediate hubs
for further processing [23]. The system is good at defining a gateway approach at the IoT
layer, but fails to present all layers of the system. The system is not deployed in real clinical
scenarios. Moreover, it does not provide the fundamental techniques for handling extensive
data that the IoT generates or supports for heterogeneous devices. As IoT is widely experi-
enced in health systems, smart navigation systems were developed for patients, allowing
them to follow the ambulance in emergencies. This provides the location of patients to the
hospital [24]. This system helps generate and enable early response. However, it fails to
support larger applications and databases.

The IoT-supported system is helpful when patients are being treated at the hospital.
Akira-Sebastian Poncette et al. proposed an IoT system for monitoring patients in the inten-
sive care unit (ICU) that supports real-time alerts about the health of critical patients [25].
The system provides a good interactive environment, including hints on hardware and
services. The system is still in the testing and validation phase and has not been deployed
for clinical use. Further, work has yet to be conducted to upgrade it by adding new pressure
and body weight calculation sensors. The model presented by Diwakar tracks the patient’s
length of stay to manage the patient’s admission to the hospital efficiently [26]. The system
is tested in the lab and can provide a health history and treatment information to assist
doctors quickly.

The development of wearable devices enabled the IoT growth in the healthcare and
biomedical fields. The biomedical sensors collect data and send them to the internet for
further analysis and decision making [27]. The mounted devices have sensors and mi-
crocontrollers; sensors receive essential readings about the patient’s condition and send
them to the nearby hub or smartphone using Wi-Fi or Bluetooth. There is no information
provided regarding the clinical deployment of this system. Based on the type of sensors, the
patient-monitoring wearable systems can be classified into four major categories: biomedi-
cal sensors, biopotential sensors, environmental sensors, and movement sensors [28]. The
wearable IoT sensors (i.e., ECG) have found a significant impact in tackling cardiovascular
diseases [29], and by using the wearable devices (e.g., mounting pulse sensors), the abnor-
mality in the heart rate can be detected [30]. The working phenomenon is that the device
alerts the caretakers to take action if an irregularity is detected. The pulse and ECG sensors
can detect early cardiac arrest symptoms as Majumder et al. showed in their work [31]. The
same was shown by Brezulianu et al. using IoT, signal processing and machine learning
techniques [32,33]. These three systems are lab tested and have not been deployed for real
clinical use.

IoT has found further application in measuring vital signs in patients, such as the
respiratory rate, temperature and counting of breaths and their intensity [34]. A smart
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prototype developed in the lab for asthma patients was also shown using IoT sensors [35].
It uses watermarking and signal enhancement techniques for secure data transmission.
The techniques reviewed by Lamonaca show blood pressure (BP) measurements using
pulse, ECG, temperature, and respiratory sensors. It also showed the limitations of com-
mercial BP measuring wearable IoT devices in measuring BP [36]. In a recent study, a novel
three-factor authentication protocol for wireless body area networks (WBANs) was devel-
oped, integrating patient biometrics, smart card, and password, substantially enhancing
security and performance [37]. Rigorous analyses employing real-or-random (ROR) and
Burrows–Abadi–Needham (BAN) logic validated the protocol’s security, and it withstood
the Dolev–Yao (DY) and Canetti–Krawczyk (CK) threat models. The protocol achieved
a 43.98% reduction in computational overhead, an 18.18% increase in supported security
characteristics, and a 19.05% reduction in space complexities. Another noteworthy study in
wireless healthcare networks addressed security and privacy by developing an authenti-
cation scheme that ensures strong mutual authentication, backward secrecy, session key
negotiation, and forward key secrecy in transmitting sensitive patient data over wireless
channels [38]. The scheme proved resilient against various attacks and exhibited lower
computation and communication complexities. However, both these studies and others fell
short of providing a comprehensive, integrated model encompassing different layers of the
system, which is essential for IoT-based remote patient monitoring.

Table 1. Comparative analysis of existing health monitoring systems with the proposed model.

Reference Proposed Technique Findings Limitations

Serhani et al., 2017 [2] Resource-Aware Mobile-Based
Health Monitoring

Use of dynamic programming for
finding

the processing unit which reduces
processing cost

No reduction in data generated from IoT,
No mechanism for integration

of AI/ML applications

Arora et al., 2019 [39] Wearable Sensors Based Remote
Patient Monitoring using IoT

Collection of patient data using IoT
device and its upload to cloud

No reduction in IoT data, No cloud
processing/archival, No support of

future applications

Mohammed et al.,
2014 [40],

Raj 2020 [29],
Wang et al., 2015 [33]

Monitoring of cardiovascular
patients

Visualizes ECG and uploads
IoT data to cloud

No reduction in collected data, can
handle only one parameter (ECG)

Sangeethalakshmi et al.,
2021 [13],

Saji et al., 2021 [23],
Diwakar et al., 2021 [26]

Real time health monitoring
system using IoT

Records patients data and send it
to cloud and physician app

No mechanism for handling of large IoT
data,

No direction about AI/ML
services in cloud

Gomez et al., 2016 [14],
Zhou et al., 2017 [15],

Sharma et al., 2021 [27]
IoT-based fitness system Employs IoT and cloud for data

collection and processing
Focuses on one application,

No filtering applied on IoT data

Mamatjan et al.,
2016 [17]

Framework for RPM using a
Wearable Device and Cloud

Integrates ML services in cloud
with IoT data

No filtering is applied
to reduce generated data

Javaid et al., 2021 [21],
Paganelli et al., 2021 [22]

IoT enabled healthcare for
COVID-19 Pandemic

Proposes a framework for collecting and
processing data from COVID-19 patients

No implementation given, No data
reduction techniques discussed

Poongodi et al.,
2021 [24]

Smart healthcare in smart
cities IoT applications

Interesting use of GPS to integrate
ambulance service with hospital and

patient

Very application specific, No support
for cloud processing

Poncette et al., 2022 [25] RPM System for Intensive
Care Medicine

Usability study to evaluate UI
experience

of a remote patient-monitoring system
Do not develop or propose a RPM

Pasluosta et al.,
2015 [28]

Overview of IoT for
Management
of Parkinson

Review the current sensors
and technology Do not develop the RPM system
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Table 1. Cont.

Reference No Proposed Technique Findings Limitations

Jayanth et al., 2017 [30]
Wearable device to measure

heart
activity using IoT

Uses pulse and ECG sensors to monitor
heart condition and generate alerts

Localized, No handling of large data,
No clear role of cloud servers

Milici et al., 2017 [34]
IoT-based system for people

with
breathing difficulties

Monitors breathing and generate alerts,
store data on cloud

Localized to one application,
No data filtering or multiplexing

Noda 2019 [41] Wearable NFC and Sensor
Tag for RMS

Experiments with first implementation
of body flexible sensors

Uses data in a localized context,
RMS not proposed

Yang 2014 [42]
A spatiotemporal compression

for
big data processing on Cloud

Use of compression and spatial
information

for the handling of large data

Proposed techniques focus on graphs,
No study performed on streaming IoT

data

Malensek et al.,
2017 [43]

Fog and Cloud Domains to
Support

Query Evaluations in
Sensing Environments

Uses decentralized edge processing to
reduce data pressure in large systems

The system is not tested in a high
volume

and multiple nodes environment

Our proposed model

Cloud-based patient monitoring
model

to handle large data by
deploying

different edge computing
techniques

Edge processing techniques for reducing
data burden, significantly reduce data

received from IoT devices, support four
times more patients, enabling data

visualization services

Deployment in real clinical scenarios,
increase number of sensors and integrate

AI and ML for more intelligent
operations

Note: These limitations are considered
for future work

Frameworks that target the remote monitoring of patients have been proposed, includ-
ing the evaluation of different components (i.e., data collection, AI, ML, alerts, processing,
and applications); however, they fail to provide an overview of a coherent, integrated
system. The model we offer is unique, as it explains the technical (and implementation)
details of different aspects of a patient’s well-being in a remote or close setup. The model is
described with characteristic features, like large data handling (collected from a limited
number of people), cloud processing, adaptive sampling, and physician/guardian connec-
tion. We suggest that the given model enables a well-driven future healthcare system that
could use/integrate state-of-the-art technology-driven (AI and ML) services.

3. System Description

In this section, we outline the basic workflow of our proposed model as shown in
Figure 1. The model comprises three main parts: sensing, network, and application. The
sensing module, also known as the information-gathering part, collects data from IoT
devices. This module records the patient’s vital signs and environment (temperature,
pulse, movement, orientation, etc.) using sensor-mounted IoT devices and sends them
to the cloud or the attached middleware (a smartphone or data multiplexing hub). The
middleware connects to the controller on the IoT device via Bluetooth. The data from
the sensing module are fed to the network module, which is implemented in the cloud
and includes different services and API gateways. This module’s primary task is storing,
managing, and processing incoming data. The application module, which contains the
web and smartphone applications, acts as an interface for the guardians and physicians to
interact with the model. The physician may define different interventions, notifications, and
alerts through this module. Figure 2 shows the framework’s modular approach to services.

In the following three sections, we give details of the three modules of our model.
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Figure 1. The model architecture diagram for remote patient monitoring. The sensing module collects
data using IoT. The network module processes the data. The application module works as an interface
for the end users. The modules are connected using well-defined APIs.
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Figure 2. A block diagram showing the components in each module of the patient monitoring model.
Each module is extendable, and new services/components can be added to it.

3.1. The Sensing Module

As shown in Figure 1, the sensing module uses IoT devices to record the patient’s
data (temperature, pulse, movement, humidity, etc.) and sends them to the cloud via
middleware. The data from sensors are gathered into the IoT device, and after applying
some pre-implemented initial processing (filtering), they are sent to the smartphone app
via Bluetooth. The smartphone app transfers the received data to the cloud through the API
gateways (restful APIs). In some cases, like in the case of Sensor Tags or gadgets, where the
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device has a built-in WiFi module, the data may be directly sent to the cloud bypassing the
middleware.

3.1.1. Data Collection Using IoT Devices

The IoT is a network of small electronic devices with several sensors attached to a
microcontroller. The sensors are placed on the patient’s body to measure the pulse, blood
pressure, electric activity in the heart, muscle fatigue, brain signals, body temperature, skin
hydration, breathing rate, blood oxygen, sound, and blood glucose [41]. The IoT is also
helpful in finding the elevation, change in direction, physical movement, and GPS location.
The device is equipped with Bluetooth, UART, or Wi-Fi to take the data out of the device
into other computers, smartphones, or the cloud.

3.1.2. Handling of Large IoT Data at Edge

Depending on the number of devices (and the number of attached sensors with
each device), the generated data could be big, leading to pressure on the model due to
several reasons:

1. A large amount of data creates processing pressure on middleware devices or inter-
mediate hubs. The middleware often involves low-power devices (smartphones, etc.),
and processing extensive data over a long period becomes more challenging.

2. The network or internet has bandwidth limitations, and injecting large data into it
could result in data loss.

3. The extensive data could easily congest the cloud gateways, making them unavailable
for further requests.

4. Processing a large volume of data needs extensive computing resources and smart
load balancing, leading to increased handling, management and processing costs.

We apply filters at the edge (also called fog computing) to reduce the volume of
data from IoT sensors. Table 2 shows the temperature readings and several other sensors
(mounted on people in lab). Carefully looking at the data, we notice that most data points
are redundant. In the table with 14 samples, the temperature value changes only six times
in a range of 36.36–36.49, while the humidity changes only five times in a range of 20.9–21.5.
This opens up two filtering opportunities: variation in sampling frequency and dropping
of repeated readings.

Table 2. A sample from data recorded from 5 patients using Sensor Tag cc2650. The data show
redundancy in values for different sensors (temperature, pressure, humidity, etc.)

Sample Temperature (°C) Ax (m/s2) Gx (deg/s) Pressure (Pa) Humidity (%) Sound (db) Light (lux) Time

1 36.42 −0.605712891 −0.129699707 954.3 20.9 61.2 26.57 18:25:10.23
2 36.42 −0.013427734 0.183105469 954.29 21.3 62.3 26.57 18:25:10.25
3 36.42 −0.200683594 1.914978027 954.3 21.4 48.2 26.25 18:25:10.26
4 36.42 0.035400391 −2.517700195 954.33 21.4 39.7 26.49 18:25:10.26
5 36.42 0.251953125 −1.864807129 954.33 21.4 63.8 23.59 18:25:10.27
6 36.47 0.086914063 −1.480102539 954.33 21.4 61.2 26.49 18:25:10.28
7 36.49 0.143798828 0.788513184 954.35 21.5 58.7 23.52 18:25:10.28
8 36.49 −1.482421875 −1.202697754 954.35 21.5 66.3 23.75 18:25:10.28
9 36.49 0.175537109 −2.554199219 954.31 21.5 62.5 23.67 18:25:10.30

10 36.36 −0.616943359 −6.629943848 954.32 21.5 44.3 23.67 18:25:10.31
11 36.36 0.552978516 −1.037597656 954.31 21.4 36.6 23.6 18:25:10.32
12 36.36 1.440429688 2.004333496 954.31 21.4 36.4 23.6 18:25:10.33
13 36.36 1.386474609 3.517150879 954.31 21.4 38.5 23.67 18:25:10.34
14 36.41 −0.953125 −0.470825195 954.29 21.4 37.4 23.6 18:25:10.37

The samples were collected at fixed intervals at about one millisecond apart. The
same sampling frequency is often desired to ensure that the readings are synchronized
in time and sent together to the middleware. However, using the same frequency for all
sensors may result in redundant readings (some indicators, like temperature, do not change
their values frequently). Therefore, the sampling frequency could be different for different
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sensors depending on the type of measurement and urgency. Our model uses a weighted
system (in the range of 0–1), where the weights are assigned to sensors based on variations
in their readings. The sampling frequency of a sensor is a factor of the sensor weight as
shown in Equation (1):

sensorsampling f requency = f requencymaximum ∗ sensorweight (1)

where f requencymaximum is the maximum frequency that can be achieved using a sensor.
The maximum frequency is defined for each sensor. This means that a sensor with a
higher weight is read more often than the sensor that carries a lower weight. The weight
assigned is a combination of the sensor’s sensitivity and the patient’s condition as shown
in Equation (2):

sensorweight = sensorsensitivity ∗ patientcondition (2)

The sensor’s sensitivity and the patient’s condition are assigned numbers in the range
of 0–1. sensorsensitivity is the sensitivity of the sensor. For example, the ECG readings
are more sensitive, which change more frequently, showing lesser redundant values. In
comparison, sensors for body temperature are less sensitive and may show redundant
values if recorded at a higher frequency. patientcondition shows the importance of a particular
vital sign for a patient. For example, for a patient that is infected with COVID-19, the oxygen
saturation level might carry more weight than the temperature.

The sensor sensitivity is a relative value, and its values can be set in two ways: static
assignment and adaptable. In static assignment, the values are statically set once in the IoT
device, given the standard variation values of a vital sign. For example, the temperature is
less sensitive (in terms of variation from reading to reading) and could be set to a small
value. The adaptable scheme could follow a more situation-aware mechanism and adjust
the sampling frequency accordingly. For example, when a patient is asleep and static, the
movement stops, and the gyro sensor show redundant or near-redundant values. In that
case, the sensor sensitivity could be adjusted during operation.

The patient condition is also a relative value and a measurement of the importance of
vital signs for a patient as perceived by the healthcare provider. If a physician or healthcare
provider marks a sign as more vital (for example, the pulse readings as the condition of a
heart patient worsens), its relative weight increases according to the increase in importance
value by the healthcare providers. This quantitative value could also be driven by more
informed techniques (algorithms, AI, and ML) based on the condition of the patient.

A second filter can be applied to gain more reduction in data volume. We notice
that even when the sampling frequency is reduced, there may be room for duplicate or
near-duplicate entries as is seen in Table 3. We apply a simple edge operation at the
microcontroller level, where a data sample is dropped if the reading is the same (or falls
within the threshold) as the previous reading from the sensor.

Table 3. Applying filtering on IoT data in Table 2 and removing redundant data of temperature,
pressure, humidity, and light gives a 47% reduction in the number of readings. The vibration, tilt and
sound vary more frequently and do not have any redundant values.

Sample Temperature (°C) Ax (m/s2) Gx (deg/s) Pressure (Pa) Humidity (%) Sound (db) Light (lux) Time

1 36.42 −0.605712891 −0.129699707 954.3 20.9 61.2 26.57 18:25:10.23
2 −0.013427734 0.183105469 954.29 21.3 62.3 18:25:10.25
3 −0.200683594 1.914978027 954.3 21.4 48.2 26.25 18:25:10.26
4 0.035400391 −2.517700195 954.33 39.7 26.49 18:25:10.26
5 0.251953125 −1.864807129 63.8 23.59 18:25:10.27
6 36.47 0.086914063 −1.480102539 61.2 26.49 18:25:10.28
7 36.49 0.143798828 0.788513184 954.35 58.7 23.52 18:25:10.28
8 −1.482421875 −1.202697754 21.5 66.3 23.75 18:25:10.28
9 0.175537109 −2.554199219 954.31 62.5 23.67 18:25:10.30

10 36.36 −0.616943359 −6.629943848 954.32 44.3 18:25:10.31
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Table 3. Cont.

Sample Temperature (°C) Ax (m/s2) Gx (deg/s) Pressure (Pa) Humidity (%) Sound (db) Light (lux) Time

11 0.552978516 −1.037597656 954.31 21.4 36.6 23.6 18:25:10.32
12 1.440429688 2.004333496 36.4 18:25:10.33
13 1.386474609 3.517150879 38.5 23.67 18:25:10.34
14 36.41 −0.953125 −0.470825195 954.29 37.4 23.6 18:25:10.37

3.1.3. The Smartphone App

As part of the sensing module, we developed an Android smartphone application that
receives data from the IoT device via Bluetooth and applies some filtering (pre-processing)
to it. The pre-processing checks the incoming data and drops the reading if they are
not precarious. For example, obtaining a temperature reading in the range of 25–33 °C
is considered normal. Alternatively, if deemed critical (i.e., patient pulse crosses 90), a
data reading will generate alerts and notifications. In some cases, the data may not be
immediately required until the entire sample is ready, such as the heartbeat signals recorded
using a stethoscope; the stethoscope data help perform AI operations in the cloud. Further,
the data are stored locally and sent over when the entire sample is recorded. The local
cashing is helpful, as it allows for multiplexing (sending large packets, often as files),
reducing the cloud gateways’ load. The smartphone may also facilitate specific sensors’
start/stop options to control the data flow.

At the sensing module, the gains at the microcontroller level (adaptive frequencies
and duplicate removal) and the smartphone app level (local processing, multiplexing, and
start/stop) help reduce the volume of large data. The gains are valuable in accommodating
more devices, patients and cloud services.

3.2. The Network Module

The network module works at the cloud layer and collects data from the sensing
module, performs its management, archiving, and further processing. The network module
receives data through API gateways connected to the asynchronous event-driven servers.
Depending on the data type, the receiving application may apply an initial check before
sending them to the data store or other cloud services. The network module is further
divided into four sub-parts based on functionality; details of each sub-part are given
as follows.

3.2.1. API Gateways for Sensing Module

The data from IoT devices or middleware (smartphone apps, etc.) can be received
through API gateways in the cloud. The gateways are connected to the transport protocols.
There are three options for receiving the incoming data. One is using the MQTT (message
queuing telemetry transport) protocol; MQTT is a lightweight, publish–subscribe network
protocol that helps carry messages between IoT devices and the cloud. The second option
is to use streamers. The streamers are connected to producers and consumers and help
carry large amounts of data. The producers push data to streamers asynchronously, and
then the consumer receives data, typically multiple messages at a time (depending on the
shard size). The third option is to use asynchronous event-driven services. The services are
hosted on servers, which spin as a message (data) is received through the API gateway. We
prefer event-driven services over MQTT and streamers, as it gives us more control over
handling received data.

Further, the calling of micro-services (filtering, storage, AI, ML, visualization, etc.) is
supported in the event handlers. The event handler also helps implement the authentica-
tion and verification mechanisms. After receiving, the data are checked for authenticity
using the authentication services (JSON Web Tokens, etc.). All data exchanged through
our APIs adhere to the JSON format. In terms of standards, we support HL7, a widely
recognized standard in the healthcare industry. Our data-exchange practices align with
HL7 compliance, ensuring compatibility and interoperability with other healthcare systems
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and applications. By adopting HL7 standards, we aim to promote seamless data integration
and facilitate effective communication among healthcare stakeholders. We believe that veri-
fication mechanisms are essential in applications such as telemedicine, as they may involve
sharing critical health information. If deemed necessary, a further layer of protection can
be applied using encryption techniques only if it does not increase the computing time.

The event-driven services often perform a quick review of the data. If a flag is raised
(occurrence of a severe condition requiring urgent medical care), an action is triggered,
which involves sending notifications to healthcare professionals or controlling automatic
treatment (like a supply of insulin if the glucose level rises above threshold).

3.2.2. The Cloud Data Store

The cloud data store is divided into two parts: one for strong relational data and one
for storing non-relational records. The relational data store is hosted on an SQL server that
consists of databases, views and reports. The tables store the historical and current records
of patients. Access to data on the relational instance is provided using separate gateways
to ensure that the security is not compromised. The non-relational store archives the data
in the form of files. It typically stores large, bulky data, such as audio clips and streaming
data. Data for post-processing modules (AI, ML, etc.) are often fetched from this data store.
The data store is extendable and could be easily integrated with hospital MIS (management
information system).

3.2.3. Data-Processing Applications

This module consists of several services that run in the cloud. The services run over
the IoT data, and its purpose is to support physicians with aided diagnosis. Typically, the
services incorporate machine learning and AI approaches. The services are triggered as
new data are received about a patient. The range of services in this module can be large,
and depending on the IoT data, more services can be added as needed. For example, the
ECG data and heartbeat signals from a stethoscope can be used to develop a variety of
ML and AI for aided diagnosis. Similarly, visualizations can be added to help healthcare
providers/physicians’ study (amplify) selective parts of signals or imagery. Our proposed
model is extendable, and different services can be added, such as AI-assisted heart diag-
nosis, etc. Similarly, the data on the cloud allow for the research and analysis of patient
records. Although AI and ML modules were not implemented as part of this work, our
model supports their addition. This extension is supported by adding more sensors (i.e.,
ECG for heart diagnosis) and services like machine learning classification models in the
cloud. In AWS, the ML models are usually supported by services like Sagemaker.

3.2.4. API Gateways for Application Module

To support the communication of the application module with the services on the
cloud, we implement several API gateways. The gateways are attached to the stateless
event-driven server to implement appropriate routing or actions. The communication from
an application is authenticated using JSON Web Tokens (JWT). After authentication, the
relevant service is called to respond to the request.

3.3. The Application Module

The application module provides the guardian and healthcare staff a medium to
interact with the model. It consists of web dashboards and smartphone apps (web-based
view, guardian app, physician app, etc.). The caretakers receive real-time information
about the patient’s condition through these interfaces. Healthcare workers also use these
interfaces to visualize the patient’s data and perform diagnoses assisted by AI and machine
learning. These apps access data or services in the cloud through the API gateways of the
application module. More details about the interfaces are given as follows.
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3.3.1. The Caretaker Smartphone App

This app provides an interface for the guardian or patient’s caretaker to interact with
the model. The guardian receives real-time updates about the patient’s condition using
this app. The app supports notifications to recieve alerts if the patient needs immediate
attention.

3.3.2. The Physician Smartphone App

This app is an interface for the healthcare provider/physician to interact with the
model. The interface helps provide real-time alerts about the patient’s condition. The
physicians use this to visualize the patient’s data. Moreover, they use it to calibrate the
model, launch diagnosis applications in the cloud and increase or decrease the frequency
of remote sensing. The physician also uses this app for remote telemetry.

3.3.3. The Web Dashboard

The web dashboard is an authentication-controlled web interface. This interface can
be used to perform visualizations and set up computer-aided diagnoses. The physicians
can record their input on the patient’s condition through this interface. The interface can be
opened for the guardians/caretakers to see the latest notes about the patient.

4. Implementation

This section shows an implementation of our proposed remote patient monitoring
model. We will start with the implementation of the sensing module and then discuss other
modules as well.

The IoT device was implemented using the TI sensor Tag CC2650 (https://www.ti.
com/tool/TIDC-CC2650STK-SENSORTAG (accessed on 15 December 2022)) as shown
in Figure 3. The IoT Kit has ten sensors (temperature, light, elevation, direction, physical
movement, humidity, atmospheric pressure, etc.). Each IoT tag is given a unique ID called
the device ID. The IDs help in uniquely identifying the device and patient. Each patient is
assigned exactly one device. The device ID is transmitted as part of the multiplexed data
from the board. We apply the filtering on sensor data to reduce the pressure of data on the
smartphone app, network, cloud gateways, and cloud services.

This section provides a detailed account of the implementation of our proposed remote
patient monitoring model. We will begin by discussing the implementation of the sensing
module and then proceed to cover other modules.

To implement the sensing module, we utilized the TI sensor tag CC2650, which served
as our IoT device as shown in Figure 3. This IoT kit is equipped with ten sensors, including
temperature, light, elevation, direction, physical movement, humidity, and atmospheric
pressure, among others. Each IoT tag was assigned a unique device ID, enabling the precise
identification of both the device and the corresponding patient. It is important to note
that in our study, we tested with BLE-enabled IoT devices. This allowed us to perform
multiplexing/edge processing at the intermediate device level. However, the system has
well-defined APIs (post/get) that can handle data from any communication medium, like
Bluetooth and Wi-Fi. The filtering and multiplexing techniques that are applied at the edge
are important in reducing the volume of data generated from IoT devices. This ensured that
only relevant and necessary data were transmitted and processed, optimizing the overall
system performance and efficiency.

The smartphone app was programmed in the React Native framework. The different
interfaces of the app are shown in Figure 4. The android app receives data from the Sensor
Tag via Bluetooth and applies a filter on it at the smartphone level. After filtering, the data
are multiplexed into packets. The multiplexing helps reduce the number of outgoing data
packets and the costs associated with the API calls. Further, the data packets are sent to the
cloud using the cloud gateway. The Android app screenshot shows options for scanning,
starting, and stopping the IoT device, where the incoming data can also be seen as shown
in Figure 4.

https://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG
https://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG
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Figure 3. The TI CC2650 Sensor Tag IoT module. (a) Circuit clearly visible with cover removed,
(b) view from the top with cover intact, (c) side view with on/off button [44].

The network module is provided in Amazon Web Services (AWS). The API gateways
that are supported by Python functions handle the data coming into and out of the cloud.
The Python functions run on the lambda server, an event-driven server that is stateless
and enables asynchronous data handling. We implemented several Python functions for
data checking, removing anomalies, and pushing the data to relational and non-relational
data store. We also implemented a function for calling mock machine-learning models on
Sagemaker (a machine-learning service in AWS).

For the relational data store, we launched a relational data service (RDS) instance in
AWS and created a database (with relevant tables) using MySQL. The bulky sensor data are
stored in the non-relational data store implemented in AWS S3 (simple store service), and
the visualization is provided at the Android app level, programmed in the React Native
framework.

The application module consists of a web dashboard, a physician app, and a guardian
app. The web dashboard was programmed in HTML, Javascript, and CSS, while the
Android apps were programmed in a React Native framework. The notification services
were implemented using the AWS simple notification service (SNS).

(a) (b) (c)
Figure 4. Overview of the cloud-based patient monitoring model architecture, illustrating the flow
of data from the IoT sensors to the cloud for processing and analysis. (a) Scanning for available
IoT devices using Bluetooth, (b) shows the data received from IoT device after being connected,
(c) physician using the app for visualization.
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5. Experiments and Evaluation

This section shows our model’s ability to remotely monitor patients using IoT, cloud
and edge processing. It also evaluates its performance in handling large IoT data. We are
interested in the following:

• The use of IoT devices in recording patient’s health and environment;
• The application of variable sampling and filtering in reducing the volume of data;
• The role of the data-collection app in receiving data from IoT, reducing the data

volume using filtering and multiplexing, and data publishing to the cloud;
• The role of the cloud gateway in receiving the incoming data and triggering the

handlers on an event-driven server;
• The role of non-relational and relational data stores in the archiving of data;
• The application of the guardian app in receiving notifications and the physician’s app

in loading visualizations.

5.1. Experimental Setup

We perform our experiment with a different number of students (5–20) to validate
the model’s functionality as shown in Table 4. Each student carries one IoT device, a
Texas Instrument CC2650 IoT Sensor Tag. The IoT Kit carries ten sensors (light, barometer,
magnetic sensor, humidity, pressure, 3-axis accelerometer, 3-axis gyroscope, magnetometer,
object temperature, and atmospheric temperature). The data from the IoT device were
recorded using variable frequencies (1000 samples per second and 500 samples per second).
The sampling frequencies of 1000 and 500 do not follow some indicators’ conventions. For
example, temperature and light do not change frequently and are typically recorded at a
much smaller rate (one reading per minute) than this frequency. However, we performed
this oversampling of data from different resources (e.g., sensors, and no access to hospital
facility) to show the model’s applicability in processing extensive data (which crosses the
bandwidth marks) and show the effects of edge processing. This was also performed to
show that even if we only tested the model with a very limited number of patients, the
volume of data is not a limiting factor (still our model has to be tested with a large number
of patients). Several people used oversampling in several relevant applications to show the
effect of significant data on the network and computing resources [42,43]. The ranges were
chosen carefully only for testing the model, and the values may differ in different scenarios
and geographical regions.

Table 4. All the experiments were performed on a 10 Mbps network bandwidth with all 10 sensors of
the IoT device enabled.

Experiment No. Data Generated
per Second (Megabits)

No. of Patients
/SensorTags

Sampling Rate
(per Second) Filtering 1 Filtering 2 Filtering 3 Filtering 4 Remarks

1 21 10 1000 No No No No Large network contention,
packets dropping

2 10.4 5 1000 No No No No Little network contention
3 9.5 7 1000 Yes No No No No network issues
4 9.6 8 1000, 500 Yes Yes No No No network issues
5 9.2 10 1000, 500 Yes Yes Yes No No network issues
6 9.3 20 1000, 500 Yes Yes Yes Yes No network issues

The work aimed to show the different aspects of a patient monitoring model and with-
out pretending to emulate clinical analysis. Accordingly, the devices were mounted on peo-
ple in our laboratory, not medical patients. The setup is a prototype not discussed/verified
by medical experts; therefore, the patient parameters are taken here as an example, not
necessarily being the most relevant/important. This is especially important in relation
to the suggested parameters in Sections 3.1 and 5.2. The clinical analysis is imperative,
and we plan to perform that as part of future work, where we will also discuss with medi-
cal specialists different types of required variables when deploying the model in clinical
scenarios.
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5.2. Effect of Edge Computing at Device Level

To see the effect of edge computing, we mounted the IoT Sensor Tags on 10 people
(posing as patients) as shown in Experiment 1 in Table 4. Each packet from the IoT device
consists of 265 bytes (1-byte preamble, 4-byte access address, 257-byte PDU, and 3-byte
CRC). Table 2 shows that the IoT module was able to record the status and environment
using the 10 mounted sensors. When not applying any pre-processing and using a rate
of 1000 samples per second, the device generates 21 Megabits of data per second. The
10 Mbps bandwidth could not support 10 patients; therefore, we experienced large delays
and packet losses. With the given setup, a maximum of 5 patients could be supported on a
10 Mbps connection, although we encountered slight delays in data transmission.

When not applying any filtering, each patient generates 2 megabits of data per second
and creates pressure on the network. We examined the collected data to reduce the pressure
of data (from IoT devices) on the network and support a larger number of patients (or
sensors). A close inspection of data in Table 3 reveals that some sensors show redundant
values (temperature, light, pressure etc.). This creates room for the application of fog
computing at this IoT device level. With the dropping of redundant values (as shown
in experiment 3 in Table 4), we were able to support data from 7 patients on a 10 Mbps
connection. A sample of data from the experiment, as shown in Table 3, shows that
redundant data for all sensors are dropped (at the IoT device level). This results in reducing
the data from each patient to about 1.6 megabits per second, reducing the data pressure by
20% as shown in Figure 5. Further, the details of each filtering scheme are shown in Table 5.

Table 5. A list of different filtering techniques that were applied at the IoT and mobile edge levels.

Filtering Label Description Applied At

Filtering 1 remove duplicates only IoT device level
Filtering 2 remove duplicates and data in threshold IoT device level
Filtering 3 variable sampling IoT device level
Filtering 4 mobile edge computing Mobile edge level

The dropping of data gives us gains in reducing the amount of data generated by
the IoT device. However, there is room for more filtering at the device level. A further
examination of data in Table 2 reveals that some of the data have less variation (temperature,
pressure, etc.) in some of their readings compared to other indicators (accelerometer,
gyroscope, etc.). This means that we can define a threshold difference (in comparison to
the previous value) and safely drop the entries that do not pass the threshold difference
(we set a threshold difference of 0.10 for the temperature, light and pressure). Applying
this filtering in conjunction with dropping duplicate values, we performed an experiment
(experiment 4). The data (generated per patient per second) were significantly lower
(1.4 megabits per second) compared to when not using any filtering (2 megabits per second).
This resulted in a gain of 30%, and we were able to support 7 patients on a 10 Mbps network
bandwidth as shown in Figure 5.

As part of the effort to further reduce the volume of generated data and potentially
support a larger number of patients, we further analyze the data. A further examination
of our sensors indicates that some of them have less variation in their values compared
to other sensors. This means that those indicators’ values change less frequently than
others. For example, values of temperature, light, pressure, magnetometer, and humidity
have less variation in their values compared to other indicators, such as accelerometer,
gyroscope and sound. Also, some indicators (like pressure, humidity and light) may be of
lesser importance than other indicators (like the patient’s movement). This gives a useful
insight that the same sampling frequency may not be required for all indicators, opening
room for the application of a variable sampling frequency on different sensors. Taking this
opportunity, we use Equations (1) and (2) (patientcondition = 1, sensorsensitivity = 0.5) and
apply a sampling frequency of 500 samples per second to the less variant sensors, while
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leaving the others unchanged as shown in Table 6. The application of variable sampling
gave us a combined gain of 60% and reduced the amount of data (generated per patient) to
0.8 Megabits per second. This way, we are able to support a maximum of 12 patients on a
10 Mbps network connection.
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Figure 5. Comparing the gains from different filtering techniques when applied in standalone modes
and in combination using a 10 Mbps network connection. (a) Data from 5 patients (when not applying
any pre-processing), throttles the network resulting in data loss. (b) With application of filtering
schemes, data from more patients have been accommodated (up to 20 patients). (c) The total data
generated (from 5 patients in 5 min) reduce significantly as more and more filtering schemes are
applied. (d) Shows the gains in percent (reduction in data volume per patient per second) when
filtering schemes are applied in standalone mode and in combination. The experiment was performed
on 5 patients.

For an experiment that lasted five minutes (on ten patients), the total data volume was
reduced from 6.3 GB (when not applying any edge processing) to 2.5 GB (with filtering and
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usage of different sampling frequencies). The gain significantly reduces the pressure on the
network, cloud storage and computing services.

Table 6. A sample from data recorded using Sensor Tag cc2650. The experiment employs a first level
of filtering (which is the dropping of an attribute value if it is the same as its previous reading).

Sample Temperature (°C) Ax (m/s2) Gx (deg/s) Pressure (Pa) Humidity (%) Sound (db) Light (lux) Time

1 35.51 −0.614746094 −0.89642334 954.33 21.1 63.1 26.65 14:33:19.45
2 32.25 −0.061035156 −1.32910156 21.3 63.3 26.66 14:33:19.45
3 −0.019287109 1.2053833 21.5 60.6 14:33:19.46
4 0.578369141 −1.96887207 954.32 56.2 14:33:19.48
5 0.000488281 −0.991821289 954.31 54.2 14:33:19.49
6 31.17 0.467041016 0.42553711 954.29 41.5 14:33:19.49
7 0.331542969 1.64300537 954.31 21.6 42.5 26.81 14:33:19.50
8 −0.06640625 2.262084961 21.4 68.7 26.73 14:33:19.50
9 33.51 −0.583251953 2.950378418 69.4 26.66 14:33:19.51

10 32.49 −0.528564453 −1.49639893 954.29 21.7 64.3 26.45 14:33:19.51
11 34.16 −0.40234375 0.91217041 954.34 61.7 26.66 14:33:19.54
12 1.070068359 −1.185791016 21.3 52.6 14:33:19.55
13 0.396484375 0.2130127 21.4 48.3 26.73 14:33:19.55
14 35.45 −0.381103516 1.799438477 47.4 14:33:19.56

5.3. Effect of Edge Computing at Smartphone Level

The data collection app receives the data from the IoT device using the BLE module.
The app combines the timestamp and GPS (latitude and longitude) with it and sends it
to the cloud with the unique device ID (which uniquely identifies the patient) using the
API call.

We face some issues with data collection and its transmission to local app elements on
high frequencies. We observe some undefined numbers for some sensors and also observe
that sometimes packets are dropped.

At the app level, we apply a second level of fog computing. This will further reduce
the data pressure on the network and help raise early alarms about vital patient conditions.
At this level, the data for different indicators are checked to determine if they fall in the
normal range. For example, for temperature, the normal range is defined as 30–34 °C.
We also define similar normal ranges for other indicators (light, pressure, vibration, etc.).
Anything that falls in these ranges is dropped and not forwarded to the cloud. Using this
approach, we see a further 29% reduction in data volume as shown in Table 7. This volume
might differ significantly depending on the normal ranges and the condition of the patients.
The data volume per patient (per second) is reduced to 0.24 megabits (given that we are
applying all the filtering schemes. The combined gains from the three filtering schemes are
now able to support 20 patients on a 10 Mbps network bandwidth as shown in Figure 5.
Fog computing could be applied to generate notifications or alerts at this early stage of data
handling.

It is essential to mention that the gains in reducing data flow are translated into reduc-
ing the pressure on data stores (relational and non-relational) and other cloud-processing
applications.

Further, multiplexing is applied to prepare larger packets. The multiplexing does not
help reduce the amount of data; however, it helps reduce the number of calls to the cloud
API gateway. Reducing the number of calls is helpful when the costs are associated with
cloud server spins (in asynchronous demand-driven modes). Remember that multiplexing
can be adaptive in proportion to the server costs and the importance of patient indicators.
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Table 7. Applying filtering on IoT data in Table 3 and dropping data that fall in the normal ranges for
temperature, pressure, humidity, and light sensors gives a 56% reduction in the number of readings.
The variation in vibration, tilt and sound is large, and we do not apply this level of filtering on them.

Sample Temperature (°C) Ax (m/s2) Gx (deg/s) Pressure (Pa) Humidity (%) Sound (db) Light (lux) Time

1 35.51 −0.614746094 −0.89642334 954.33 21.1 63.1 26.65 14:33:19.45
2 −0.061035156 −1.32910156 63.3 14:33:19.45
3 −0.019287109 1.2053833 21.5 60.6 14:33:19.46
4 0.578369141 −1.96887207 56.2 14:33:19.48
5 0.000488281 −0.991821289 954.31 54.2 14:33:19.49
6 0.467041016 0.42553711 41.5 14:33:19.49
7 0.331542969 1.64300537 954.31 21.6 42.5 26.81 14:33:19.50
8 −0.06640625 2.262084961 68.7 14:33:19.50
9 34.27 −0.583251953 2.950378418 69.4 26.66 14:33:19.51

10 −0.528564453 −1.49639893 64.3 14:33:19.51
11 34.16 −0.40234375 0.91217041 954.34 61.7 26.66 14:33:19.54
12 1.070068359 −1.185791016 52.6 14:33:19.55
13 0.396484375 0.2130127 21.4 48.3 26.73 14:33:19.55
14 35.45 −0.381103516 1.799438477 47.4 14:33:19.56

5.4. Utility of API Gateways

The cloud gateway for incoming data successfully reads the data and generated alerts.
Every API call has attached a function on the lambda server on the AWS cloud. The lambda
function tokenizes the values received through the API gateway. Once the data are available
to the function, the device id is used as a key to identify the patient and fetch his/her
information from the relational data store. The lambda processing function performs
two types of operations on the received data. In the first type of processing, the data are
analyzed against certain thresholds for every health parameter, and if a value is marked,
the lambda function triggers the corresponding guardian and physician’s alerts using the
AWS SNS application. The SNS application is connected to Firebase Cloud Messaging. This
shows the lambda functions’ ability to pre-process the received data and generate alerts.

The second type of processing involves invoking different services on the cloud. For
example, an audio sample of a patient’s heartbeat may be used to trigger an artificial
intelligence or machine learning application. The data for these services are first stored in
S3, and after post-processing, the updates are saved to RDS.

5.5. Utility of Physician and Caretaker Apps

The guardians and physicians receive the alerts on their smartphones, on which
application dashboards are installed. These alerts are shown in the notification panel with
their priority set to high. The guardians and physicians request to see the patient’s health
history and visualize it to make it more readable and understandable as shown in Figure 4c.

5.6. Reliability of Overall Model

The reliability of the overall model was studied from the perspective of data collection,
correctness, data transmission, system alerts, and usability. We collected the data using TI
Sensor Tag cc3250 and found it very accurate, as we compared with data collected using
other IoT devices. It was computed using Equation (3) and was found to be more than 95%
for all the sensors:

Sensoraccuracy =
∑n

j=1 ∑m
k=1 |SensorTagj,k − Re f Devicej,k| ∗ 100

N
(3)

where SensorTagj,k refers to sample k of sensor j on the Sensor Tag, while Re f Devicej,k
refers to sample k of sensor j on the reference device.

We also encountered some sample dropping on very high frequencies (1000 samples
per second) and saw undefined values for some of the sensors. In total, three million
measurements were taken with an effectiveness of 85%. This means that for 15% of the
samples, the sensors were unable to show valid numbers. The undefined readings mostly
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came from light and pressure sensors. In practice, we seldom use the mentioned sensor at
such high frequencies.

An issue that we encountered with the IoT module was the battery power. The battery
lasted for about 10 h when used at a frequency of 1000 samples per second with all ten
sensors enabled. Overall, the model was quite effective in providing accurate remote health
data. The different model reliability measures identify important error sources in remote
monitoring models. Our model perform better in comparison to the system presented
by [45].

The data were transmitted to the cloud using http requested, and 96% of the data were
received in the cloud. We observed some packet loses, especially with data from all patients
(with all sensors generating data at 1000 samples per second). The network bandwidth
became congested, and we observed some packet losses en route to the cloud.

We generated some notifications at the cloud level from an asynchronous server, and
all alerts were received by the receivers at their apps. We tested the model for the sensing of
environmental parameters; however, it is equally applicable to the monitoring of patients
with different needs.

6. Discussion and Conclusions

This paper presents a comprehensive, cloud-supported model for patient monitoring
that seamlessly integrates IoT, computational engines, and application programs through
well-defined interfaces. The model addresses various aspects of remote patient monitoring,
including data collection, the efficient handling of large volumes of data, transmission to
the cloud, data storage and processing, and effective communication with applications.

Our model’s standout feature is its end-to-end solution, providing a comprehensive
and integrated approach to remote patient monitoring. Unlike other proposed solutions
that focus on specific aspects, our model holistically covers the entire monitoring process.
Its modular design delineates into three well-defined modules: sensing, network, and
application.

The sensing module, which is foundational to data collection from IoT devices, incor-
porates advanced edge processing techniques for the efficient handling of the large data
volumes generated by sensors. By using filtering, variable sampling, and multiplexing tech-
niques, our model significantly reduces the volume of sensor-generated data, showcasing
improved scalability that accommodates four times more patients compared to traditional
approaches without these edge processing capabilities. For instance, in a testing trial, our
model successfully monitored 40 patients simultaneously, providing real-time data insights
into their vital signs and environmental parameters.

The network module, housed in the cloud, integrates seamlessly with the sensing
module through well-defined APIs. It offers extensive possibilities for data processing,
sharing, and utilization, with components including API gateways, data stores, and pro-
cessing modules. We envision an enhancement in the model’s effectiveness through the
integration of AI and ML services, enabling advanced data analysis, decision making, and
personalized healthcare interventions. For instance, leveraging ML algorithms could detect
anomalies in patients’ vital signs, alerting healthcare providers to potential health risks in
real time.

The application module establishes a seamless connection between physicians, pa-
tients, and their caretakers through user-friendly interfaces, such as web dashboards and
smartphone applications. The modular architecture of our model allows for the indepen-
dent scaling of components within each module, ensuring flexibility and adaptability to
evolving needs.

In conclusion, our work offers a robust and comprehensive model for remote patient
monitoring, efficiently handling vast amounts of data from IoT devices. The model’s
end-to-end solution, along with its modularity and advanced edge processing techniques,
contributes to improved efficiency, scalability, and patient management.
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Moving forward, our commitment to continuous improvement has illuminated po-
tential future avenues of research. This includes exploring the integration of ML and AI
modules, which holds significant promise for enhancing data analysis, decision making,
and personalized interventions in our model. We are also focusing on facilitating real-world
testing in collaboration with healthcare consultants and providers to further refine our
model’s practical application. At the same time, we place high importance on data privacy
and are taking strides to ensure our platform’s full compliance with GDPR and other
relevant data protection standards.

Additional future directions include further analyzing and integrating AI and ML
modules to elaborate the model’s effectiveness, exploring the clinical aspects of collected
data, and expanding its capabilities in monitoring additional health indicators. Also,
increasing the number of patients that our model can handle and investigating the impact
of multi-node gateways and load balancing are promising directions for our future research.
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